xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision 861e10be)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *	Skip non-WB memory and ignore empty memory ranges.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/spinlock.h>
39 #include <linux/uaccess.h>
40 #include <linux/time.h>
41 #include <linux/io.h>
42 #include <linux/reboot.h>
43 #include <linux/bcd.h>
44 
45 #include <asm/setup.h>
46 #include <asm/efi.h>
47 #include <asm/time.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51 
52 #define EFI_DEBUG	1
53 
54 struct efi __read_mostly efi = {
55 	.mps        = EFI_INVALID_TABLE_ADDR,
56 	.acpi       = EFI_INVALID_TABLE_ADDR,
57 	.acpi20     = EFI_INVALID_TABLE_ADDR,
58 	.smbios     = EFI_INVALID_TABLE_ADDR,
59 	.sal_systab = EFI_INVALID_TABLE_ADDR,
60 	.boot_info  = EFI_INVALID_TABLE_ADDR,
61 	.hcdp       = EFI_INVALID_TABLE_ADDR,
62 	.uga        = EFI_INVALID_TABLE_ADDR,
63 	.uv_systab  = EFI_INVALID_TABLE_ADDR,
64 };
65 EXPORT_SYMBOL(efi);
66 
67 struct efi_memory_map memmap;
68 
69 static struct efi efi_phys __initdata;
70 static efi_system_table_t efi_systab __initdata;
71 
72 static inline bool efi_is_native(void)
73 {
74 	return IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT);
75 }
76 
77 unsigned long x86_efi_facility;
78 
79 /*
80  * Returns 1 if 'facility' is enabled, 0 otherwise.
81  */
82 int efi_enabled(int facility)
83 {
84 	return test_bit(facility, &x86_efi_facility) != 0;
85 }
86 EXPORT_SYMBOL(efi_enabled);
87 
88 static int __init setup_noefi(char *arg)
89 {
90 	clear_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
91 	return 0;
92 }
93 early_param("noefi", setup_noefi);
94 
95 int add_efi_memmap;
96 EXPORT_SYMBOL(add_efi_memmap);
97 
98 static int __init setup_add_efi_memmap(char *arg)
99 {
100 	add_efi_memmap = 1;
101 	return 0;
102 }
103 early_param("add_efi_memmap", setup_add_efi_memmap);
104 
105 
106 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
107 {
108 	unsigned long flags;
109 	efi_status_t status;
110 
111 	spin_lock_irqsave(&rtc_lock, flags);
112 	status = efi_call_virt2(get_time, tm, tc);
113 	spin_unlock_irqrestore(&rtc_lock, flags);
114 	return status;
115 }
116 
117 static efi_status_t virt_efi_set_time(efi_time_t *tm)
118 {
119 	unsigned long flags;
120 	efi_status_t status;
121 
122 	spin_lock_irqsave(&rtc_lock, flags);
123 	status = efi_call_virt1(set_time, tm);
124 	spin_unlock_irqrestore(&rtc_lock, flags);
125 	return status;
126 }
127 
128 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
129 					     efi_bool_t *pending,
130 					     efi_time_t *tm)
131 {
132 	unsigned long flags;
133 	efi_status_t status;
134 
135 	spin_lock_irqsave(&rtc_lock, flags);
136 	status = efi_call_virt3(get_wakeup_time,
137 				enabled, pending, tm);
138 	spin_unlock_irqrestore(&rtc_lock, flags);
139 	return status;
140 }
141 
142 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
143 {
144 	unsigned long flags;
145 	efi_status_t status;
146 
147 	spin_lock_irqsave(&rtc_lock, flags);
148 	status = efi_call_virt2(set_wakeup_time,
149 				enabled, tm);
150 	spin_unlock_irqrestore(&rtc_lock, flags);
151 	return status;
152 }
153 
154 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
155 					  efi_guid_t *vendor,
156 					  u32 *attr,
157 					  unsigned long *data_size,
158 					  void *data)
159 {
160 	return efi_call_virt5(get_variable,
161 			      name, vendor, attr,
162 			      data_size, data);
163 }
164 
165 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
166 					       efi_char16_t *name,
167 					       efi_guid_t *vendor)
168 {
169 	return efi_call_virt3(get_next_variable,
170 			      name_size, name, vendor);
171 }
172 
173 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
174 					  efi_guid_t *vendor,
175 					  u32 attr,
