1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Just-In-Time compiler for eBPF filters on IA32 (32bit x86) 4 * 5 * Author: Wang YanQing (udknight@gmail.com) 6 * The code based on code and ideas from: 7 * Eric Dumazet (eric.dumazet@gmail.com) 8 * and from: 9 * Shubham Bansal <illusionist.neo@gmail.com> 10 */ 11 12 #include <linux/netdevice.h> 13 #include <linux/filter.h> 14 #include <linux/if_vlan.h> 15 #include <asm/cacheflush.h> 16 #include <asm/set_memory.h> 17 #include <asm/nospec-branch.h> 18 #include <linux/bpf.h> 19 20 /* 21 * eBPF prog stack layout: 22 * 23 * high 24 * original ESP => +-----+ 25 * | | callee saved registers 26 * +-----+ 27 * | ... | eBPF JIT scratch space 28 * BPF_FP,IA32_EBP => +-----+ 29 * | ... | eBPF prog stack 30 * +-----+ 31 * |RSVD | JIT scratchpad 32 * current ESP => +-----+ 33 * | | 34 * | ... | Function call stack 35 * | | 36 * +-----+ 37 * low 38 * 39 * The callee saved registers: 40 * 41 * high 42 * original ESP => +------------------+ \ 43 * | ebp | | 44 * current EBP => +------------------+ } callee saved registers 45 * | ebx,esi,edi | | 46 * +------------------+ / 47 * low 48 */ 49 50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 51 { 52 if (len == 1) 53 *ptr = bytes; 54 else if (len == 2) 55 *(u16 *)ptr = bytes; 56 else { 57 *(u32 *)ptr = bytes; 58 barrier(); 59 } 60 return ptr + len; 61 } 62 63 #define EMIT(bytes, len) \ 64 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0) 65 66 #define EMIT1(b1) EMIT(b1, 1) 67 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 68 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 69 #define EMIT4(b1, b2, b3, b4) \ 70 EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 71 72 #define EMIT1_off32(b1, off) \ 73 do { EMIT1(b1); EMIT(off, 4); } while (0) 74 #define EMIT2_off32(b1, b2, off) \ 75 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 76 #define EMIT3_off32(b1, b2, b3, off) \ 77 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 78 #define EMIT4_off32(b1, b2, b3, b4, off) \ 79 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 80 81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len) 82 83 static bool is_imm8(int value) 84 { 85 return value <= 127 && value >= -128; 86 } 87 88 static bool is_simm32(s64 value) 89 { 90 return value == (s64) (s32) value; 91 } 92 93 #define STACK_OFFSET(k) (k) 94 #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */ 95 96 #define IA32_EAX (0x0) 97 #define IA32_EBX (0x3) 98 #define IA32_ECX (0x1) 99 #define IA32_EDX (0x2) 100 #define IA32_ESI (0x6) 101 #define IA32_EDI (0x7) 102 #define IA32_EBP (0x5) 103 #define IA32_ESP (0x4) 104 105 /* 106 * List of x86 cond jumps opcodes (. + s8) 107 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 108 */ 109 #define IA32_JB 0x72 110 #define IA32_JAE 0x73 111 #define IA32_JE 0x74 112 #define IA32_JNE 0x75 113 #define IA32_JBE 0x76 114 #define IA32_JA 0x77 115 #define IA32_JL 0x7C 116 #define IA32_JGE 0x7D 117 #define IA32_JLE 0x7E 118 #define IA32_JG 0x7F 119 120 #define COND_JMP_OPCODE_INVALID (0xFF) 121 122 /* 123 * Map eBPF registers to IA32 32bit registers or stack scratch space. 124 * 125 * 1. All the registers, R0-R10, are mapped to scratch space on stack. 126 * 2. We need two 64 bit temp registers to do complex operations on eBPF 127 * registers. 128 * 3. For performance reason, the BPF_REG_AX for blinding constant, is 129 * mapped to real hardware register pair, IA32_ESI and IA32_EDI. 130 * 131 * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit 132 * registers, we have to map each eBPF registers with two IA32 32 bit regs 133 * or scratch memory space and we have to build eBPF 64 bit register from those. 134 * 135 * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers. 136 */ 137 static const u8 bpf2ia32[][2] = { 138 /* Return value from in-kernel function, and exit value from eBPF */ 139 [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)}, 140 141 /* The arguments from eBPF program to in-kernel function */ 142 /* Stored on stack scratch space */ 143 [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)}, 144 [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)}, 145 [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)}, 146 [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)}, 147 [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)}, 148 149 /* Callee saved registers that in-kernel function will preserve */ 150 /* Stored on stack scratch space */ 151 [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)}, 152 [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)}, 153 [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)}, 154 [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)}, 155 156 /* Read only Frame Pointer to access Stack */ 157 [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)}, 158 159 /* Temporary register for blinding constants. */ 160 [BPF_REG_AX] = {IA32_ESI, IA32_EDI}, 161 162 /* Tail call count. Stored on stack scratch space. */ 163 [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)}, 164 }; 165 166 #define dst_lo dst[0] 167 #define dst_hi dst[1] 168 #define src_lo src[0] 169 #define src_hi src[1] 170 171 #define STACK_ALIGNMENT 8 172 /* 173 * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, 174 * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9, 175 * BPF_REG_FP, BPF_REG_AX and Tail call counts. 176 */ 177 #define SCRATCH_SIZE 96 178 179 /* Total stack size used in JITed code */ 180 #define _STACK_SIZE (stack_depth + SCRATCH_SIZE) 181 182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) 183 184 /* Get the offset of eBPF REGISTERs stored on scratch space. */ 185 #define STACK_VAR(off) (off) 186 187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */ 188 static u8 add_1reg(u8 byte, u32 dst_reg) 189 { 190 return byte + dst_reg; 191 } 192 193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */ 194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 195 { 196 return byte + dst_reg + (src_reg << 3); 197 } 198 199 static void jit_fill_hole(void *area, unsigned int size) 200 { 201 /* Fill whole space with int3 instructions */ 202 memset(area, 0xcc, size); 203 } 204 205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk, 206 u8 **pprog) 207 { 208 u8 *prog = *pprog; 209 int cnt = 0; 210 211 if (dstk) { 212 if (val == 0) { 213 /* xor eax,eax */ 214 EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX)); 215 /* mov dword ptr [ebp+off],eax */ 216 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 217 STACK_VAR(dst)); 218 } else { 219 EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP), 220 STACK_VAR(dst), val); 221 } 222 } else { 223 if (val == 0) 224 EMIT2(0x33, add_2reg(0xC0, dst, dst)); 225 else 226 EMIT2_off32(0xC7, add_1reg(0xC0, dst), 227 val); 228 } 229 *pprog = prog; 230 } 231 232 /* dst = imm (4 bytes)*/ 233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk, 234 bool sstk, u8 **pprog) 235 { 236 u8 *prog = *pprog; 237 int cnt = 0; 238 u8 sreg = sstk ? IA32_EAX : src; 239 240 if (sstk) 241 /* mov eax,dword ptr [ebp+off] */ 242 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src)); 243 if (dstk) 244 /* mov dword ptr [ebp+off],eax */ 245 EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst)); 246 else 247 /* mov dst,sreg */ 248 EMIT2(0x89, add_2reg(0xC0, dst, sreg)); 249 250 *pprog = prog; 251 } 252 253 /* dst = src */ 254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[], 255 const u8 src[], bool dstk, 256 bool sstk, u8 **pprog, 257 const struct bpf_prog_aux *aux) 258 { 259 emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog); 260 if (is64) 261 /* complete 8 byte move */ 262 emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog); 263 else if (!aux->verifier_zext) 264 /* zero out high 4 bytes */ 265 emit_ia32_mov_i(dst_hi, 0, dstk, pprog); 266 } 267 268 /* Sign extended move */ 269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[], 270 const u32 val, bool dstk, u8 **pprog) 271 { 272 u32 hi = 0; 273 274 if (is64 && (val & (1<<31))) 275 hi = (u32)~0; 276 emit_ia32_mov_i(dst_lo, val, dstk, pprog); 277 emit_ia32_mov_i(dst_hi, hi, dstk, pprog); 278 } 279 280 /* 281 * ALU operation (32 bit) 282 * dst = dst * src 283 */ 284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk, 285 bool sstk, u8 **pprog) 286 { 287 u8 *prog = *pprog; 288 int cnt = 0; 289 u8 sreg = sstk ? IA32_ECX : src; 290 291 if (sstk) 292 /* mov ecx,dword ptr [ebp+off] */ 293 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src)); 294 295 if (dstk) 296 /* mov eax,dword ptr [ebp+off] */ 297 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); 298 else 299 /* mov eax,dst */ 300 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX)); 301 302 303 EMIT2(0xF7, add_1reg(0xE0, sreg)); 304 305 if (dstk) 306 /* mov dword ptr [ebp+off],eax */ 307 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 308 STACK_VAR(dst)); 309 else 310 /* mov dst,eax */ 311 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX)); 312 313 *pprog = prog; 314 } 315 316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val, 317 bool dstk, u8 **pprog, 318 const struct bpf_prog_aux *aux) 319 { 320 u8 *prog = *pprog; 321 int cnt = 0; 322 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 323 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 324 325 if (dstk && val != 