xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision 82003e04)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
55 
56 static struct efi efi_phys __initdata;
57 static efi_system_table_t efi_systab __initdata;
58 
59 static efi_config_table_type_t arch_tables[] __initdata = {
60 #ifdef CONFIG_X86_UV
61 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
62 #endif
63 	{NULL_GUID, NULL, NULL},
64 };
65 
66 u64 efi_setup;		/* efi setup_data physical address */
67 
68 static int add_efi_memmap __initdata;
69 static int __init setup_add_efi_memmap(char *arg)
70 {
71 	add_efi_memmap = 1;
72 	return 0;
73 }
74 early_param("add_efi_memmap", setup_add_efi_memmap);
75 
76 static efi_status_t __init phys_efi_set_virtual_address_map(
77 	unsigned long memory_map_size,
78 	unsigned long descriptor_size,
79 	u32 descriptor_version,
80 	efi_memory_desc_t *virtual_map)
81 {
82 	efi_status_t status;
83 	unsigned long flags;
84 	pgd_t *save_pgd;
85 
86 	save_pgd = efi_call_phys_prolog();
87 
88 	/* Disable interrupts around EFI calls: */
89 	local_irq_save(flags);
90 	status = efi_call_phys(efi_phys.set_virtual_address_map,
91 			       memory_map_size, descriptor_size,
92 			       descriptor_version, virtual_map);
93 	local_irq_restore(flags);
94 
95 	efi_call_phys_epilog(save_pgd);
96 
97 	return status;
98 }
99 
100 void __init efi_find_mirror(void)
101 {
102 	efi_memory_desc_t *md;
103 	u64 mirror_size = 0, total_size = 0;
104 
105 	for_each_efi_memory_desc(md) {
106 		unsigned long long start = md->phys_addr;
107 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
108 
109 		total_size += size;
110 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
111 			memblock_mark_mirror(start, size);
112 			mirror_size += size;
113 		}
114 	}
115 	if (mirror_size)
116 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
117 			mirror_size>>20, total_size>>20);
118 }
119 
120 /*
121  * Tell the kernel about the EFI memory map.  This might include
122  * more than the max 128 entries that can fit in the e820 legacy
123  * (zeropage) memory map.
124  */
125 
126 static void __init do_add_efi_memmap(void)
127 {
128 	efi_memory_desc_t *md;
129 
130 	for_each_efi_memory_desc(md) {
131 		unsigned long long start = md->phys_addr;
132 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
133 		int e820_type;
134 
135 		switch (md->type) {
136 		case EFI_LOADER_CODE:
137 		case EFI_LOADER_DATA:
138 		case EFI_BOOT_SERVICES_CODE:
139 		case EFI_BOOT_SERVICES_DATA:
140 		case EFI_CONVENTIONAL_MEMORY:
141 			if (md->attribute & EFI_MEMORY_WB)
142 				e820_type = E820_RAM;
143 			else
144 				e820_type = E820_RESERVED;
145 			break;
146 		case EFI_ACPI_RECLAIM_MEMORY:
147 			e820_type = E820_ACPI;
148 			break;
149 		case EFI_ACPI_MEMORY_NVS:
150 			e820_type = E820_NVS;
151 			break;
152 		case EFI_UNUSABLE_MEMORY:
153 			e820_type = E820_UNUSABLE;
154 			break;
155 		case EFI_PERSISTENT_MEMORY:
156 			e820_type = E820_PMEM;
157 			break;
158 		default:
159 			/*
160 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
161 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
162 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
163 			 */
164 			e820_type = E820_RESERVED;
165 			break;
166 		}
167 		e820_add_region(start, size, e820_type);
168 	}
169 	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
170 }
171 
172 int __init efi_memblock_x86_reserve_range(void)
173 {
174 	struct efi_info *e = &boot_params.efi_info;
175 	struct efi_memory_map_data data;
176 	phys_addr_t pmap;
177 	int rv;
178 
179 	if (efi_enabled(EFI_PARAVIRT))
180 		return 0;
181 
182 #ifdef CONFIG_X86_32
183 	/* Can't handle data above 4GB at this time */
184 	if (e->efi_memmap_hi) {
185 		pr_err("Memory map is above 4GB, disabling EFI.\n");
186 		return -EINVAL;
187 	}
188 	pmap =  e->efi_memmap;
189 #else
190 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
191 #endif
192 	data.phys_map		= pmap;
193 	data.size 		= e->efi_memmap_size;
194 	data.desc_size		= e->efi_memdesc_size;
195 	data.desc_version	= e->efi_memdesc_version;
196 
197 	rv = efi_memmap_init_early(&data);
198 	if (rv)
199 		return rv;
200 