176 					  unsigned long data_size,
177 					  void *data)
178 {
179 	return efi_call_virt5(set_variable,
180 			      name, vendor, attr,
181 			      data_size, data);
182 }
183 
184 static efi_status_t virt_efi_query_variable_info(u32 attr,
185 						 u64 *storage_space,
186 						 u64 *remaining_space,
187 						 u64 *max_variable_size)
188 {
189 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
190 		return EFI_UNSUPPORTED;
191 
192 	return efi_call_virt4(query_variable_info, attr, storage_space,
193 			      remaining_space, max_variable_size);
194 }
195 
196 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
197 {
198 	return efi_call_virt1(get_next_high_mono_count, count);
199 }
200 
201 static void virt_efi_reset_system(int reset_type,
202 				  efi_status_t status,
203 				  unsigned long data_size,
204 				  efi_char16_t *data)
205 {
206 	efi_call_virt4(reset_system, reset_type, status,
207 		       data_size, data);
208 }
209 
210 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
211 					    unsigned long count,
212 					    unsigned long sg_list)
213 {
214 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
215 		return EFI_UNSUPPORTED;
216 
217 	return efi_call_virt3(update_capsule, capsules, count, sg_list);
218 }
219 
220 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
221 						unsigned long count,
222 						u64 *max_size,
223 						int *reset_type)
224 {
225 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
226 		return EFI_UNSUPPORTED;
227 
228 	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
229 			      reset_type);
230 }
231 
232 static efi_status_t __init phys_efi_set_virtual_address_map(
233 	unsigned long memory_map_size,
234 	unsigned long descriptor_size,
235 	u32 descriptor_version,
236 	efi_memory_desc_t *virtual_map)
237 {
238 	efi_status_t status;
239 
240 	efi_call_phys_prelog();
241 	status = efi_call_phys4(efi_phys.set_virtual_address_map,
242 				memory_map_size, descriptor_size,
243 				descriptor_version, virtual_map);
244 	efi_call_phys_epilog();
245 	return status;
246 }
247 
248 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
249 					     efi_time_cap_t *tc)
250 {
251 	unsigned long flags;
252 	efi_status_t status;
253 
254 	spin_lock_irqsave(&rtc_lock, flags);
255 	efi_call_phys_prelog();
256 	status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
257 				virt_to_phys(tc));
258 	efi_call_phys_epilog();
259 	spin_unlock_irqrestore(&rtc_lock, flags);
260 	return status;
261 }
262 
263 int efi_set_rtc_mmss(unsigned long nowtime)
264 {
265 	int real_seconds, real_minutes;
266 	efi_status_t 	status;
267 	efi_time_t 	eft;
268 	efi_time_cap_t 	cap;
269 
270 	status = efi.get_time(&eft, &cap);
271 	if (status != EFI_SUCCESS) {
272 		pr_err("Oops: efitime: can't read time!\n");
273 		return -1;
274 	}
275 
276 	real_seconds = nowtime % 60;
277 	real_minutes = nowtime / 60;
278 	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
279 		real_minutes += 30;
280 	real_minutes %= 60;
281 	eft.minute = real_minutes;
282 	eft.second = real_seconds;
283 
284 	status = efi.set_time(&eft);
285 	if (status != EFI_SUCCESS) {
286 		pr_err("Oops: efitime: can't write time!\n");
287 		return -1;
288 	}
289 	return 0;
290 }
291 
292 unsigned long efi_get_time(void)
293 {
294 	efi_status_t status;
295 	efi_time_t eft;
296 	efi_time_cap_t cap;
297 
298 	status = efi.get_time(&eft, &cap);
299 	if (status != EFI_SUCCESS)
300 		pr_err("Oops: efitime: can't read time!\n");
301 
302 	return mktime(eft.year, eft.month, eft.day, eft.hour,
303 		      eft.minute, eft.second);
304 }
305 
306 /*
307  * Tell the kernel about the EFI memory map.  This might include
308  * more than the max 128 entries that can fit in the e820 legacy
309  * (zeropage) memory map.