64) { 326 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 327 STACK_VAR(dst_lo)); 328 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 329 STACK_VAR(dst_hi)); 330 } 331 switch (val) { 332 case 16: 333 /* 334 * Emit 'movzwl eax,ax' to zero extend 16-bit 335 * into 64 bit 336 */ 337 EMIT2(0x0F, 0xB7); 338 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo)); 339 if (!aux->verifier_zext) 340 /* xor dreg_hi,dreg_hi */ 341 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 342 break; 343 case 32: 344 if (!aux->verifier_zext) 345 /* xor dreg_hi,dreg_hi */ 346 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 347 break; 348 case 64: 349 /* nop */ 350 break; 351 } 352 353 if (dstk && val != 64) { 354 /* mov dword ptr [ebp+off],dreg_lo */ 355 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 356 STACK_VAR(dst_lo)); 357 /* mov dword ptr [ebp+off],dreg_hi */ 358 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 359 STACK_VAR(dst_hi)); 360 } 361 *pprog = prog; 362 } 363 364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val, 365 bool dstk, u8 **pprog, 366 const struct bpf_prog_aux *aux) 367 { 368 u8 *prog = *pprog; 369 int cnt = 0; 370 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 371 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 372 373 if (dstk) { 374 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 375 STACK_VAR(dst_lo)); 376 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 377 STACK_VAR(dst_hi)); 378 } 379 switch (val) { 380 case 16: 381 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 382 EMIT1(0x66); 383 EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8); 384 385 EMIT2(0x0F, 0xB7); 386 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo)); 387 388 if (!aux->verifier_zext) 389 /* xor dreg_hi,dreg_hi */ 390 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 391 break; 392 case 32: 393 /* Emit 'bswap eax' to swap lower 4 bytes */ 394 EMIT1(0x0F); 395 EMIT1(add_1reg(0xC8, dreg_lo)); 396 397 if (!aux->verifier_zext) 398 /* xor dreg_hi,dreg_hi */ 399 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 400 break; 401 case 64: 402 /* Emit 'bswap eax' to swap lower 4 bytes */ 403 EMIT1(0x0F); 404 EMIT1(add_1reg(0xC8, dreg_lo)); 405 406 /* Emit 'bswap edx' to swap lower 4 bytes */ 407 EMIT1(0x0F); 408 EMIT1(add_1reg(0xC8, dreg_hi)); 409 410 /* mov ecx,dreg_hi */ 411 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi)); 412 /* mov dreg_hi,dreg_lo */ 413 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); 414 /* mov dreg_lo,ecx */ 415 EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX)); 416 417 break; 418 } 419 if (dstk) { 420 /* mov dword ptr [ebp+off],dreg_lo */ 421 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 422 STACK_VAR(dst_lo)); 423 /* mov dword ptr [ebp+off],dreg_hi */ 424 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 425 STACK_VAR(dst_hi)); 426 } 427 *pprog = prog; 428 } 429 430 /* 431 * ALU operation (32 bit) 432 * dst = dst (div|mod) src 433 */ 434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src, 435 bool dstk, bool sstk, u8 **pprog) 436 { 437 u8 *prog = *pprog; 438 int cnt = 0; 439 440 if (sstk) 441 /* mov ecx,dword ptr [ebp+off] */ 442 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 443 STACK_VAR(src)); 444 else if (src != IA32_ECX) 445 /* mov ecx,src */ 446 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX)); 447 448 if (dstk) 449 /* mov eax,dword ptr [ebp+off] */ 450 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 451 STACK_VAR(dst)); 452 else 453 /* mov eax,dst */ 454 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX)); 455 456 /* xor edx,edx */ 457 EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX)); 458 /* div ecx */ 459 EMIT2(0xF7, add_1reg(0xF0, IA32_ECX)); 460 461 if (op == BPF_MOD) { 462 if (dstk) 463 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), 464 STACK_VAR(dst)); 465 else 466 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX)); 467 } else { 468 if (dstk) 469 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 470 STACK_VAR(dst)); 471 else 472 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX)); 473 } 474 *pprog = prog; 475 } 476 477 /* 478 * ALU operation (32 bit) 479 * dst = dst (shift) src 480 */ 481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src, 482 bool dstk, bool sstk, u8 **pprog) 483 { 484 u8 *prog = *pprog; 485 int cnt = 0; 486 u8 dreg = dstk ? IA32_EAX : dst; 487 u8 b2; 488 489 if (dstk) 490 /* mov eax,dword ptr [ebp+off] */ 491 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); 492 493 if (sstk) 494 /* mov ecx,dword ptr [ebp+off] */ 495 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src)); 496 else if (src != IA32_ECX) 497 /* mov ecx,src */ 498 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX)); 499 500 switch (op) { 501 case BPF_LSH: 502 b2 = 0xE0; break; 503 case BPF_RSH: 504 b2 = 0xE8; break; 505 case BPF_ARSH: 506 b2 = 0xF8; break; 507 default: 508 return; 509 } 510 EMIT2(0xD3, add_1reg(b2, dreg)); 511 512 if (dstk) 513 /* mov dword ptr [ebp+off],dreg */ 514 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst)); 515 *pprog = prog; 516 } 517 518 /* 519 * ALU operation (32 bit) 520 * dst = dst (op) src 521 */ 522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op, 523 const u8 dst, const u8 src, bool dstk, 524 bool sstk, u8 **pprog) 525 { 526 u8 *prog = *pprog; 527 int cnt = 0; 528 u8 sreg = sstk ? IA32_EAX : src; 529 u8 dreg = dstk ? IA32_EDX : dst; 530 531 if (sstk) 532 /* mov eax,dword ptr [ebp+off] */ 533 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src)); 534 535 if (dstk) 536 /* mov eax,dword ptr [ebp+off] */ 537 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst)); 538 539 switch (BPF_OP(op)) { 540 /* dst = dst + src */ 541 case BPF_ADD: 542 if (hi && is64) 543 EMIT2(0x11, add_2reg(0xC0, dreg, sreg)); 544 else 545 EMIT2(0x01, add_2reg(0xC0, dreg, sreg)); 546 break; 547 /* dst = dst - src */ 548 case BPF_SUB: 549 if (hi && is64) 550 EMIT2(0x19, add_2reg(0xC0, dreg, sreg)); 551 else 552 EMIT2(0x29, add_2reg(0xC0, dreg, sreg)); 553 break; 554 /* dst = dst | src */ 555 case BPF_OR: 556 EMIT2(0x09, add_2reg(0xC0, dreg, sreg)); 557 break; 558 /* dst = dst & src */ 559 case BPF_AND: 560 EMIT2(0x21, add_2reg(0xC0, dreg, sreg)); 561 break; 562 /* dst = dst ^ src */ 563 case BPF_XOR: 564 EMIT2(0x31, add_2reg(0xC0, dreg, sreg)); 565 break; 566 } 567 568 if (dstk) 569 /* mov dword ptr [ebp+off],dreg */ 570 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), 571 STACK_VAR(dst)); 572 *pprog = prog; 573 } 574 575 /* ALU operation (64 bit) */ 576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op, 577 const u8 dst[], const u8 src[], 578 bool dstk, bool sstk, 579 u8 **pprog, const struct bpf_prog_aux *aux) 580 { 581 u8 *prog = *pprog; 582 583 emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog); 584 if (is64) 585 emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk, 586 &prog); 587 else if (!aux->verifier_zext) 588 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 589 *pprog = prog; 590 } 591 592 /* 593 * ALU operation (32 bit) 594 * dst = dst (op) val 595 */ 596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op, 597 const u8 dst, const s32 val, bool dstk, 598 u8 **pprog) 599 { 600 u8 *prog = *pprog; 601 int cnt = 0; 602 u8 dreg = dstk ? IA32_EAX : dst; 603 u8 sreg = IA32_EDX; 604 605 if (dstk) 606 /* mov eax,dword ptr [ebp+off] */ 607 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst)); 608 609 if (!is_imm8(val)) 610 /* mov edx,imm32*/ 611 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val); 612 613 switch (op) { 614 /* dst = dst + val */ 615 case BPF_ADD: 616 if (hi && is64) { 617 if (is_imm8(val)) 618 EMIT3(0x83, add_1reg(0xD0, dreg), val); 619 else 620 EMIT2(0x11, add_2reg(0xC0, dreg, sreg)); 621 } else { 622 if (is_imm8(val)) 623 EMIT3(0x83, add_1reg(0xC0, dreg), val); 624 else 625 EMIT2(0x01, add_2reg(0xC0, dreg, sreg)); 626 } 627 break; 628 /* dst = dst - val */ 629 case BPF_SUB: 630 if (hi && is64) { 631 if (is_imm8(val)) 632 EMIT3(0x83, add_1reg(0xD8, dreg), val); 633 else 634 EMIT2(0x19, add_2reg(0xC0, dreg, sreg)); 635 } else { 636 if (is_imm8(val)) 637 EMIT3(0x83, add_1reg(0xE8, dreg), val); 638 else 639 EMIT2(0x29, add_2reg(0xC0, dreg, sreg)); 640 } 641 break; 642 /* dst = dst | val */ 643 case BPF_OR: 644 if (is_imm8(val)) 645 EMIT3(0x83, add_1reg(0xC8, dreg), val); 646 else 647 EMIT2(0x09, add_2reg(0xC0, dreg, sreg)); 648 break; 649 /* dst = dst & val */ 650 case BPF_AND: 651 if (is_imm8(val)) 652 EMIT3(0x83, add_1reg(0xE0, dreg), val); 653 else 654 EMIT2(0x21, add_2reg(0xC0, dreg, sreg)); 655 break; 656 /* dst = dst ^ val */ 657 case BPF_XOR: 658 if (is_imm8(val)) 659 EMIT3(0x83, add_1reg(0xF0, dreg), val); 660 else 661 EMIT2(0x31, add_2reg(0xC0, dreg, sreg)); 662 break; 663 case BPF_NEG: 664 EMIT2(0xF7, add_1reg(0xD8, dreg)); 665 break; 666 } 667 668 if (dstk) 669 /* mov dword ptr [ebp+off],dreg */ 670 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), 671 STACK_VAR(dst)); 672 *pprog = prog; 673 } 674 675 /* ALU operation (64 bit) */ 676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op, 677 const u8 dst[], const u32 val, 678 bool dstk, u8 **pprog, 679 const struct bpf_prog_aux *aux) 680 { 681 u8 *prog = *pprog; 682 u32 hi = 0; 683 684 if (is64 && (val & (1<<31))) 685 hi = (u32)~0; 686 687 emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog); 688 if (is64) 689 emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog); 690 else if (!aux->verifier_zext) 691 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 692 693 *pprog = prog; 694 } 695 696 /* dst = ~dst (64 bit) */ 697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog) 698 { 699 u8 *prog = *pprog; 700 int cnt = 0; 701 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 702 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 703 704 if (dstk) { 705 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 706 STACK_VAR(dst_lo)); 707 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 708 STACK_VAR(dst_hi)); 709 } 710 711 /* neg dreg_lo */ 712 EMIT2(0xF7, add_1reg(0xD8, dreg_lo)); 713 /* adc dreg_hi,0x0 */ 714 EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00); 715 /* neg dreg_hi */ 716 EMIT2(0xF7, add_1reg(0xD8, dreg_hi)); 717 718 if (dstk) { 719 /* mov dword ptr [ebp+off],dreg_lo */ 720 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 721 STACK_VAR(dst_lo)); 722 /* mov dword ptr [ebp+off],dreg_hi */ 723 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 724 STACK_VAR(dst_hi)); 725 } 726 *pprog = prog; 727 } 728 729 /* dst = dst << src */ 730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[], 731 bool dstk, bool sstk, u8 **pprog) 732 { 733 u8 *prog = *pprog; 734 int cnt = 0; 735 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 736 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 737 738 if (dstk) { 739 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 740 STACK_VAR(dst_lo)); 741 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 742 STACK_VAR(dst_hi)); 743 } 744 745 if (sstk) 746 /* mov ecx,dword ptr [ebp+off] */ 747 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 748 STACK_VAR(src_lo)); 749 else 750 /* mov ecx,src_lo */ 751 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); 752 753 /* shld dreg_hi,dreg_lo,cl */ 754 EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo)); 755 /* shl dreg_lo,cl */ 756 EMIT2(0xD3, add_1reg(0xE0, dreg_lo)); 757 758 /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */ 759 760 /* cmp ecx,32 */ 761 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); 762 /* skip the next two instructions (4 bytes) when < 32 */ 763 EMIT2(IA32_JB, 4); 764 765 /* mov dreg_hi,dreg_lo */ 766 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); 767 /* xor dreg_lo,dreg_lo */ 768 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); 769 770 if (dstk) { 771 /* mov dword ptr [ebp+off],dreg_lo */ 772 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 773 STACK_VAR(dst_lo)); 774 /* mov dword ptr [ebp+off],dreg_hi */ 775 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 776 STACK_VAR(dst_hi)); 777 } 778 /* out: */ 779 *pprog = prog; 780 } 781 782 /* dst = dst >> src (signed)*/ 783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[], 784 bool dstk, bool sstk, u8 **pprog) 785 { 786 u8 *prog = *pprog; 787 int cnt = 0; 788 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 789 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 790 791 if (dstk) { 792 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 793 STACK_VAR(dst_lo)); 794 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 795 STACK_VAR(dst_hi)); 796 } 797 798 if (sstk) 799 /* mov ecx,dword ptr [ebp+off] */ 800 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 801 STACK_VAR(src_lo)); 802 else 803 /* mov ecx,src_lo */ 804 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); 805 806 /* shrd dreg_lo,dreg_hi,cl */ 807 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi)); 808 /* sar dreg_hi,cl */ 809 EMIT2(0xD3, add_1reg(0xF8, dreg_hi)); 810 811 /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */ 812 813 /* cmp ecx,32 */ 814 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); 815 /* skip the next two instructions (5 bytes) when < 32 */ 816 EMIT2(IA32_JB, 5); 817 818 /* mov dreg_lo,dreg_hi */ 819 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); 820 /* sar dreg_hi,31 */ 821 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); 822 823 if (dstk) { 824 /* mov dword ptr [ebp+off],dreg_lo */ 825 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 826 STACK_VAR(dst_lo)); 827 /* mov dword ptr [ebp+off],dreg_hi */ 828 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 829 STACK_VAR(dst_hi)); 830 } 831 /* out: */ 832 *pprog = prog; 833 } 834 835 /* dst = dst >> src */ 836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk, 837 bool sstk, u8 **pprog) 838 { 839 u8 *prog = *pprog; 840 int cnt = 0; 841 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 842 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 843 844 if (dstk) { 845 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 846 STACK_VAR(dst_lo)); 847 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 848 STACK_VAR(dst_hi)); 849 } 850 851 if (sstk) 852 /* mov ecx,dword ptr [ebp+off] */ 853 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 854 STACK_VAR(src_lo)); 855 else 856 /* mov ecx,src_lo */ 857 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX)); 858 859 /* shrd dreg_lo,dreg_hi,cl */ 860 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi)); 861 /* shr dreg_hi,cl */ 862 EMIT2(0xD3, add_1reg(0xE8, dreg_hi)); 863 864 /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */ 865 866 /* cmp ecx,32 */ 867 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32); 868 /* skip the next two instructions (4 bytes) when < 32 */ 869 EMIT2(IA32_JB, 4); 870 871 /* mov dreg_lo,dreg_hi */ 872 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); 873 /* xor dreg_hi,dreg_hi */ 874 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 875 876 if (dstk) { 877 /* mov dword ptr [ebp+off],dreg_lo */ 878 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 879 STACK_VAR(dst_lo)); 880 /* mov dword ptr [ebp+off],dreg_hi */ 881 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 882 STACK_VAR(dst_hi)); 883 } 884 /* out: */ 885 *pprog = prog; 886 } 887 888 /* dst = dst << val */ 889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val, 890 bool dstk, u8 **pprog) 891 { 892 u8 *prog = *pprog; 893 int cnt = 0; 894 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 895 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 896 897 if (dstk) { 898 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 899 STACK_VAR(dst_lo)); 900 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 901 STACK_VAR(dst_hi)); 902 } 903 /* Do LSH operation */ 904 if (val < 32) { 905 /* shld dreg_hi,dreg_lo,imm8 */ 906 EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val); 907 /* shl dreg_lo,imm8 */ 908 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val); 909 } else if (val >= 32 && val < 64) { 910 u32 value = val - 32; 911 912 /* shl dreg_lo,imm8 */ 913 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value); 914 /* mov dreg_hi,dreg_lo */ 915 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo)); 916 /* xor dreg_lo,dreg_lo */ 917 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); 918 } else { 919 /* xor dreg_lo,dreg_lo */ 920 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); 921 /* xor dreg_hi,dreg_hi */ 922 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 923 } 924 925 if (dstk) { 926 /* mov dword ptr [ebp+off],dreg_lo */ 927 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 928 STACK_VAR(dst_lo)); 929 /* mov dword ptr [ebp+off],dreg_hi */ 930 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 931 STACK_VAR(dst_hi)); 932 } 933 *pprog = prog; 934 } 935 936 /* dst = dst >> val */ 937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val, 938 bool dstk, u8 **pprog) 939 { 940 u8 *prog = *pprog; 941 int cnt = 0; 942 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 943 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 944 945 if (dstk) { 946 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 947 STACK_VAR(dst_lo)); 948 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 949 STACK_VAR(dst_hi)); 950 } 951 952 /* Do RSH operation */ 953 if (val < 32) { 954 /* shrd dreg_lo,dreg_hi,imm8 */ 955 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val); 956 /* shr dreg_hi,imm8 */ 957 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val); 958 } else if (val >= 32 && val < 64) { 959 u32 value = val - 32; 960 961 /* shr dreg_hi,imm8 */ 962 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value); 963 /* mov dreg_lo,dreg_hi */ 964 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); 965 /* xor dreg_hi,dreg_hi */ 966 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 967 } else { 968 /* xor dreg_lo,dreg_lo */ 969 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo)); 970 /* xor dreg_hi,dreg_hi */ 971 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi)); 972 } 973 974 if (dstk) { 975 /* mov dword ptr [ebp+off],dreg_lo */ 976 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 977 STACK_VAR(dst_lo)); 978 /* mov dword ptr [ebp+off],dreg_hi */ 979 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 980 STACK_VAR(dst_hi)); 981 } 982 *pprog = prog; 983 } 984 985 /* dst = dst >> val (signed) */ 986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val, 987 bool dstk, u8 **pprog) 988 { 989 u8 *prog = *pprog; 990 int cnt = 0; 991 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 992 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 993 994 if (dstk) { 995 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 996 STACK_VAR(dst_lo)); 997 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 998 STACK_VAR(dst_hi)); 999 } 1000 /* Do RSH operation */ 1001 if (val < 32) { 1002 /* shrd dreg_lo,dreg_hi,imm8 */ 1003 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val); 1004 /* ashr dreg_hi,imm8 */ 1005 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val); 1006 } else if (val >= 32 && val < 64) { 1007 u32 value = val - 32; 1008 1009 /* ashr dreg_hi,imm8 */ 1010 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value); 1011 /* mov dreg_lo,dreg_hi */ 1012 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); 1013 1014 /* ashr dreg_hi,imm8 */ 1015 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); 1016 } else { 1017 /* ashr dreg_hi,imm8 */ 1018 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31); 1019 /* mov dreg_lo,dreg_hi */ 1020 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi)); 1021 } 1022 1023 if (dstk) { 1024 /* mov dword ptr [ebp+off],dreg_lo */ 1025 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo), 1026 STACK_VAR(dst_lo)); 1027 /* mov dword ptr [ebp+off],dreg_hi */ 1028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi), 1029 STACK_VAR(dst_hi)); 1030 } 1031 *pprog = prog; 1032 } 1033 1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk, 1035 bool sstk, u8 **pprog) 1036 { 1037 u8 *prog = *pprog; 1038 int cnt = 0; 1039 1040 if (dstk) 1041 /* mov eax,dword ptr [ebp+off] */ 1042 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 1043 STACK_VAR(dst_hi)); 1044 else 1045 /* mov eax,dst_hi */ 1046 EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX)); 1047 1048 if (sstk) 1049 /* mul dword ptr [ebp+off] */ 1050 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo)); 1051 else 1052 /* mul src_lo */ 1053 EMIT2(0xF7, add_1reg(0xE0, src_lo)); 1054 1055 /* mov ecx,eax */ 1056 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX)); 1057 1058 if (dstk) 1059 /* mov eax,dword ptr [ebp+off] */ 1060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 1061 STACK_VAR(dst_lo)); 1062 else 1063 /* mov eax,dst_lo */ 1064 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); 1065 1066 if (sstk) 1067 /* mul dword ptr [ebp+off] */ 1068 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi)); 1069 else 1070 /* mul src_hi */ 1071 EMIT2(0xF7, add_1reg(0xE0, src_hi)); 1072 1073 /* add eax,eax */ 1074 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX)); 1075 1076 if (dstk) 1077 /* mov eax,dword ptr [ebp+off] */ 1078 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 1079 STACK_VAR(dst_lo)); 1080 else 1081 /* mov eax,dst_lo */ 1082 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); 1083 1084 if (sstk) 1085 /* mul dword ptr [ebp+off] */ 1086 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo)); 1087 else 1088 /* mul src_lo */ 1089 EMIT2(0xF7, add_1reg(0xE0, src_lo)); 1090 1091 /* add ecx,edx */ 1092 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX)); 1093 1094 if (dstk) { 1095 /* mov dword ptr [ebp+off],eax */ 1096 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 1097 STACK_VAR(dst_lo)); 1098 /* mov dword ptr [ebp+off],ecx */ 1099 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), 1100 STACK_VAR(dst_hi)); 1101 } else { 1102 /* mov dst_lo,eax */ 1103 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX)); 1104 /* mov dst_hi,ecx */ 1105 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX)); 1106 } 1107 1108 *pprog = prog; 1109 } 1110 1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val, 1112 bool dstk, u8 **pprog) 1113 { 1114 u8 *prog = *pprog; 1115 int cnt = 0; 1116 u32 hi; 1117 1118 hi = val & (1<<31) ? (u32)~0 : 0; 1119 /* movl eax,imm32 */ 1120 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val); 1121 if (dstk) 1122 /* mul dword ptr [ebp+off] */ 1123 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi)); 1124 else 1125 /* mul dst_hi */ 1126 EMIT2(0xF7, add_1reg(0xE0, dst_hi)); 1127 1128 /* mov ecx,eax */ 1129 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX)); 1130 1131 /* movl eax,imm32 */ 1132 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi); 1133 if (dstk) 1134 /* mul dword ptr [ebp+off] */ 1135 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo)); 1136 else 1137 /* mul dst_lo */ 1138 EMIT2(0xF7, add_1reg(0xE0, dst_lo)); 1139 /* add ecx,eax */ 1140 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX)); 1141 1142 /* movl eax,imm32 */ 1143 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val); 1144 if (dstk) 1145 /* mul dword ptr [ebp+off] */ 1146 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo)); 1147 else 1148 /* mul dst_lo */ 1149 EMIT2(0xF7, add_1reg(0xE0, dst_lo)); 1150 1151 /* add ecx,edx */ 1152 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX)); 1153 1154 if (dstk) { 1155 /* mov dword ptr [ebp+off],eax */ 1156 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 1157 STACK_VAR(dst_lo)); 1158 /* mov dword ptr [ebp+off],ecx */ 1159 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), 1160 STACK_VAR(dst_hi)); 1161 } else { 1162 /* mov dword ptr [ebp+off],eax */ 1163 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX)); 1164 /* mov dword ptr [ebp+off],ecx */ 1165 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX)); 1166 } 1167 1168 *pprog = prog; 1169 } 1170 1171 static int bpf_size_to_x86_bytes(int bpf_size) 1172 { 1173 if (bpf_size == BPF_W) 1174 return 4; 1175 else if (bpf_size == BPF_H) 1176 return 2; 1177 else if (bpf_size == BPF_B) 1178 return 1; 1179 else if (bpf_size == BPF_DW) 1180 return 4; /* imm32 */ 1181 else 1182 return 0; 1183 } 1184 1185 struct jit_context { 1186 int cleanup_addr; /* Epilogue code offset */ 1187 }; 1188 1189 /* Maximum number of bytes emitted while JITing one eBPF insn */ 1190 #define BPF_MAX_INSN_SIZE 128 1191 #define BPF_INSN_SAFETY 64 1192 1193 #define PROLOGUE_SIZE 35 1194 1195 /* 1196 * Emit prologue code for BPF program and check it's size. 1197 * bpf_tail_call helper will skip it while jumping into another program. 1198 */ 1199 static void emit_prologue(u8 **pprog, u32 stack_depth) 1200 { 1201 u8 *prog = *pprog; 1202 int cnt = 0; 1203 const u8 *r1 = bpf2ia32[BPF_REG_1]; 1204 const u8 fplo = bpf2ia32[BPF_REG_FP][0]; 1205 const u8 fphi = bpf2ia32[BPF_REG_FP][1]; 1206 const u8 *tcc = bpf2ia32[TCALL_CNT]; 1207 1208 /* push ebp */ 1209 EMIT1(0x55); 1210 /* mov ebp,esp */ 1211 EMIT2(0x89, 0xE5); 1212 /* push edi */ 1213 EMIT1(0x57); 1214 /* push esi */ 1215 EMIT1(0x56); 1216 /* push ebx */ 1217 EMIT1(0x53); 1218 1219 /* sub esp,STACK_SIZE */ 1220 EMIT2_off32(0x81, 0xEC, STACK_SIZE); 1221 /* sub ebp,SCRATCH_SIZE+12*/ 1222 EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12); 1223 /* xor ebx,ebx */ 1224 EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX)); 1225 1226 /* Set up BPF prog stack base register */ 1227 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo)); 1228 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi)); 1229 1230 /* Move BPF_CTX (EAX) to BPF_REG_R1 */ 1231 /* mov dword ptr [ebp+off],eax */ 1232 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0])); 1233 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1])); 1234 1235 /* Initialize Tail Count */ 1236 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0])); 1237 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); 1238 1239 BUILD_BUG_ON(cnt != PROLOGUE_SIZE); 1240 *pprog = prog; 1241 } 1242 1243 /* Emit epilogue code for BPF program */ 1244 static void emit_epilogue(u8 **pprog, u32 stack_depth) 1245 { 1246 u8 *prog = *pprog; 1247 const u8 *r0 = bpf2ia32[BPF_REG_0]; 1248 int cnt = 0; 1249 1250 /* mov eax,dword ptr [ebp+off]*/ 1251 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0])); 1252 /* mov edx,dword ptr [ebp+off]*/ 1253 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1])); 1254 1255 /* add ebp,SCRATCH_SIZE+12*/ 1256 EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12); 1257 1258 /* mov ebx,dword ptr [ebp-12]*/ 1259 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12); 1260 /* mov esi,dword ptr [ebp-8]*/ 1261 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8); 1262 /* mov edi,dword ptr [ebp-4]*/ 1263 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4); 1264 1265 EMIT1(0xC9); /* leave */ 1266 EMIT1(0xC3); /* ret */ 1267 *pprog = prog; 1268 } 1269 1270 /* 1271 * Generate the following code: 1272 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 1273 * if (index >= array->map.max_entries) 1274 * goto out; 1275 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) 1276 * goto out; 1277 * prog = array->ptrs[index]; 1278 * if (prog == NULL) 1279 * goto out; 1280 * goto *(prog->bpf_func + prologue_size); 1281 * out: 1282 */ 1283 static void emit_bpf_tail_call(u8 **pprog) 1284 { 1285 u8 *prog = *pprog; 1286 int cnt = 0; 1287 const u8 *r1 = bpf2ia32[BPF_REG_1]; 1288 const u8 *r2 = bpf2ia32[BPF_REG_2]; 1289 const u8 *r3 = bpf2ia32[BPF_REG_3]; 1290 const u8 *tcc = bpf2ia32[TCALL_CNT]; 1291 u32 lo, hi; 1292 static int jmp_label1 = -1; 1293 1294 /* 1295 * if (index >= array->map.max_entries) 1296 * goto out; 1297 */ 