201 	if (add_efi_memmap)
202 		do_add_efi_memmap();
203 
204 	WARN(efi.memmap.desc_version != 1,
205 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
206 	     efi.memmap.desc_version);
207 
208 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
209 
210 	return 0;
211 }
212 
213 void __init efi_print_memmap(void)
214 {
215 	efi_memory_desc_t *md;
216 	int i = 0;
217 
218 	for_each_efi_memory_desc(md) {
219 		char buf[64];
220 
221 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
222 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
223 			md->phys_addr,
224 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
225 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
226 	}
227 }
228 
229 static int __init efi_systab_init(void *phys)
230 {
231 	if (efi_enabled(EFI_64BIT)) {
232 		efi_system_table_64_t *systab64;
233 		struct efi_setup_data *data = NULL;
234 		u64 tmp = 0;
235 
236 		if (efi_setup) {
237 			data = early_memremap(efi_setup, sizeof(*data));
238 			if (!data)
239 				return -ENOMEM;
240 		}
241 		systab64 = early_memremap((unsigned long)phys,
242 					 sizeof(*systab64));
243 		if (systab64 == NULL) {
244 			pr_err("Couldn't map the system table!\n");
245 			if (data)
246 				early_memunmap(data, sizeof(*data));
247 			return -ENOMEM;
248 		}
249 
250 		efi_systab.hdr = systab64->hdr;
251 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
252 					      systab64->fw_vendor;
253 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
254 		efi_systab.fw_revision = systab64->fw_revision;
255 		efi_systab.con_in_handle = systab64->con_in_handle;
256 		tmp |= systab64->con_in_handle;
257 		efi_systab.con_in = systab64->con_in;
258 		tmp |= systab64->con_in;
259 		efi_systab.con_out_handle = systab64->con_out_handle;
260 		tmp |= systab64->con_out_handle;
261 		efi_systab.con_out = systab64->con_out;
262 		tmp |= systab64->con_out;
263 		efi_systab.stderr_handle = systab64->stderr_handle;
264 		tmp |= systab64->stderr_handle;
265 		efi_systab.stderr = systab64->stderr;
266 		tmp |= systab64->stderr;
267 		efi_systab.runtime = data ?
268 				     (void *)(unsigned long)data->runtime :
269 				     (void *)(unsigned long)systab64->runtime;
270 		tmp |= data ? data->runtime : systab64->runtime;
271 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
272 		tmp |= systab64->boottime;
273 		efi_systab.nr_tables = systab64->nr_tables;
274 		efi_systab.tables = data ? (unsigned long)data->tables :
275 					   systab64->tables;
276 		tmp |= data ? data->tables : systab64->tables;
277 
278 		early_memunmap(systab64, sizeof(*systab64));
279 		if (data)
280 			early_memunmap(data, sizeof(*data));
281 #ifdef CONFIG_X86_32
282 		if (tmp >> 32) {
283 			pr_err("EFI data located above 4GB, disabling EFI.\n");
284 			return -EINVAL;
285 		}
286 #endif
287 	} else {
288 		efi_system_table_32_t *systab32;
289 
290 		systab32 = early_memremap((unsigned long)phys,
291 					 sizeof(*systab32));
292 		if (systab32 == NULL) {
293 			pr_err("Couldn't map the system table!\n");
294 			return -ENOMEM;
295 		}
296 
297 		efi_systab.hdr = systab32->hdr;
298 		efi_systab.fw_vendor = systab32->fw_vendor;
299 		efi_systab.fw_revision = systab32->fw_revision;
300 		efi_systab.con_in_handle = systab32->con_in_handle;
301 		efi_systab.con_in = systab32->con_in;
302 		efi_systab.con_out_handle = systab32->con_out_handle;
303 		efi_systab.con_out = systab32->con_out;
304 		efi_systab.stderr_handle = systab32->stderr_handle;
305 		efi_systab.stderr = systab32->stderr;
306 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
307 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
308 		efi_systab.nr_tables = systab32->nr_tables;
309 		efi_systab.tables = systab32->tables;
310 
311 		early_memunmap(systab32, sizeof(*systab32));
312 	}
313 
314 	efi.systab = &efi_systab;
315 
316 	/*
317 	 * Verify the EFI Table
318 	 */
319 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
320 		pr_err("System table signature incorrect!\n");
321 		return -EINVAL;
322 	}
323 	if ((efi.systab->hdr.revision >> 16) == 0)
324 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