310  */
311 
312 static void __init do_add_efi_memmap(void)
313 {
314 	void *p;
315 
316 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
317 		efi_memory_desc_t *md = p;
318 		unsigned long long start = md->phys_addr;
319 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
320 		int e820_type;
321 
322 		switch (md->type) {
323 		case EFI_LOADER_CODE:
324 		case EFI_LOADER_DATA:
325 		case EFI_BOOT_SERVICES_CODE:
326 		case EFI_BOOT_SERVICES_DATA:
327 		case EFI_CONVENTIONAL_MEMORY:
328 			if (md->attribute & EFI_MEMORY_WB)
329 				e820_type = E820_RAM;
330 			else
331 				e820_type = E820_RESERVED;
332 			break;
333 		case EFI_ACPI_RECLAIM_MEMORY:
334 			e820_type = E820_ACPI;
335 			break;
336 		case EFI_ACPI_MEMORY_NVS:
337 			e820_type = E820_NVS;
338 			break;
339 		case EFI_UNUSABLE_MEMORY:
340 			e820_type = E820_UNUSABLE;
341 			break;
342 		default:
343 			/*
344 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
345 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
346 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
347 			 */
348 			e820_type = E820_RESERVED;
349 			break;
350 		}
351 		e820_add_region(start, size, e820_type);
352 	}
353 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
354 }
355 
356 int __init efi_memblock_x86_reserve_range(void)
357 {
358 	unsigned long pmap;
359 
360 #ifdef CONFIG_X86_32
361 	/* Can't handle data above 4GB at this time */
362 	if (boot_params.efi_info.efi_memmap_hi) {
363 		pr_err("Memory map is above 4GB, disabling EFI.\n");
364 		return -EINVAL;
365 	}
366 	pmap = boot_params.efi_info.efi_memmap;
367 #else
368 	pmap = (boot_params.efi_info.efi_memmap |
369 		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
370 #endif
371 	memmap.phys_map = (void *)pmap;
372 	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
373 		boot_params.efi_info.efi_memdesc_size;
374 	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
375 	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
376 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
377 
378 	return 0;
379 }
380 
381 #if EFI_DEBUG
382 static void __init print_efi_memmap(void)
383 {
384 	efi_memory_desc_t *md;
385 	void *p;
386 	int i;
387 
388 	for (p = memmap.map, i = 0;
389 	     p < memmap.map_end;
390 	     p += memmap.desc_size, i++) {
391 		md = p;
392 		pr_info("mem%02u: type=%u, attr=0x%llx, "
393 			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
394 			i, md->type, md->attribute, md->phys_addr,
395 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
396 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
397 	}
398 }
399 #endif  /*  EFI_DEBUG  */
400 
401 void __init efi_reserve_boot_services(void)
402 {
403 	void *p;
404 
405 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
406 		efi_memory_desc_t *md = p;
407 		u64 start = md->phys_addr;
408 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
409 
410 		if (md->type != EFI_BOOT_SERVICES_CODE &&
411 		    md->type != EFI_BOOT_SERVICES_DATA)
412 			continue;
413 		/* Only reserve where possible:
414 		 * - Not within any already allocated areas
415 		 * - Not over any memory area (really needed, if above?)