1298 /* mov eax,dword ptr [ebp+off] */ 1299 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0])); 1300 /* mov edx,dword ptr [ebp+off] */ 1301 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0])); 1302 1303 /* cmp dword ptr [eax+off],edx */ 1304 EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX), 1305 offsetof(struct bpf_array, map.max_entries)); 1306 /* jbe out */ 1307 EMIT2(IA32_JBE, jmp_label(jmp_label1, 2)); 1308 1309 /* 1310 * if (tail_call_cnt > MAX_TAIL_CALL_CNT) 1311 * goto out; 1312 */ 1313 lo = (u32)MAX_TAIL_CALL_CNT; 1314 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); 1315 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0])); 1316 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); 1317 1318 /* cmp edx,hi */ 1319 EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi); 1320 EMIT2(IA32_JNE, 3); 1321 /* cmp ecx,lo */ 1322 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo); 1323 1324 /* ja out */ 1325 EMIT2(IA32_JAE, jmp_label(jmp_label1, 2)); 1326 1327 /* add eax,0x1 */ 1328 EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01); 1329 /* adc ebx,0x0 */ 1330 EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00); 1331 1332 /* mov dword ptr [ebp+off],eax */ 1333 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0])); 1334 /* mov dword ptr [ebp+off],edx */ 1335 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1])); 1336 1337 /* prog = array->ptrs[index]; */ 1338 /* mov edx, [eax + edx * 4 + offsetof(...)] */ 1339 EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs)); 1340 1341 /* 1342 * if (prog == NULL) 1343 * goto out; 1344 */ 1345 /* test edx,edx */ 1346 EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX)); 1347 /* je out */ 1348 EMIT2(IA32_JE, jmp_label(jmp_label1, 2)); 1349 1350 /* goto *(prog->bpf_func + prologue_size); */ 1351 /* mov edx, dword ptr [edx + 32] */ 1352 EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX), 1353 offsetof(struct bpf_prog, bpf_func)); 1354 /* add edx,prologue_size */ 1355 EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE); 1356 1357 /* mov eax,dword ptr [ebp+off] */ 1358 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0])); 1359 1360 /* 1361 * Now we're ready to jump into next BPF program: 1362 * eax == ctx (1st arg) 1363 * edx == prog->bpf_func + prologue_size 1364 */ 1365 RETPOLINE_EDX_BPF_JIT(); 1366 1367 if (jmp_label1 == -1) 1368 jmp_label1 = cnt; 1369 1370 /* out: */ 1371 *pprog = prog; 1372 } 1373 1374 /* Push the scratch stack register on top of the stack. */ 1375 static inline void emit_push_r64(const u8 src[], u8 **pprog) 1376 { 1377 u8 *prog = *pprog; 1378 int cnt = 0; 1379 1380 /* mov ecx,dword ptr [ebp+off] */ 1381 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi)); 1382 /* push ecx */ 1383 EMIT1(0x51); 1384 1385 /* mov ecx,dword ptr [ebp+off] */ 1386 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); 1387 /* push ecx */ 1388 EMIT1(0x51); 1389 1390 *pprog = prog; 1391 } 1392 1393 static void emit_push_r32(const u8 src[], u8 **pprog) 1394 { 1395 u8 *prog = *pprog; 1396 int cnt = 0; 1397 1398 /* mov ecx,dword ptr [ebp+off] */ 1399 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo)); 1400 /* push ecx */ 1401 EMIT1(0x51); 1402 1403 *pprog = prog; 1404 } 1405 1406 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo) 1407 { 1408 u8 jmp_cond; 1409 1410 /* Convert BPF opcode to x86 */ 1411 switch (op) { 1412 case BPF_JEQ: 1413 jmp_cond = IA32_JE; 1414 break; 1415 case BPF_JSET: 1416 case BPF_JNE: 1417 jmp_cond = IA32_JNE; 1418 break; 1419 case BPF_JGT: 1420 /* GT is unsigned '>', JA in x86 */ 1421 jmp_cond = IA32_JA; 1422 break; 1423 case BPF_JLT: 1424 /* LT is unsigned '<', JB in x86 */ 1425 jmp_cond = IA32_JB; 1426 break; 1427 case BPF_JGE: 1428 /* GE is unsigned '>=', JAE in x86 */ 1429 jmp_cond = IA32_JAE; 1430 break; 1431 case BPF_JLE: 1432 /* LE is unsigned '<=', JBE in x86 */ 1433 jmp_cond = IA32_JBE; 1434 break; 1435 case BPF_JSGT: 1436 if (!is_cmp_lo) 1437 /* Signed '>', GT in x86 */ 1438 jmp_cond = IA32_JG; 1439 else 1440 /* GT is unsigned '>', JA in x86 */ 1441 jmp_cond = IA32_JA; 1442 break; 1443 case BPF_JSLT: 1444 if (!is_cmp_lo) 1445 /* Signed '<', LT in x86 */ 1446 jmp_cond = IA32_JL; 1447 else 1448 /* LT is unsigned '<', JB in x86 */ 1449 jmp_cond = IA32_JB; 1450 break; 1451 case BPF_JSGE: 1452 if (!is_cmp_lo) 1453 /* Signed '>=', GE in x86 */ 1454 jmp_cond = IA32_JGE; 1455 else 1456 /* GE is unsigned '>=', JAE in x86 */ 1457 jmp_cond = IA32_JAE; 1458 break; 1459 case BPF_JSLE: 1460 if (!is_cmp_lo) 1461 /* Signed '<=', LE in x86 */ 1462 jmp_cond = IA32_JLE; 1463 else 1464 /* LE is unsigned '<=', JBE in x86 */ 1465 jmp_cond = IA32_JBE; 1466 break; 1467 default: /* to silence GCC warning */ 1468 jmp_cond = COND_JMP_OPCODE_INVALID; 1469 break; 1470 } 1471 1472 return jmp_cond; 1473 } 1474 1475 /* i386 kernel compiles with "-mregparm=3". From gcc document: 1476 * 1477 * ==== snippet ==== 1478 * regparm (number) 1479 * On x86-32 targets, the regparm attribute causes the compiler 1480 * to pass arguments number one to (number) if they are of integral 1481 * type in registers EAX, EDX, and ECX instead of on the stack. 1482 * Functions that take a variable number of arguments continue 1483 * to be passed all of their arguments on the stack. 1484 * ==== snippet ==== 1485 * 1486 * The first three args of a function will be considered for 1487 * putting into the 32bit register EAX, EDX, and ECX. 1488 * 1489 * Two 32bit registers are used to pass a 64bit arg. 1490 * 1491 * For example, 1492 * void foo(u32 a, u32 b, u32 c, u32 d): 1493 * u32 a: EAX 1494 * u32 b: EDX 1495 * u32 c: ECX 1496 * u32 d: stack 1497 * 1498 * void foo(u64 a, u32 b, u32 c): 1499 * u64 a: EAX (lo32) EDX (hi32) 1500 * u32 b: ECX 1501 * u32 c: stack 1502 * 1503 * void foo(u32 a, u64 b, u32 c): 1504 * u32 a: EAX 1505 * u64 b: EDX (lo32) ECX (hi32) 1506 * u32 c: stack 1507 * 1508 * void foo(u32 a, u32 b, u64 c): 1509 * u32 a: EAX 1510 * u32 b: EDX 1511 * u64 c: stack 1512 * 1513 * The return value will be stored in the EAX (and EDX for 64bit value). 1514 * 1515 * For example, 1516 * u32 foo(u32 a, u32 b, u32 c): 1517 * return value: EAX 1518 * 1519 * u64 foo(u32 a, u32 b, u32 c): 1520 * return value: EAX (lo32) EDX (hi32) 1521 * 1522 * Notes: 1523 * The verifier only accepts function having integer and pointers 1524 * as its args and return value, so it does not have 1525 * struct-by-value. 1526 * 1527 * emit_kfunc_call() finds out the btf_func_model by calling 1528 * bpf_jit_find_kfunc_model(). A btf_func_model 1529 * has the details about the number of args, size of each arg, 1530 * and the size of the return value. 1531 * 1532 * It first decides how many args can be passed by EAX, EDX, and ECX. 1533 * That will decide what args should be pushed to the stack: 1534 * [first_stack_regno, last_stack_regno] are the bpf regnos 1535 * that should be pushed to the stack. 1536 * 1537 * It will first push all args to the stack because the push 1538 * will need to use ECX. Then, it moves 1539 * [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX. 1540 * 1541 * When emitting a call (0xE8), it needs to figure out 1542 * the jmp_offset relative to the jit-insn address immediately 1543 * following the call (0xE8) instruction. At this point, it knows 1544 * the end of the jit-insn address after completely translated the 1545 * current (BPF_JMP | BPF_CALL) bpf-insn. It is passed as "end_addr" 1546 * to the emit_kfunc_call(). Thus, it can learn the "immediate-follow-call" 1547 * address by figuring out how many jit-insn is generated between 1548 * the call (0xE8) and the end_addr: 1549 * - 0-1 jit-insn (3 bytes each) to restore the esp pointer if there 1550 * is arg pushed to the stack. 1551 * - 0-2 jit-insns (3 bytes each) to handle the return value. 1552 */ 1553 static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr, 1554 const struct bpf_insn *insn, u8 **pprog) 1555 { 1556 const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX }; 1557 int i, cnt = 0, first_stack_regno, last_stack_regno; 1558 int free_arg_regs = ARRAY_SIZE(arg_regs); 1559 const struct btf_func_model *fm; 1560 int bytes_in_stack = 0; 1561 const u8 *cur_arg_reg; 1562 u8 *prog = *pprog; 1563 s64 jmp_offset; 1564 1565 fm = bpf_jit_find_kfunc_model(bpf_prog, insn); 1566 if (!fm) 1567 return -EINVAL; 1568 1569 first_stack_regno = BPF_REG_1; 1570 for (i = 0; i < fm->nr_args; i++) { 1571 int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1; 1572 1573 if (regs_needed > free_arg_regs) 1574 break; 1575 1576 free_arg_regs -= regs_needed; 1577 first_stack_regno++; 1578 } 1579 1580 /* Push the args to the stack */ 1581 last_stack_regno = BPF_REG_0 + fm->nr_args; 1582 for (i = last_stack_regno; i >= first_stack_regno; i--) { 1583 if (fm->arg_size[i - 1] > sizeof(u32)) { 1584 emit_push_r64(bpf2ia32[i], &prog); 1585 bytes_in_stack += 8; 1586 } else { 1587 emit_push_r32(bpf2ia32[i], &prog); 1588 bytes_in_stack += 4; 1589 } 1590 } 1591 1592 cur_arg_reg = &arg_regs[0]; 1593 for (i = BPF_REG_1; i < first_stack_regno; i++) { 1594 /* mov e[adc]x,dword ptr [ebp+off] */ 1595 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++), 1596 STACK_VAR(bpf2ia32[i][0])); 1597 if (fm->arg_size[i - 1] > sizeof(u32)) 1598 /* mov e[adc]x,dword ptr [ebp+off] */ 1599 