325 		       efi.systab->hdr.revision >> 16,
326 		       efi.systab->hdr.revision & 0xffff);
327 
328 	return 0;
329 }
330 
331 static int __init efi_runtime_init32(void)
332 {
333 	efi_runtime_services_32_t *runtime;
334 
335 	runtime = early_memremap((unsigned long)efi.systab->runtime,
336 			sizeof(efi_runtime_services_32_t));
337 	if (!runtime) {
338 		pr_err("Could not map the runtime service table!\n");
339 		return -ENOMEM;
340 	}
341 
342 	/*
343 	 * We will only need *early* access to the SetVirtualAddressMap
344 	 * EFI runtime service. All other runtime services will be called
345 	 * via the virtual mapping.
346 	 */
347 	efi_phys.set_virtual_address_map =
348 			(efi_set_virtual_address_map_t *)
349 			(unsigned long)runtime->set_virtual_address_map;
350 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
351 
352 	return 0;
353 }
354 
355 static int __init efi_runtime_init64(void)
356 {
357 	efi_runtime_services_64_t *runtime;
358 
359 	runtime = early_memremap((unsigned long)efi.systab->runtime,
360 			sizeof(efi_runtime_services_64_t));
361 	if (!runtime) {
362 		pr_err("Could not map the runtime service table!\n");
363 		return -ENOMEM;
364 	}
365 
366 	/*
367 	 * We will only need *early* access to the SetVirtualAddressMap
368 	 * EFI runtime service. All other runtime services will be called
369 	 * via the virtual mapping.
370 	 */
371 	efi_phys.set_virtual_address_map =
372 			(efi_set_virtual_address_map_t *)
373 			(unsigned long)runtime->set_virtual_address_map;
374 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
375 
376 	return 0;
377 }
378 
379 static int __init efi_runtime_init(void)
380 {
381 	int rv;
382 
383 	/*
384 	 * Check out the runtime services table. We need to map
385 	 * the runtime services table so that we can grab the physical
386 	 * address of several of the EFI runtime functions, needed to
387 	 * set the firmware into virtual mode.
388 	 *
389 	 * When EFI_PARAVIRT is in force then we could not map runtime
390 	 * service memory region because we do not have direct access to it.
391 	 * However, runtime services are available through proxy functions
392 	 * (e.g. in case of Xen dom0 EFI implementation they call special
393 	 * hypercall which executes relevant EFI functions) and that is why
394 	 * they are always enabled.
395 	 */
396 
397 	if (!efi_enabled(EFI_PARAVIRT)) {
398 		if (efi_enabled(EFI_64BIT))
399 			rv = efi_runtime_init64();
400 		else
401 			rv = efi_runtime_init32();
402 
403 		if (rv)
404 			return rv;
405 	}
406 
407 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
408 
409 	return 0;
410 }
411 
412 void __init efi_init(void)
413 {
414 	efi_char16_t *c16;
415 	char vendor[100] = "unknown";
416 	int i = 0;
417 	void *tmp;
418 
419 #ifdef CONFIG_X86_32
420 	if (boot_params.efi_info.efi_systab_hi ||
421 	    boot_params.efi_info.efi_memmap_hi) {
422 		pr_info("Table located above 4GB, disabling EFI.\n");
423 		return;
424 	}
425 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
426 #else
427 	efi_phys.systab = (efi_system_table_t *)
428 			  (boot_params.efi_info.efi_systab |
429 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
430 #endif
431 
432 	if (efi_systab_init(efi_phys.systab))
433 		return;
434 
435 	efi.config_table = (unsigned long)efi.systab->tables;
436 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
437 	efi.runtime	 = (unsigned long)efi.systab->runtime;
438 
439 	/*
440 	 * Show what we know for posterity
441 	 */
442 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
443 	if (c16) {
444 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
445 			vendor[i] = *c16++;
446 		vendor[i] = '\0';
447 	} else
448 		pr_err("Could not map the firmware vendor!\n");
449 	early_memunmap(tmp, 2);
450 
451 	pr_info("EFI v%u.%.02u by %s\n",
452 		efi.systab->hdr.revision >> 16,
453 		efi.systab->hdr.revision & 0xffff, vendor);
454 
455 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
456 		return;
457 
458 	if (efi_config_init(arch_tables))
459 		return;
460 
461 	/*
462 	 * Note: We currently don't support runtime services on an EFI
463 	 * that doesn't match the kernel 32/64-bit mode.