416 		 * - Not within any part of the kernel
417 		 * - Not the bios reserved area
418 		*/
419 		if ((start+size >= virt_to_phys(_text)
420 				&& start <= virt_to_phys(_end)) ||
421 			!e820_all_mapped(start, start+size, E820_RAM) ||
422 			memblock_is_region_reserved(start, size)) {
423 			/* Could not reserve, skip it */
424 			md->num_pages = 0;
425 			memblock_dbg("Could not reserve boot range "
426 					"[0x%010llx-0x%010llx]\n",
427 						start, start+size-1);
428 		} else
429 			memblock_reserve(start, size);
430 	}
431 }
432 
433 void __init efi_unmap_memmap(void)
434 {
435 	clear_bit(EFI_MEMMAP, &x86_efi_facility);
436 	if (memmap.map) {
437 		early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
438 		memmap.map = NULL;
439 	}
440 }
441 
442 void __init efi_free_boot_services(void)
443 {
444 	void *p;
445 
446 	if (!efi_is_native())
447 		return;
448 
449 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
450 		efi_memory_desc_t *md = p;
451 		unsigned long long start = md->phys_addr;
452 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
453 
454 		if (md->type != EFI_BOOT_SERVICES_CODE &&
455 		    md->type != EFI_BOOT_SERVICES_DATA)
456 			continue;
457 
458 		/* Could not reserve boot area */
459 		if (!size)
460 			continue;
461 
462 		free_bootmem_late(start, size);
463 	}
464 
465 	efi_unmap_memmap();
466 }
467 
468 static int __init efi_systab_init(void *phys)
469 {
470 	if (efi_enabled(EFI_64BIT)) {
471 		efi_system_table_64_t *systab64;
472 		u64 tmp = 0;
473 
474 		systab64 = early_ioremap((unsigned long)phys,
475 					 sizeof(*systab64));
476 		if (systab64 == NULL) {
477 			pr_err("Couldn't map the system table!\n");
478 			return -ENOMEM;
479 		}
480 
481 		efi_systab.hdr = systab64->hdr;
482 		efi_systab.fw_vendor = systab64->fw_vendor;
483 		tmp |= systab64->fw_vendor;
484 		efi_systab.fw_revision = systab64->fw_revision;
485 		efi_systab.con_in_handle = systab64->con_in_handle;
486 		tmp |= systab64->con_in_handle;
487 		efi_systab.con_in = systab64->con_in;
488 		tmp |= systab64->con_in;
489 		efi_systab.con_out_handle = systab64->con_out_handle;
490 		tmp |= systab64->con_out_handle;
491 		efi_systab.con_out = systab64->con_out;
492 		tmp |= systab64->con_out;
493 		efi_systab.stderr_handle = systab64->stderr_handle;
494 		tmp |= systab64->stderr_handle;
495 		efi_systab.stderr = systab64->stderr;
496 		tmp |= systab64->stderr;
497 		efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
498 		tmp |= systab64->runtime;
499 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
500 		tmp |= systab64->boottime;
501 		efi_systab.nr_tables = systab64->nr_tables;
502 		efi_systab.tables = systab64->tables;
503 		tmp |= systab64->tables;
504 
505 		early_iounmap(systab64, sizeof(*systab64));
506 #ifdef CONFIG_X86_32
507 		if (tmp >> 32) {
508 			pr_err("EFI data located above 4GB, disabling EFI.\n");
509 			return -EINVAL;
510 		}
511 #endif
512 	} else {
513 		efi_system_table_32_t *systab32;
514 
515 		systab32 = early_ioremap((unsigned long)phys,
516 					 sizeof(*systab32));
517 		if (systab32 == NULL) {
518 			pr_err("Couldn't map the system table!\n");
519 			return -ENOMEM;
520 		}
521 
522 		efi_systab.hdr = systab32->hdr;
523 		efi_systab.fw_vendor = systab32->fw_vendor;
524 		efi_systab.fw_revision = systab32->fw_revision;
525 		efi_systab.con_in_handle = systab32->con_in_handle;
526 		efi_systab.con_in = systab32->con_in;
527 		efi_systab.con_out_handle = systab32->con_out_handle;
528 		efi_systab.con_out = systab32->con_out;