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++), 1600 STACK_VAR(bpf2ia32[i][1])); 1601 } 1602 1603 if (bytes_in_stack) 1604 /* add esp,"bytes_in_stack" */ 1605 end_addr -= 3; 1606 1607 /* mov dword ptr [ebp+off],edx */ 1608 if (fm->ret_size > sizeof(u32)) 1609 end_addr -= 3; 1610 1611 /* mov dword ptr [ebp+off],eax */ 1612 if (fm->ret_size) 1613 end_addr -= 3; 1614 1615 jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr; 1616 if (!is_simm32(jmp_offset)) { 1617 pr_err("unsupported BPF kernel function jmp_offset:%lld\n", 1618 jmp_offset); 1619 return -EINVAL; 1620 } 1621 1622 EMIT1_off32(0xE8, jmp_offset); 1623 1624 if (fm->ret_size) 1625 /* mov dword ptr [ebp+off],eax */ 1626 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 1627 STACK_VAR(bpf2ia32[BPF_REG_0][0])); 1628 1629 if (fm->ret_size > sizeof(u32)) 1630 /* mov dword ptr [ebp+off],edx */ 1631 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), 1632 STACK_VAR(bpf2ia32[BPF_REG_0][1])); 1633 1634 if (bytes_in_stack) 1635 /* add esp,"bytes_in_stack" */ 1636 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack); 1637 1638 *pprog = prog; 1639 1640 return 0; 1641 } 1642 1643 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, 1644 int oldproglen, struct jit_context *ctx) 1645 { 1646 struct bpf_insn *insn = bpf_prog->insnsi; 1647 int insn_cnt = bpf_prog->len; 1648 bool seen_exit = false; 1649 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1650 int i, cnt = 0; 1651 int proglen = 0; 1652 u8 *prog = temp; 1653 1654 emit_prologue(&prog, bpf_prog->aux->stack_depth); 1655 1656 for (i = 0; i < insn_cnt; i++, insn++) { 1657 const s32 imm32 = insn->imm; 1658 const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1659 const bool dstk = insn->dst_reg != BPF_REG_AX; 1660 const bool sstk = insn->src_reg != BPF_REG_AX; 1661 const u8 code = insn->code; 1662 const u8 *dst = bpf2ia32[insn->dst_reg]; 1663 const u8 *src = bpf2ia32[insn->src_reg]; 1664 const u8 *r0 = bpf2ia32[BPF_REG_0]; 1665 s64 jmp_offset; 1666 u8 jmp_cond; 1667 int ilen; 1668 u8 *func; 1669 1670 switch (code) { 1671 /* ALU operations */ 1672 /* dst = src */ 1673 case BPF_ALU | BPF_MOV | BPF_K: 1674 case BPF_ALU | BPF_MOV | BPF_X: 1675 case BPF_ALU64 | BPF_MOV | BPF_K: 1676 case BPF_ALU64 | BPF_MOV | BPF_X: 1677 switch (BPF_SRC(code)) { 1678 case BPF_X: 1679 if (imm32 == 1) { 1680 /* Special mov32 for zext. */ 1681 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1682 break; 1683 } 1684 emit_ia32_mov_r64(is64, dst, src, dstk, sstk, 1685 &prog, bpf_prog->aux); 1686 break; 1687 case BPF_K: 1688 /* Sign-extend immediate value to dst reg */ 1689 emit_ia32_mov_i64(is64, dst, imm32, 1690 dstk, &prog); 1691 break; 1692 } 1693 break; 1694 /* dst = dst + src/imm */ 1695 /* dst = dst - src/imm */ 1696 /* dst = dst | src/imm */ 1697 /* dst = dst & src/imm */ 1698 /* dst = dst ^ src/imm */ 1699 /* dst = dst * src/imm */ 1700 /* dst = dst << src */ 1701 /* dst = dst >> src */ 1702 case BPF_ALU | BPF_ADD | BPF_K: 1703 case BPF_ALU | BPF_ADD | BPF_X: 1704 case BPF_ALU | BPF_SUB | BPF_K: 1705 case BPF_ALU | BPF_SUB | BPF_X: 1706 case BPF_ALU | BPF_OR | BPF_K: 1707 case BPF_ALU | BPF_OR | BPF_X: 1708 case BPF_ALU | BPF_AND | BPF_K: 1709 case BPF_ALU | BPF_AND | BPF_X: 1710 case BPF_ALU | BPF_XOR | BPF_K: 1711 case BPF_ALU | BPF_XOR | BPF_X: 1712 case BPF_ALU64 | BPF_ADD | BPF_K: 1713 case BPF_ALU64 | BPF_ADD | BPF_X: 1714 case BPF_ALU64 | BPF_SUB | BPF_K: 1715 case BPF_ALU64 | BPF_SUB | BPF_X: 1716 case BPF_ALU64 | BPF_OR | BPF_K: 1717 case BPF_ALU64 | BPF_OR | BPF_X: 1718 case BPF_ALU64 | BPF_AND | BPF_K: 1719 case BPF_ALU64 | BPF_AND | BPF_X: 1720 case BPF_ALU64 | BPF_XOR | BPF_K: 1721 case BPF_ALU64 | BPF_XOR | BPF_X: 1722 switch (BPF_SRC(code)) { 1723 case BPF_X: 1724 emit_ia32_alu_r64(is64, BPF_OP(code), dst, 1725 src, dstk, sstk, &prog, 1726 bpf_prog->aux); 1727 break; 1728 case BPF_K: 1729 emit_ia32_alu_i64(is64, BPF_OP(code), dst, 1730 imm32, dstk, &prog, 1731 bpf_prog->aux); 1732 break; 1733 } 1734 break; 1735 case BPF_ALU | BPF_MUL | BPF_K: 1736 case BPF_ALU | BPF_MUL | BPF_X: 1737 switch (BPF_SRC(code)) { 1738 case BPF_X: 1739 emit_ia32_mul_r(dst_lo, src_lo, dstk, 1740 sstk, &prog); 1741 break; 1742 case BPF_K: 1743 /* mov ecx,imm32*/ 1744 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), 1745 imm32); 1746 emit_ia32_mul_r(dst_lo, IA32_ECX, dstk, 1747 false, &prog); 1748 break; 1749 } 1750 if (!bpf_prog->aux->verifier_zext) 1751 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1752 break; 1753 case BPF_ALU | BPF_LSH | BPF_X: 1754 case BPF_ALU | BPF_RSH | BPF_X: 1755 case BPF_ALU | BPF_ARSH | BPF_K: 1756 case BPF_ALU | BPF_ARSH | BPF_X: 1757 switch (BPF_SRC(code)) { 1758 case BPF_X: 1759 emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo, 1760 dstk, sstk, &prog); 1761 break; 1762 case BPF_K: 1763 /* mov ecx,imm32*/ 1764 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), 1765 imm32); 1766 emit_ia32_shift_r(BPF_OP(code), dst_lo, 1767 IA32_ECX, dstk, false, 1768 &prog); 1769 break; 1770 } 1771 if (!bpf_prog->aux->verifier_zext) 1772 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1773 break; 1774 /* dst = dst / src(imm) */ 1775 /* dst = dst % src(imm) */ 1776 case BPF_ALU | BPF_DIV | BPF_K: 1777 case BPF_ALU | BPF_DIV | BPF_X: 1778 case BPF_ALU | BPF_MOD | BPF_K: 1779 case BPF_ALU | BPF_MOD | BPF_X: 1780 switch (BPF_SRC(code)) { 1781 case BPF_X: 1782 emit_ia32_div_mod_r(BPF_OP(code), dst_lo, 1783 src_lo, dstk, sstk, &prog); 1784 break; 1785 case BPF_K: 1786 /* mov ecx,imm32*/ 1787 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), 1788 imm32); 1789 emit_ia32_div_mod_r(BPF_OP(code), dst_lo, 1790 IA32_ECX, dstk, false, 1791 &prog); 1792 break; 1793 } 1794 if (!bpf_prog->aux->verifier_zext) 1795 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1796 break; 1797 case BPF_ALU64 | BPF_DIV | BPF_K: 1798 case BPF_ALU64 | BPF_DIV | BPF_X: 1799 case BPF_ALU64 | BPF_MOD | BPF_K: 1800 case BPF_ALU64 | BPF_MOD | BPF_X: 1801 goto notyet; 1802 /* dst = dst >> imm */ 1803 /* dst = dst << imm */ 1804 case BPF_ALU | BPF_RSH | BPF_K: 1805 case BPF_ALU | BPF_LSH | BPF_K: 1806 if (unlikely(imm32 > 31)) 1807 return -EINVAL; 1808 /* mov ecx,imm32*/ 1809 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); 1810 emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk, 1811 false, &prog); 1812 if (!bpf_prog->aux->verifier_zext) 1813 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1814 break; 1815 /* dst = dst << imm */ 1816 case BPF_ALU64 | BPF_LSH | BPF_K: 1817 if (unlikely(imm32 > 63)) 1818 return -EINVAL; 1819 emit_ia32_lsh_i64(dst, imm32, dstk, &prog); 1820 break; 1821 /* dst = dst >> imm */ 1822 case BPF_ALU64 | BPF_RSH | BPF_K: 1823 if (unlikely(imm32 > 63)) 1824 return -EINVAL; 1825 emit_ia32_rsh_i64(dst, imm32, dstk, &prog); 1826 break; 1827 /* dst = dst << src */ 1828 case BPF_ALU64 | BPF_LSH | BPF_X: 1829 emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog); 1830 break; 1831 /* dst = dst >> src */ 1832 case BPF_ALU64 | BPF_RSH | BPF_X: 1833 emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog); 1834 break; 1835 /* dst = dst >> src (signed) */ 1836 case BPF_ALU64 | BPF_ARSH | BPF_X: 1837 emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog); 1838 break; 1839 /* dst = dst >> imm (signed) */ 1840 case BPF_ALU64 | BPF_ARSH | BPF_K: 1841 if (unlikely(imm32 > 63)) 1842 return -EINVAL; 1843 emit_ia32_arsh_i64(dst, imm32, dstk, &prog); 1844 break; 1845 /* dst = ~dst */ 1846 case BPF_ALU | BPF_NEG: 1847 emit_ia32_alu_i(is64, false, BPF_OP(code), 1848 dst_lo, 0, dstk, &prog); 1849 if (!bpf_prog->aux->verifier_zext) 1850 emit_ia32_mov_i(dst_hi, 0, dstk, &prog); 1851 break; 1852 /* dst = ~dst (64 bit) */ 1853 case BPF_ALU64 | BPF_NEG: 1854 emit_ia32_neg64(dst, dstk, &prog); 1855 break; 1856 /* dst = dst * src/imm */ 1857 case BPF_ALU64 | BPF_MUL | BPF_X: 1858 case BPF_ALU64 | BPF_MUL | BPF_K: 1859 switch (BPF_SRC(code)) { 1860 case BPF_X: 1861 emit_ia32_mul_r64(dst, src, dstk, sstk, &prog); 1862 break; 1863 case BPF_K: 1864 emit_ia32_mul_i64(dst, imm32, dstk, &prog); 1865 break; 1866 } 1867 break; 1868 /* dst = htole(dst) */ 1869 case BPF_ALU | BPF_END | BPF_FROM_LE: 1870 emit_ia32_to_le_r64(dst, imm32, dstk, &prog, 1871 bpf_prog->aux); 1872 break; 1873 /* dst = htobe(dst) */ 1874 case BPF_ALU | BPF_END | BPF_FROM_BE: 1875 emit_ia32_to_be_r64(dst, imm32, dstk, &prog, 1876 bpf_prog->aux); 1877 break; 1878 /* dst = imm64 */ 1879 case BPF_LD | BPF_IMM | BPF_DW: { 1880 s32 hi, lo = imm32; 1881 1882 hi = insn[1].imm; 1883 emit_ia32_mov_i(dst_lo, lo, dstk, &prog); 1884 emit_ia32_mov_i(dst_hi, hi, dstk, &prog); 1885 insn++; 1886 i++; 1887 break; 1888 } 1889 /* speculation barrier */ 1890 case BPF_ST | BPF_NOSPEC: 1891 if (boot_cpu_has(X86_FEATURE_XMM2)) 1892 /* Emit 'lfence' */ 1893 EMIT3(0x0F, 0xAE, 0xE8); 1894 break; 1895 /* ST: *(u8*)(dst_reg + off) = imm */ 1896 case BPF_ST | BPF_MEM | BPF_H: 1897 case BPF_ST | BPF_MEM | BPF_B: 1898 case BPF_ST | BPF_MEM | BPF_W: 1899 case BPF_ST | BPF_MEM | BPF_DW: 1900 if (dstk) 1901 /* mov eax,dword ptr [ebp+off] */ 1902 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 1903 STACK_VAR(dst_lo)); 1904 else 1905 /* mov eax,dst_lo */ 1906 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); 1907 1908 switch (BPF_SIZE(code)) { 1909 case BPF_B: 1910 EMIT(0xC6, 