464 	 */
465 
466 	if (!efi_runtime_supported())
467 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
468 	else {
469 		if (efi_runtime_disabled() || efi_runtime_init()) {
470 			efi_memmap_unmap();
471 			return;
472 		}
473 	}
474 
475 	if (efi_enabled(EFI_DBG))
476 		efi_print_memmap();
477 }
478 
479 void __init efi_late_init(void)
480 {
481 	efi_bgrt_init();
482 }
483 
484 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
485 {
486 	u64 addr, npages;
487 
488 	addr = md->virt_addr;
489 	npages = md->num_pages;
490 
491 	memrange_efi_to_native(&addr, &npages);
492 
493 	if (executable)
494 		set_memory_x(addr, npages);
495 	else
496 		set_memory_nx(addr, npages);
497 }
498 
499 void __init runtime_code_page_mkexec(void)
500 {
501 	efi_memory_desc_t *md;
502 
503 	/* Make EFI runtime service code area executable */
504 	for_each_efi_memory_desc(md) {
505 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
506 			continue;
507 
508 		efi_set_executable(md, true);
509 	}
510 }
511 
512 void __init efi_memory_uc(u64 addr, unsigned long size)
513 {
514 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
515 	u64 npages;
516 
517 	npages = round_up(size, page_shift) / page_shift;
518 	memrange_efi_to_native(&addr, &npages);
519 	set_memory_uc(addr, npages);
520 }
521 
522 void __init old_map_region(efi_memory_desc_t *md)
523 {
524 	u64 start_pfn, end_pfn, end;
525 	unsigned long size;
526 	void *va;
527 
528 	start_pfn = PFN_DOWN(md->phys_addr);
529 	size	  = md->num_pages << PAGE_SHIFT;
530 	end	  = md->phys_addr + size;
531 	end_pfn   = PFN_UP(end);
532 
533 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
534 		va = __va(md->phys_addr);
535 
536 		if (!(md->attribute & EFI_MEMORY_WB))
537 			efi_memory_uc((u64)(unsigned long)va, size);
538 	} else
539 		va = efi_ioremap(md->phys_addr, size,
540 				 md->type, md->attribute);
541 
542 	md->virt_addr = (u64) (unsigned long) va;
543 	if (!va)
544 		pr_err("ioremap of 0x%llX failed!\n",
545 		       (unsigned long long)md->phys_addr);
546 }
547 
548 /* Merge contiguous regions of the same type and attribute */
549 static void __init efi_merge_regions(void)
550 {
551 	efi_memory_desc_t *md, *prev_md = NULL;
552 
553 	for_each_efi_memory_desc(md) {
554 		u64 prev_size;
555 
556 		if (!prev_md) {
557 			prev_md = md;
558 			continue;
559 		}
560 
561 		if (prev_md->type != md->type ||
562 		    prev_md->attribute != md->attribute) {
563 			prev_md = md;
564 			continue;
565 		}
566 
567 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
568 
569 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
570 			prev_md->num_pages += md->num_pages;
571 			md->type = EFI_RESERVED_TYPE;
572 			md->attribute = 0;
573 			continue;
574 		}
575 		prev_md = md;
576 	}
577 }
578 
579 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
580 {
581 	unsigned long size;
582 	u64 end, systab;
583 
584 	size = md->num_pages << EFI_PAGE_SHIFT;
585 	end = md->phys_addr + size;
586 	systab = (u64)(unsigned long)efi_phys.systab;
587 	if (md->phys_addr <= systab && systab < end) {
588 		systab += md->virt_addr - md->phys_addr;
589 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
590 	}
591 }
592 
593 static void *realloc_pages(void *old_memmap, int old_shift)
594 {
595 	void *ret;
596 
597 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
598 	if (!ret)
599 		goto out;
600 
601 	/*
602 	 * A first-time allocation doesn't have anything to copy.