529 		efi_systab.stderr_handle = systab32->stderr_handle;
530 		efi_systab.stderr = systab32->stderr;
531 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
532 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
533 		efi_systab.nr_tables = systab32->nr_tables;
534 		efi_systab.tables = systab32->tables;
535 
536 		early_iounmap(systab32, sizeof(*systab32));
537 	}
538 
539 	efi.systab = &efi_systab;
540 
541 	/*
542 	 * Verify the EFI Table
543 	 */
544 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
545 		pr_err("System table signature incorrect!\n");
546 		return -EINVAL;
547 	}
548 	if ((efi.systab->hdr.revision >> 16) == 0)
549 		pr_err("Warning: System table version "
550 		       "%d.%02d, expected 1.00 or greater!\n",
551 		       efi.systab->hdr.revision >> 16,
552 		       efi.systab->hdr.revision & 0xffff);
553 
554 	return 0;
555 }
556 
557 static int __init efi_config_init(u64 tables, int nr_tables)
558 {
559 	void *config_tables, *tablep;
560 	int i, sz;
561 
562 	if (efi_enabled(EFI_64BIT))
563 		sz = sizeof(efi_config_table_64_t);
564 	else
565 		sz = sizeof(efi_config_table_32_t);
566 
567 	/*
568 	 * Let's see what config tables the firmware passed to us.
569 	 */
570 	config_tables = early_ioremap(tables, nr_tables * sz);
571 	if (config_tables == NULL) {
572 		pr_err("Could not map Configuration table!\n");
573 		return -ENOMEM;
574 	}
575 
576 	tablep = config_tables;
577 	pr_info("");
578 	for (i = 0; i < efi.systab->nr_tables; i++) {
579 		efi_guid_t guid;
580 		unsigned long table;
581 
582 		if (efi_enabled(EFI_64BIT)) {
583 			u64 table64;
584 			guid = ((efi_config_table_64_t *)tablep)->guid;
585 			table64 = ((efi_config_table_64_t *)tablep)->table;
586 			table = table64;
587 #ifdef CONFIG_X86_32
588 			if (table64 >> 32) {
589 				pr_cont("\n");
590 				pr_err("Table located above 4GB, disabling EFI.\n");
591 				early_iounmap(config_tables,
592 					      efi.systab->nr_tables * sz);
593 				return -EINVAL;
594 			}
595 #endif
596 		} else {
597 			guid = ((efi_config_table_32_t *)tablep)->guid;
598 			table = ((efi_config_table_32_t *)tablep)->table;
599 		}
600 		if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
601 			efi.mps = table;
602 			pr_cont(" MPS=0x%lx ", table);
603 		} else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
604 			efi.acpi20 = table;
605 			pr_cont(" ACPI 2.0=0x%lx ", table);
606 		} else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
607 			efi.acpi = table;
608 			pr_cont(" ACPI=0x%lx ", table);
609 		} else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
610 			efi.smbios = table;
611 			pr_cont(" SMBIOS=0x%lx ", table);
612 #ifdef CONFIG_X86_UV
613 		} else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
614 			efi.uv_systab = table;
615 			pr_cont(" UVsystab=0x%lx ", table);
616 #endif
617 		} else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
618 			efi.hcdp = table;
619 			pr_cont(" HCDP=0x%lx ", table);
620 		} else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
621 			efi.uga = table;
622 			pr_cont(" UGA=0x%lx ", table);
623 		}
624 		tablep += sz;
625 	}
626 	pr_cont("\n");
627 	early_iounmap(config_tables, efi.systab->nr_tables * sz);
628 	return 0;
629 }
630 
631 static int __init efi_runtime_init(void)
632 {
633 	efi_runtime_services_t *runtime;
634 
635 	/*
636 	 * Check out the runtime services table. We need to map
637 	 * the runtime services table so that we can grab the physical
638 	 * address of several of the EFI runtime functions, needed to
639 	 * set the firmware into virtual mode.