1); break; 1911 case BPF_H: 1912 EMIT2(0x66, 0xC7); break; 1913 case BPF_W: 1914 case BPF_DW: 1915 EMIT(0xC7, 1); break; 1916 } 1917 1918 if (is_imm8(insn->off)) 1919 EMIT2(add_1reg(0x40, IA32_EAX), insn->off); 1920 else 1921 EMIT1_off32(add_1reg(0x80, IA32_EAX), 1922 insn->off); 1923 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code))); 1924 1925 if (BPF_SIZE(code) == BPF_DW) { 1926 u32 hi; 1927 1928 hi = imm32 & (1<<31) ? (u32)~0 : 0; 1929 EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX), 1930 insn->off + 4); 1931 EMIT(hi, 4); 1932 } 1933 break; 1934 1935 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1936 case BPF_STX | BPF_MEM | BPF_B: 1937 case BPF_STX | BPF_MEM | BPF_H: 1938 case BPF_STX | BPF_MEM | BPF_W: 1939 case BPF_STX | BPF_MEM | BPF_DW: 1940 if (dstk) 1941 /* mov eax,dword ptr [ebp+off] */ 1942 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 1943 STACK_VAR(dst_lo)); 1944 else 1945 /* mov eax,dst_lo */ 1946 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX)); 1947 1948 if (sstk) 1949 /* mov edx,dword ptr [ebp+off] */ 1950 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 1951 STACK_VAR(src_lo)); 1952 else 1953 /* mov edx,src_lo */ 1954 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX)); 1955 1956 switch (BPF_SIZE(code)) { 1957 case BPF_B: 1958 EMIT(0x88, 1); break; 1959 case BPF_H: 1960 EMIT2(0x66, 0x89); break; 1961 case BPF_W: 1962 case BPF_DW: 1963 EMIT(0x89, 1); break; 1964 } 1965 1966 if (is_imm8(insn->off)) 1967 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX), 1968 insn->off); 1969 else 1970 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX), 1971 insn->off); 1972 1973 if (BPF_SIZE(code) == BPF_DW) { 1974 if (sstk) 1975 /* mov edi,dword ptr [ebp+off] */ 1976 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, 1977 IA32_EDX), 1978 STACK_VAR(src_hi)); 1979 else 1980 /* mov edi,src_hi */ 1981 EMIT2(0x8B, add_2reg(0xC0, src_hi, 1982 IA32_EDX)); 1983 EMIT1(0x89); 1984 if (is_imm8(insn->off + 4)) { 1985 EMIT2(add_2reg(0x40, IA32_EAX, 1986 IA32_EDX), 1987 insn->off + 4); 1988 } else { 1989 EMIT1(add_2reg(0x80, IA32_EAX, 1990 IA32_EDX)); 1991 EMIT(insn->off + 4, 4); 1992 } 1993 } 1994 break; 1995 1996 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1997 case BPF_LDX | BPF_MEM | BPF_B: 1998 case BPF_LDX | BPF_MEM | BPF_H: 1999 case BPF_LDX | BPF_MEM | BPF_W: 2000 case BPF_LDX | BPF_MEM | BPF_DW: 2001 if (sstk) 2002 /* mov eax,dword ptr [ebp+off] */ 2003 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2004 STACK_VAR(src_lo)); 2005 else 2006 /* mov eax,dword ptr [ebp+off] */ 2007 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX)); 2008 2009 switch (BPF_SIZE(code)) { 2010 case BPF_B: 2011 EMIT2(0x0F, 0xB6); break; 2012 case BPF_H: 2013 EMIT2(0x0F, 0xB7); break; 2014 case BPF_W: 2015 case BPF_DW: 2016 EMIT(0x8B, 1); break; 2017 } 2018 2019 if (is_imm8(insn->off)) 2020 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX), 2021 insn->off); 2022 else 2023 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX), 2024 insn->off); 2025 2026 if (dstk) 2027 /* mov dword ptr [ebp+off],edx */ 2028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), 2029 STACK_VAR(dst_lo)); 2030 else 2031 /* mov dst_lo,edx */ 2032 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX)); 2033 switch (BPF_SIZE(code)) { 2034 case BPF_B: 2035 case BPF_H: 2036 case BPF_W: 2037 if (bpf_prog->aux->verifier_zext) 2038 break; 2039 if (dstk) { 2040 EMIT3(0xC7, add_1reg(0x40, IA32_EBP), 2041 STACK_VAR(dst_hi)); 2042 EMIT(0x0, 4); 2043 } else { 2044 /* xor dst_hi,dst_hi */ 2045 EMIT2(0x33, 2046 add_2reg(0xC0, dst_hi, dst_hi)); 2047 } 2048 break; 2049 case BPF_DW: 2050 EMIT2_off32(0x8B, 2051 add_2reg(0x80, IA32_EAX, IA32_EDX), 2052 insn->off + 4); 2053 if (dstk) 2054 EMIT3(0x89, 2055 add_2reg(0x40, IA32_EBP, 2056 IA32_EDX), 2057 STACK_VAR(dst_hi)); 2058 else 2059 EMIT2(0x89, 2060 add_2reg(0xC0, dst_hi, IA32_EDX)); 2061 break; 2062 default: 2063 break; 2064 } 2065 break; 2066 /* call */ 2067 case BPF_JMP | BPF_CALL: 2068 { 2069 const u8 *r1 = bpf2ia32[BPF_REG_1]; 2070 const u8 *r2 = bpf2ia32[BPF_REG_2]; 2071 const u8 *r3 = bpf2ia32[BPF_REG_3]; 2072 const u8 *r4 = bpf2ia32[BPF_REG_4]; 2073 const u8 *r5 = bpf2ia32[BPF_REG_5]; 2074 2075 if (insn->src_reg == BPF_PSEUDO_CALL) 2076 goto notyet; 2077 2078 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 2079 int err; 2080 2081 err = emit_kfunc_call(bpf_prog, 2082 image + addrs[i], 2083 insn, &prog); 2084 2085 if (err) 2086 return err; 2087 break; 2088 } 2089 2090 func = (u8 *) __bpf_call_base + imm32; 2091 jmp_offset = func - (image + addrs[i]); 2092 2093 if (!imm32 || !is_simm32(jmp_offset)) { 2094 pr_err("unsupported BPF func %d addr %p image %p\n", 2095 imm32, func, image); 2096 return -EINVAL; 2097 } 2098 2099 /* mov eax,dword ptr [ebp+off] */ 2100 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2101 STACK_VAR(r1[0])); 2102 /* mov edx,dword ptr [ebp+off] */ 2103 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), 2104 STACK_VAR(r1[1])); 2105 2106 emit_push_r64(r5, &prog); 2107 emit_push_r64(r4, &prog); 2108 emit_push_r64(r3, &prog); 2109 emit_push_r64(r2, &prog); 2110 2111 EMIT1_off32(0xE8, jmp_offset + 9); 2112 2113 /* mov dword ptr [ebp+off],eax */ 2114 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), 2115 STACK_VAR(r0[0])); 2116 /* mov dword ptr [ebp+off],edx */ 2117 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX), 2118 STACK_VAR(r0[1])); 2119 2120 /* add esp,32 */ 2121 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32); 2122 break; 2123 } 2124 case BPF_JMP | BPF_TAIL_CALL: 2125 emit_bpf_tail_call(&prog); 2126 break; 2127 2128 /* cond jump */ 2129 case BPF_JMP | BPF_JEQ | BPF_X: 2130 case BPF_JMP | BPF_JNE | BPF_X: 2131 case BPF_JMP | BPF_JGT | BPF_X: 2132 case BPF_JMP | BPF_JLT | BPF_X: 2133 case BPF_JMP | BPF_JGE | BPF_X: 2134 case BPF_JMP | BPF_JLE | BPF_X: 2135 case BPF_JMP32 | BPF_JEQ | BPF_X: 2136 case BPF_JMP32 | BPF_JNE | BPF_X: 2137 case BPF_JMP32 | BPF_JGT | BPF_X: 2138 case BPF_JMP32 | BPF_JLT | BPF_X: 2139 case BPF_JMP32 | BPF_JGE | BPF_X: 2140 case BPF_JMP32 | BPF_JLE | BPF_X: 2141 case BPF_JMP32 | BPF_JSGT | BPF_X: 2142 case BPF_JMP32 | BPF_JSLE | BPF_X: 2143 case BPF_JMP32 | BPF_JSLT | BPF_X: 2144 case BPF_JMP32 | BPF_JSGE | BPF_X: { 2145 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; 2146 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 2147 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 2148 u8 sreg_lo = sstk ? IA32_ECX : src_lo; 2149 u8 sreg_hi = sstk ? IA32_EBX : src_hi; 2150 2151 if (dstk) { 2152 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2153 STACK_VAR(dst_lo)); 2154 if (is_jmp64) 2155 EMIT3(0x8B, 2156 add_2reg(0x40, IA32_EBP, 2157 IA32_EDX), 2158 STACK_VAR(dst_hi)); 2159 } 2160 2161 if (sstk) { 2162 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 2163 STACK_VAR(src_lo)); 2164 if (is_jmp64) 2165 EMIT3(0x8B, 2166 add_2reg(0x40, IA32_EBP, 2167 IA32_EBX), 2168 STACK_VAR(src_hi)); 2169 } 2170 2171 if (is_jmp64) { 2172 /* cmp dreg_hi,sreg_hi */ 2173 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); 2174 EMIT2(IA32_JNE, 2); 2175 } 2176 /* cmp dreg_lo,sreg_lo */ 2177 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); 2178 goto emit_cond_jmp; 2179 } 2180 case BPF_JMP | BPF_JSGT | BPF_X: 2181 case BPF_JMP | BPF_JSLE | BPF_X: 2182 case BPF_JMP | BPF_JSLT | BPF_X: 2183 case BPF_JMP | BPF_JSGE | BPF_X: { 2184 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 2185 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 2186 u8 sreg_lo = sstk ? IA32_ECX : src_lo; 2187 u8 sreg_hi = sstk ? IA32_EBX : src_hi; 2188 2189 if (dstk) { 2190 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2191 STACK_VAR(dst_lo)); 2192 EMIT3(0x8B, 2193 add_2reg(0x40, IA32_EBP, 2194 IA32_EDX), 2195 STACK_VAR(dst_hi)); 2196 } 2197 2198 if (sstk) { 2199 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 2200 STACK_VAR(src_lo)); 2201 EMIT3(0x8B, 2202 add_2reg(0x40, IA32_EBP, 2203 IA32_EBX), 2204 STACK_VAR(src_hi)); 2205 } 2206 2207 /* cmp dreg_hi,sreg_hi */ 2208 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); 2209 EMIT2(IA32_JNE, 10); 2210 /* cmp dreg_lo,sreg_lo */ 2211 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); 2212 goto emit_cond_jmp_signed; 2213 } 2214 case BPF_JMP | BPF_JSET | BPF_X: 2215 case BPF_JMP32 | BPF_JSET | BPF_X: { 2216 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; 2217 u8 dreg_lo = IA32_EAX; 2218 u8 dreg_hi = IA32_EDX; 2219 u8 sreg_lo = sstk ? IA32_ECX : src_lo; 2220 u8 sreg_hi = sstk ? IA32_EBX : src_hi; 2221 2222 if (dstk) { 2223 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2224 STACK_VAR(dst_lo)); 2225 if (is_jmp64) 2226 EMIT3(0x8B, 2227 add_2reg(0x40, IA32_EBP, 2228 IA32_EDX), 2229 STACK_VAR(dst_hi)); 2230 } else { 2231 /* mov dreg_lo,dst_lo */ 2232 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo)); 2233 if (is_jmp64) 2234 /* mov dreg_hi,dst_hi */ 2235 EMIT2(0x89, 2236 add_2reg(0xC0, dreg_hi, dst_hi)); 2237 } 2238 2239 if (sstk) { 2240 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), 2241 STACK_VAR(src_lo)); 2242 if (is_jmp64) 2243 EMIT3(0x8B, 2244 add_2reg(0x40, IA32_EBP, 2245 IA32_EBX), 2246 STACK_VAR(src_hi)); 2247 } 2248 /* and dreg_lo,sreg_lo */ 2249 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo)); 