603 	 */
604 	if (!old_memmap)
605 		return ret;
606 
607 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
608 
609 out:
610 	free_pages((unsigned long)old_memmap, old_shift);
611 	return ret;
612 }
613 
614 /*
615  * Iterate the EFI memory map in reverse order because the regions
616  * will be mapped top-down. The end result is the same as if we had
617  * mapped things forward, but doesn't require us to change the
618  * existing implementation of efi_map_region().
619  */
620 static inline void *efi_map_next_entry_reverse(void *entry)
621 {
622 	/* Initial call */
623 	if (!entry)
624 		return efi.memmap.map_end - efi.memmap.desc_size;
625 
626 	entry -= efi.memmap.desc_size;
627 	if (entry < efi.memmap.map)
628 		return NULL;
629 
630 	return entry;
631 }
632 
633 /*
634  * efi_map_next_entry - Return the next EFI memory map descriptor
635  * @entry: Previous EFI memory map descriptor
636  *
637  * This is a helper function to iterate over the EFI memory map, which
638  * we do in different orders depending on the current configuration.
639  *
640  * To begin traversing the memory map @entry must be %NULL.
641  *
642  * Returns %NULL when we reach the end of the memory map.
643  */
644 static void *efi_map_next_entry(void *entry)
645 {
646 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
647 		/*
648 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
649 		 * config table feature requires us to map all entries
650 		 * in the same order as they appear in the EFI memory
651 		 * map. That is to say, entry N must have a lower
652 		 * virtual address than entry N+1. This is because the
653 		 * firmware toolchain leaves relative references in
654 		 * the code/data sections, which are split and become
655 		 * separate EFI memory regions. Mapping things
656 		 * out-of-order leads to the firmware accessing
657 		 * unmapped addresses.
658 		 *
659 		 * Since we need to map things this way whether or not
660 		 * the kernel actually makes use of
661 		 * EFI_PROPERTIES_TABLE, let's just switch to this
662 		 * scheme by default for 64-bit.
663 		 */
664 		return efi_map_next_entry_reverse(entry);
665 	}
666 
667 	/* Initial call */
668 	if (!entry)
669 		return efi.memmap.map;
670 
671 	entry += efi.memmap.desc_size;
672 	if (entry >= efi.memmap.map_end)
673 		return NULL;
674 
675 	return entry;
676 }
677 
678 static bool should_map_region(efi_memory_desc_t *md)
679 {
680 	/*
681 	 * Runtime regions always require runtime mappings (obviously).
682 	 */
683 	if (md->attribute & EFI_MEMORY_RUNTIME)
684 		return true;
685 
686 	/*
687 	 * 32-bit EFI doesn't suffer from the bug that requires us to
688 	 * reserve boot services regions, and mixed mode support
689 	 * doesn't exist for 32-bit kernels.
690 	 */
691 	if (IS_ENABLED(CONFIG_X86_32))
692 		return false;
693 
694 	/*
695 	 * Map all of RAM so that we can access arguments in the 1:1
696 	 * mapping when making EFI runtime calls.
697 	 */
698 	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
699 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
700 		    md->type == EFI_LOADER_DATA ||
701 		    md->type == EFI_LOADER_CODE)
702 			return true;
703 	}
704 
705 	/*
706 	 * Map boot services regions as a workaround for buggy
707 	 * firmware that accesses them even when they shouldn't.
708 	 *
709 	 * See efi_{reserve,free}_boot_services().
710 	 */
711 	if (md->type == EFI_BOOT_SERVICES_CODE ||
712 	    md->type == EFI_BOOT_SERVICES_DATA)
713 		return true;
714 
715 	return false;
716 }
717 
718 /*
719  * Map the efi memory ranges of the runtime services and update new_mmap with
720  * virtual addresses.