640 	 */
641 	runtime = early_ioremap((unsigned long)efi.systab->runtime,
642 				sizeof(efi_runtime_services_t));
643 	if (!runtime) {
644 		pr_err("Could not map the runtime service table!\n");
645 		return -ENOMEM;
646 	}
647 	/*
648 	 * We will only need *early* access to the following
649 	 * two EFI runtime services before set_virtual_address_map
650 	 * is invoked.
651 	 */
652 	efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
653 	efi_phys.set_virtual_address_map =
654 		(efi_set_virtual_address_map_t *)
655 		runtime->set_virtual_address_map;
656 	/*
657 	 * Make efi_get_time can be called before entering
658 	 * virtual mode.
659 	 */
660 	efi.get_time = phys_efi_get_time;
661 	early_iounmap(runtime, sizeof(efi_runtime_services_t));
662 
663 	return 0;
664 }
665 
666 static int __init efi_memmap_init(void)
667 {
668 	/* Map the EFI memory map */
669 	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
670 				   memmap.nr_map * memmap.desc_size);
671 	if (memmap.map == NULL) {
672 		pr_err("Could not map the memory map!\n");
673 		return -ENOMEM;
674 	}
675 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
676 
677 	if (add_efi_memmap)
678 		do_add_efi_memmap();
679 
680 	return 0;
681 }
682 
683 void __init efi_init(void)
684 {
685 	efi_char16_t *c16;
686 	char vendor[100] = "unknown";
687 	int i = 0;
688 	void *tmp;
689 
690 #ifdef CONFIG_X86_32
691 	if (boot_params.efi_info.efi_systab_hi ||
692 	    boot_params.efi_info.efi_memmap_hi) {
693 		pr_info("Table located above 4GB, disabling EFI.\n");
694 		return;
695 	}
696 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
697 #else
698 	efi_phys.systab = (efi_system_table_t *)
699 			  (boot_params.efi_info.efi_systab |
700 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
701 #endif
702 
703 	if (efi_systab_init(efi_phys.systab))
704 		return;
705 
706 	set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
707 
708 	/*
709 	 * Show what we know for posterity
710 	 */
711 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
712 	if (c16) {
713 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
714 			vendor[i] = *c16++;
715 		vendor[i] = '\0';
716 	} else
717 		pr_err("Could not map the firmware vendor!\n");
718 	early_iounmap(tmp, 2);
719 
720 	pr_info("EFI v%u.%.02u by %s\n",
721 		efi.systab->hdr.revision >> 16,
722 		efi.systab->hdr.revision & 0xffff, vendor);
723 
724 	if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
725 		return;
726 
727 	set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
728 
729 	/*
730 	 * Note: We currently don't support runtime services on an EFI
731 	 * that doesn't match the kernel 32/64-bit mode.