721  */
722 static void * __init efi_map_regions(int *count, int *pg_shift)
723 {
724 	void *p, *new_memmap = NULL;
725 	unsigned long left = 0;
726 	unsigned long desc_size;
727 	efi_memory_desc_t *md;
728 
729 	desc_size = efi.memmap.desc_size;
730 
731 	p = NULL;
732 	while ((p = efi_map_next_entry(p))) {
733 		md = p;
734 
735 		if (!should_map_region(md))
736 			continue;
737 
738 		efi_map_region(md);
739 		get_systab_virt_addr(md);
740 
741 		if (left < desc_size) {
742 			new_memmap = realloc_pages(new_memmap, *pg_shift);
743 			if (!new_memmap)
744 				return NULL;
745 
746 			left += PAGE_SIZE << *pg_shift;
747 			(*pg_shift)++;
748 		}
749 
750 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
751 
752 		left -= desc_size;
753 		(*count)++;
754 	}
755 
756 	return new_memmap;
757 }
758 
759 static void __init kexec_enter_virtual_mode(void)
760 {
761 #ifdef CONFIG_KEXEC_CORE
762 	efi_memory_desc_t *md;
763 	unsigned int num_pages;
764 
765 	efi.systab = NULL;
766 
767 	/*
768 	 * We don't do virtual mode, since we don't do runtime services, on
769 	 * non-native EFI
770 	 */
771 	if (!efi_is_native()) {
772 		efi_memmap_unmap();
773 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
774 		return;
775 	}
776 
777 	if (efi_alloc_page_tables()) {
778 		pr_err("Failed to allocate EFI page tables\n");
779 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
780 		return;
781 	}
782 
783 	/*
784 	* Map efi regions which were passed via setup_data. The virt_addr is a
785 	* fixed addr which was used in first kernel of a kexec boot.
786 	*/
787 	for_each_efi_memory_desc(md) {
788 		efi_map_region_fixed(md); /* FIXME: add error handling */
789 		get_systab_virt_addr(md);
790 	}
791 
792 	/*
793 	 * Unregister the early EFI memmap from efi_init() and install
794 	 * the new EFI memory map.
795 	 */
796 	efi_memmap_unmap();
797 
798 	if (efi_memmap_init_late(efi.memmap.phys_map,
799 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
800 		pr_err("Failed to remap late EFI memory map\n");
801 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
802 		return;
803 	}
804 
805 	BUG_ON(!efi.systab);
806 
807 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
808 	num_pages >>= PAGE_SHIFT;
809 
810 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
811 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
812 		return;
813 	}
814 
815 	efi_sync_low_kernel_mappings();
816 
817 	/*
818 	 * Now that EFI is in virtual mode, update the function
819 	 * pointers in the runtime service table to the new virtual addresses.
820 	 *
821 	 * Call EFI services through wrapper functions.
822 	 */
823 	efi.runtime_version = efi_systab.hdr.revision;
824 
825 	efi_native_runtime_setup();
826 
827 	efi.set_virtual_address_map = NULL;
828 
829 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
830 		runtime_code_page_mkexec();
831 
832 	/* clean DUMMY object */
833 	efi_delete_dummy_variable();
834 #endif
835 }
836 
837 /*
838  * This function will switch the EFI runtime services to virtual mode.
839  * Essentially, we look through the EFI memmap and map every region that
840  * has the runtime attribute bit set in its memory descriptor into the
841  * efi_pgd page table.
842  *
843  * The old method which used to update that memory descriptor with the
844  * virtual address obtained from ioremap() is still supported when the
845  * kernel is booted with efi=old_map on its command line. Same old
846  * method enabled the runtime services to be called without having to
847  * thunk back into physical mode for every invocation.
848  *
849  * The new method does a pagetable switch in a preemption-safe manner
850  * so that we're in a different address space when calling a runtime
851  * function. For function arguments passing we do copy the PUDs of the
852  * kernel page table into efi_pgd prior to each call.
853  *
854  * Specially for kexec boot, efi runtime maps in previous kernel should
855  * be passed in via setup_data. In that case runtime ranges will be mapped
856  * to the same virtual addresses as the first kernel, see
857  * kexec_enter_virtual_mode().