732 	 */
733 
734 	if (!efi_is_native())
735 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
736 	else {
737 		if (efi_runtime_init())
738 			return;
739 		set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
740 	}
741 
742 	if (efi_memmap_init())
743 		return;
744 
745 	set_bit(EFI_MEMMAP, &x86_efi_facility);
746 
747 #ifdef CONFIG_X86_32
748 	if (efi_is_native()) {
749 		x86_platform.get_wallclock = efi_get_time;
750 		x86_platform.set_wallclock = efi_set_rtc_mmss;
751 	}
752 #endif
753 
754 #if EFI_DEBUG
755 	print_efi_memmap();
756 #endif
757 }
758 
759 void __init efi_late_init(void)
760 {
761 	efi_bgrt_init();
762 }
763 
764 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
765 {
766 	u64 addr, npages;
767 
768 	addr = md->virt_addr;
769 	npages = md->num_pages;
770 
771 	memrange_efi_to_native(&addr, &npages);
772 
773 	if (executable)
774 		set_memory_x(addr, npages);
775 	else
776 		set_memory_nx(addr, npages);
777 }
778 
779 static void __init runtime_code_page_mkexec(void)
780 {
781 	efi_memory_desc_t *md;
782 	void *p;
783 
784 	/* Make EFI runtime service code area executable */
785 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
786 		md = p;
787 
788 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
789 			continue;
790 
791 		efi_set_executable(md, true);
792 	}
793 }
794 
795 /*
796  * We can't ioremap data in EFI boot services RAM, because we've already mapped
797  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
798  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
799  */
800 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
801 {
802 	void *p;
803 	if (WARN_ON(!memmap.map))
804 		return NULL;
805 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
806 		efi_memory_desc_t *md = p;
807 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
808 		u64 end = md->phys_addr + size;
809 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
810 		    md->type != EFI_BOOT_SERVICES_CODE &&
811 		    md->type != EFI_BOOT_SERVICES_DATA)
812 			continue;
813 		if (!md->virt_addr)
814 			continue;
815 		if (phys_addr >= md->phys_addr && phys_addr < end) {
816 			phys_addr += md->virt_addr - md->phys_addr;
817 			return (__force void __iomem *)(unsigned long)phys_addr;
818 		}
819 	}
820 	return NULL;
821 }
822 
823 void efi_memory_uc(u64 addr, unsigned long size)
824 {
825 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
826 	u64 npages;
827 
828 	npages = round_up(size, page_shift) / page_shift;
829 	memrange_efi_to_native(&addr, &npages);
830 	set_memory_uc(addr, npages);
831 }
832 
833 /*
834  * This function will switch the EFI runtime services to virtual mode.
835  * Essentially, look through the EFI memmap and map every region that
836  * has the runtime attribute bit set in its memory descriptor and update
837  * that memory descriptor with the virtual address obtained from ioremap().
838  * This enables the runtime services to be called without having to
839  * thunk back into physical mode for every invocation.
840  */
841 void __init efi_enter_virtual_mode(void)
842 {
843 	efi_memory_desc_t *md, *prev_md = NULL;
844 	efi_status_t status;
845 	unsigned long size;
846 	u64 end, systab, end_pfn;
847 	void *p, *va, *new_memmap = NULL;
848 	int count = 0;
849 
850 	efi.systab = NULL;
851 
852 	/*
853 	 * We don't do virtual mode, since we don't do runtime services, on
854 	 * non-native EFI
855 	 */
856 
857 	if (!efi_is_native()) {
858 		efi_unmap_memmap();
859 		return;
860 	}
861 
862 	/* Merge contiguous regions of the same type and attribute */
863 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
864 		u64 prev_size;
865 		md = p;
866 
867 		if (!prev_md) {
868 			prev_md = md;
869 			continue;
870 		}
871 
872 		if (prev_md->type != md->type ||
873 		    prev_md->attribute != md->attribute) {
874 			prev_md = md;
875 			continue;
876 		}
877 
878 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
879 
880 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
881 			prev_md->num_pages += md->num_pages;
882 			md->type = EFI_RESERVED_TYPE;
883 			md->attribute = 0;
884 			continue;
885 		}
886 		prev_md = md;
887 	}
888 
889 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
890 		md = p;
891 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
892 		    md->type != EFI_BOOT_SERVICES_CODE &&
893 		    md->type != EFI_BOOT_SERVICES_DATA)
894 			continue;
895 
896 		size = md->num_pages << EFI_PAGE_SHIFT;
897 		end = md->phys_addr + size;
898 
899 		end_pfn = PFN_UP(end);
900 		if (end_pfn <= max_low_pfn_mapped
901 		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
902 			&& end_pfn <= max_pfn_mapped)) {
903 			va = __va(md->phys_addr);
904 
905 			if (!(md->attribute & EFI_MEMORY_WB))
906 				efi_memory_uc((u64)(unsigned long)va, size);
907 		} else
908 			va = efi_ioremap(md->phys_addr, size,
909 					 md->type, md->attribute);
910 
911 		md->virt_addr = (u64) (unsigned long) va;
912 
913 		if (!va) {
914 			pr_err("ioremap of 0x%llX failed!\n",
915 			       (unsigned long long)md->phys_addr);
916 			continue;
917 		}
918 
919 		systab = (u64) (unsigned long) efi_phys.systab;
920 		if (md->phys_addr <= systab && systab < end) {
921 			systab += md->virt_addr - md->phys_addr;
922 			efi.systab = (efi_system_table_t *) (unsigned long) systab;
923 		}
924 		new_memmap = krealloc(new_memmap,
925 				      (count + 1) * memmap.desc_size,
926 				      GFP_KERNEL);
927 		memcpy(new_memmap + (count * memmap.desc_size), md,
928 		       memmap.desc_size);
929 		count++;
930 	}
931 
932 	BUG_ON(!efi.systab);
933 
934 	status = phys_efi_set_virtual_address_map(
935 		memmap.desc_size * count,
936 		memmap.desc_size,
937 		memmap.desc_version,
938 		(efi_memory_desc_t *)__pa(new_memmap));
939 
940 	if (status != EFI_SUCCESS) {
941 		pr_alert("Unable to switch EFI into virtual mode "
942 			 "(status=%lx)!\n", status);
943 		panic("EFI call to SetVirtualAddressMap() failed!");
944 	}
945 
946 	/*
947 	 * Now that EFI is in virtual mode, update the function
948 	 * pointers in the runtime service table to the new virtual addresses.
949 	 *
950 	 * Call EFI services through wrapper functions.
951 	 */
952 	efi.runtime_version = efi_systab.hdr.revision;
953 	efi.get_time = virt_efi_get_time;
954 	efi.set_time = virt_efi_set_time;
955 	efi.get_wakeup_time = virt_efi_get_wakeup_time;
956 	efi.set_wakeup_time = virt_efi_set_wakeup_time;
957 	efi.get_variable = virt_efi_get_variable;
958 	efi.get_next_variable = virt_efi_get_next_variable;
959 	efi.set_variable = virt_efi_set_variable;
960 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
961 	efi.reset_system = virt_efi_reset_system;
962 	efi.set_virtual_address_map = NULL;
963 	efi.query_variable_info = virt_efi_query_variable_info;
964 	efi.update_capsule = virt_efi_update_capsule;
965 	efi.query_capsule_caps = virt_efi_query_capsule_caps;
966 	if (__supported_pte_mask & _PAGE_NX)
967 		runtime_code_page_mkexec();
968 
969 	kfree(new_memmap);
970 }
971 
972 /*
973  * Convenience functions to obtain memory types and attributes
974  */
975 u32 efi_mem_type(unsigned long phys_addr)
976 {
977 	efi_memory_desc_t *md;
978 	void *p;
979 
980 	if (!efi_enabled(EFI_MEMMAP))
981 		return 0;
982 
983 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
984 		md = p;
985 		if ((md->phys_addr <= phys_addr) &&
986 		    (phys_addr < (md->phys_addr +
987 				  (md->num_pages << EFI_PAGE_SHIFT))))
988 			return md->type;
989 	}
990 	return 0;
991 }
992 
993 u64 efi_mem_attributes(unsigned long phys_addr)
994 {
995 	efi_memory_desc_t *md;
996 	void *p;
997 
998 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
999 		md = p;
1000 		if ((md->phys_addr <= phys_addr) &&
1001 		    (phys_addr < (md->phys_addr +
1002 				  (md->num_pages << EFI_PAGE_SHIFT))))
1003 			return md->attribute;
1004 	}
1005 	return 0;
1006 }
1007