858  */
859 static void __init __efi_enter_virtual_mode(void)
860 {
861 	int count = 0, pg_shift = 0;
862 	void *new_memmap = NULL;
863 	efi_status_t status;
864 	phys_addr_t pa;
865 
866 	efi.systab = NULL;
867 
868 	if (efi_alloc_page_tables()) {
869 		pr_err("Failed to allocate EFI page tables\n");
870 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
871 		return;
872 	}
873 
874 	efi_merge_regions();
875 	new_memmap = efi_map_regions(&count, &pg_shift);
876 	if (!new_memmap) {
877 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
878 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
879 		return;
880 	}
881 
882 	pa = __pa(new_memmap);
883 
884 	/*
885 	 * Unregister the early EFI memmap from efi_init() and install
886 	 * the new EFI memory map that we are about to pass to the
887 	 * firmware via SetVirtualAddressMap().
888 	 */
889 	efi_memmap_unmap();
890 
891 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
892 		pr_err("Failed to remap late EFI memory map\n");
893 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
894 		return;
895 	}
896 
897 	BUG_ON(!efi.systab);
898 
899 	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
900 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
901 		return;
902 	}
903 
904 	efi_sync_low_kernel_mappings();
905 
906 	if (efi_is_native()) {
907 		status = phys_efi_set_virtual_address_map(
908 				efi.memmap.desc_size * count,
909 				efi.memmap.desc_size,
910 				efi.memmap.desc_version,
911 				(efi_memory_desc_t *)pa);
912 	} else {
913 		status = efi_thunk_set_virtual_address_map(
914 				efi_phys.set_virtual_address_map,
915 				efi.memmap.desc_size * count,
916 				efi.memmap.desc_size,
917 				efi.memmap.desc_version,
918 				(efi_memory_desc_t *)pa);
919 	}
920 
921 	if (status != EFI_SUCCESS) {
922 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
923 			 status);
924 		panic("EFI call to SetVirtualAddressMap() failed!");
925 	}
926 
927 	/*
928 	 * Now that EFI is in virtual mode, update the function
929 	 * pointers in the runtime service table to the new virtual addresses.
930 	 *
931 	 * Call EFI services through wrapper functions.
932 	 */
933 	efi.runtime_version = efi_systab.hdr.revision;
934 
935 	if (efi_is_native())
936 		efi_native_runtime_setup();
937 	else
938 		efi_thunk_runtime_setup();
939 
940 	efi.set_virtual_address_map = NULL;
941 
942 	/*
943 	 * Apply more restrictive page table mapping attributes now that
944 	 * SVAM() has been called and the firmware has performed all
945 	 * necessary relocation fixups for the new virtual addresses.
946 	 */
947 	efi_runtime_update_mappings();
948 	efi_dump_pagetable();
949 
950 	/* clean DUMMY object */
951 	efi_delete_dummy_variable();
952 }
953 
954 void __init efi_enter_virtual_mode(void)
955 {
956 	if (efi_enabled(EFI_PARAVIRT))
957 		return;
958 
959 	if (efi_setup)
960 		kexec_enter_virtual_mode();
961 	else
962 		__efi_enter_virtual_mode();
963 }
964 
965 /*
966  * Convenience functions to obtain memory types and attributes
967  */
968 u32 efi_mem_type(unsigned long phys_addr)
969 {
970 	efi_memory_desc_t *md;
971 
972 	if (!efi_enabled(EFI_MEMMAP))
973 		return 0;
974 
975 	for_each_efi_memory_desc(md) {
976 		if ((md->phys_addr <= phys_addr) &&
977 		    (phys_addr < (md->phys_addr +
978 				  (md->num_pages << EFI_PAGE_SHIFT))))
979 			return md->type;
980 	}
981 	return 0;
982 }
983 
984 static int __init arch_parse_efi_cmdline(char *str)
985 {
986 	if (!str) {
987 		pr_warn("need at least one option\n");
988 		return -EINVAL;
989 	}
990 
991 	if (parse_option_str(str, "old_map"))
992 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
993 
994 	return 0;
995 }
996 early_param("efi", arch_parse_efi_cmdline);
997