2250 if (is_jmp64) { 2251 /* and dreg_hi,sreg_hi */ 2252 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi)); 2253 /* or dreg_lo,dreg_hi */ 2254 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi)); 2255 } 2256 goto emit_cond_jmp; 2257 } 2258 case BPF_JMP | BPF_JSET | BPF_K: 2259 case BPF_JMP32 | BPF_JSET | BPF_K: { 2260 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; 2261 u8 dreg_lo = IA32_EAX; 2262 u8 dreg_hi = IA32_EDX; 2263 u8 sreg_lo = IA32_ECX; 2264 u8 sreg_hi = IA32_EBX; 2265 u32 hi; 2266 2267 if (dstk) { 2268 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2269 STACK_VAR(dst_lo)); 2270 if (is_jmp64) 2271 EMIT3(0x8B, 2272 add_2reg(0x40, IA32_EBP, 2273 IA32_EDX), 2274 STACK_VAR(dst_hi)); 2275 } else { 2276 /* mov dreg_lo,dst_lo */ 2277 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo)); 2278 if (is_jmp64) 2279 /* mov dreg_hi,dst_hi */ 2280 EMIT2(0x89, 2281 add_2reg(0xC0, dreg_hi, dst_hi)); 2282 } 2283 2284 /* mov ecx,imm32 */ 2285 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32); 2286 2287 /* and dreg_lo,sreg_lo */ 2288 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo)); 2289 if (is_jmp64) { 2290 hi = imm32 & (1 << 31) ? (u32)~0 : 0; 2291 /* mov ebx,imm32 */ 2292 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi); 2293 /* and dreg_hi,sreg_hi */ 2294 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi)); 2295 /* or dreg_lo,dreg_hi */ 2296 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi)); 2297 } 2298 goto emit_cond_jmp; 2299 } 2300 case BPF_JMP | BPF_JEQ | BPF_K: 2301 case BPF_JMP | BPF_JNE | BPF_K: 2302 case BPF_JMP | BPF_JGT | BPF_K: 2303 case BPF_JMP | BPF_JLT | BPF_K: 2304 case BPF_JMP | BPF_JGE | BPF_K: 2305 case BPF_JMP | BPF_JLE | BPF_K: 2306 case BPF_JMP32 | BPF_JEQ | BPF_K: 2307 case BPF_JMP32 | BPF_JNE | BPF_K: 2308 case BPF_JMP32 | BPF_JGT | BPF_K: 2309 case BPF_JMP32 | BPF_JLT | BPF_K: 2310 case BPF_JMP32 | BPF_JGE | BPF_K: 2311 case BPF_JMP32 | BPF_JLE | BPF_K: 2312 case BPF_JMP32 | BPF_JSGT | BPF_K: 2313 case BPF_JMP32 | BPF_JSLE | BPF_K: 2314 case BPF_JMP32 | BPF_JSLT | BPF_K: 2315 case BPF_JMP32 | BPF_JSGE | BPF_K: { 2316 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP; 2317 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 2318 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 2319 u8 sreg_lo = IA32_ECX; 2320 u8 sreg_hi = IA32_EBX; 2321 u32 hi; 2322 2323 if (dstk) { 2324 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2325 STACK_VAR(dst_lo)); 2326 if (is_jmp64) 2327 EMIT3(0x8B, 2328 add_2reg(0x40, IA32_EBP, 2329 IA32_EDX), 2330 STACK_VAR(dst_hi)); 2331 } 2332 2333 /* mov ecx,imm32 */ 2334 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); 2335 if (is_jmp64) { 2336 hi = imm32 & (1 << 31) ? (u32)~0 : 0; 2337 /* mov ebx,imm32 */ 2338 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi); 2339 /* cmp dreg_hi,sreg_hi */ 2340 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); 2341 EMIT2(IA32_JNE, 2); 2342 } 2343 /* cmp dreg_lo,sreg_lo */ 2344 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); 2345 2346 emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false); 2347 if (jmp_cond == COND_JMP_OPCODE_INVALID) 2348 return -EFAULT; 2349 jmp_offset = addrs[i + insn->off] - addrs[i]; 2350 if (is_imm8(jmp_offset)) { 2351 EMIT2(jmp_cond, jmp_offset); 2352 } else if (is_simm32(jmp_offset)) { 2353 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2354 } else { 2355 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2356 return -EFAULT; 2357 } 2358 break; 2359 } 2360 case BPF_JMP | BPF_JSGT | BPF_K: 2361 case BPF_JMP | BPF_JSLE | BPF_K: 2362 case BPF_JMP | BPF_JSLT | BPF_K: 2363 case BPF_JMP | BPF_JSGE | BPF_K: { 2364 u8 dreg_lo = dstk ? IA32_EAX : dst_lo; 2365 u8 dreg_hi = dstk ? IA32_EDX : dst_hi; 2366 u8 sreg_lo = IA32_ECX; 2367 u8 sreg_hi = IA32_EBX; 2368 u32 hi; 2369 2370 if (dstk) { 2371 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), 2372 STACK_VAR(dst_lo)); 2373 EMIT3(0x8B, 2374 add_2reg(0x40, IA32_EBP, 2375 IA32_EDX), 2376 STACK_VAR(dst_hi)); 2377 } 2378 2379 /* mov ecx,imm32 */ 2380 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32); 2381 hi = imm32 & (1 << 31) ? (u32)~0 : 0; 2382 /* mov ebx,imm32 */ 2383 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi); 2384 /* cmp dreg_hi,sreg_hi */ 2385 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi)); 2386 EMIT2(IA32_JNE, 10); 2387 /* cmp dreg_lo,sreg_lo */ 2388 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo)); 2389 2390 /* 2391 * For simplicity of branch offset computation, 2392 * let's use fixed jump coding here. 2393 */ 2394 emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */ 2395 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true); 2396 if (jmp_cond == COND_JMP_OPCODE_INVALID) 2397 return -EFAULT; 2398 jmp_offset = addrs[i + insn->off] - addrs[i] + 8; 2399 if (is_simm32(jmp_offset)) { 2400 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2401 } else { 2402 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2403 return -EFAULT; 2404 } 2405 EMIT2(0xEB, 6); 2406 2407 /* Check the condition for high 32-bit comparison */ 2408 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false); 2409 if (jmp_cond == COND_JMP_OPCODE_INVALID) 2410 return -EFAULT; 2411 jmp_offset = addrs[i + insn->off] - addrs[i]; 2412 if (is_simm32(jmp_offset)) { 2413 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2414 } else { 2415 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2416 return -EFAULT; 2417 } 2418 break; 2419 } 2420 case BPF_JMP | BPF_JA: 2421 if (insn->off == -1) 2422 /* -1 jmp instructions will always jump 2423 * backwards two bytes. Explicitly handling 2424 * this case avoids wasting too many passes 2425 * when there are long sequences of replaced 2426 * dead code. 2427 */ 2428 jmp_offset = -2; 2429 else 2430 jmp_offset = addrs[i + insn->off] - addrs[i]; 2431 2432 if (!jmp_offset) 2433 /* Optimize out nop jumps */ 2434 break; 2435 emit_jmp: 2436 if (is_imm8(jmp_offset)) { 2437 EMIT2(0xEB, jmp_offset); 2438 } else if (is_simm32(jmp_offset)) { 2439 EMIT1_off32(0xE9, jmp_offset); 2440 } else { 2441 pr_err("jmp gen bug %llx\n", jmp_offset); 2442 return -EFAULT; 2443 } 2444 break; 2445 case BPF_STX | BPF_ATOMIC | BPF_W: 2446 case BPF_STX | BPF_ATOMIC | BPF_DW: 2447 goto notyet; 2448 case BPF_JMP | BPF_EXIT: 2449 if (seen_exit) { 2450 jmp_offset = ctx->cleanup_addr - addrs[i]; 2451 goto emit_jmp; 2452 } 2453 seen_exit = true; 2454 /* Update cleanup_addr */ 2455 ctx->cleanup_addr = proglen; 2456 emit_epilogue(&prog, bpf_prog->aux->stack_depth); 2457 break; 2458 notyet: 2459 pr_info_once("*** NOT YET: opcode %02x ***\n", code); 2460 return -EFAULT; 2461 default: 2462 /* 2463 * This error will be seen if new instruction was added 2464 * to interpreter, but not to JIT or if there is junk in 2465 * bpf_prog 2466 */ 2467 pr_err("bpf_jit: unknown opcode %02x\n", code); 2468 return -EINVAL; 2469 } 2470 2471 ilen = prog - temp; 2472 if (ilen > BPF_MAX_INSN_SIZE) { 2473 pr_err("bpf_jit: fatal insn size error\n"); 2474 return -EFAULT; 2475 } 2476 2477 if (image) { 2478 /* 2479 * When populating the image, assert that: 2480 * 2481 * i) We do not write beyond the allocated space, and 2482 * ii) addrs[i] did not change from the prior run, in order 2483 * to validate assumptions made for computing branch 2484 * displacements. 2485 */ 2486 if (unlikely(proglen + ilen > oldproglen || 2487 proglen + ilen != addrs[i])) { 2488 pr_err("bpf_jit: fatal error\n"); 2489 return -EFAULT; 2490 } 2491 memcpy(image + proglen, temp, ilen); 2492 } 2493 proglen += ilen; 2494 addrs[i] = proglen; 2495 prog = temp; 2496 } 2497 return proglen; 2498 } 2499 2500 bool bpf_jit_needs_zext(void) 2501 { 2502 return true; 2503 } 2504 2505 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2506 { 2507 struct bpf_binary_header *header = NULL; 2508 struct bpf_prog *tmp, *orig_prog = prog; 2509 int proglen, oldproglen = 0; 2510 struct jit_context ctx = {}; 2511 bool tmp_blinded = false; 2512 u8 *image = NULL; 2513 int *addrs; 2514 int pass; 2515 int i; 2516 2517 if (!prog->jit_requested) 2518 return orig_prog; 2519 2520 tmp = bpf_jit_blind_constants(prog); 2521 /* 2522 * If blinding was requested and we failed during blinding, 2523 * we must fall back to the interpreter. 2524 */ 2525 if (IS_ERR(tmp)) 2526 return orig_prog; 2527 if (tmp != prog) { 2528 tmp_blinded = true; 2529 prog = tmp; 2530 } 2531 2532 addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL); 2533 if (!addrs) { 2534 prog = orig_prog; 2535 goto out; 2536 } 2537 2538 /* 2539 * Before first pass, make a rough estimation of addrs[] 2540 * each BPF instruction is translated to less than 64 bytes 2541 */ 2542 for (proglen = 0, i = 0; i < prog->len; i++) { 2543 proglen += 64; 2544 addrs[i] = proglen; 2545 } 2546 ctx.cleanup_addr = proglen; 2547 2548 /* 2549 * JITed image shrinks with every pass and the loop iterates 2550 * until the image stops shrinking. Very large BPF programs 2551 * may converge on the last pass. In such case do one more 2552 * pass to emit the final image. 2553 */ 2554 for (pass = 0; pass < 20 || image; pass++) { 2555 proglen = do_jit(prog, addrs, image, oldproglen, &ctx); 2556 if (proglen <= 0) { 2557 out_image: 2558 image = NULL; 2559 if (header) 2560 bpf_jit_binary_free(header); 2561 prog = orig_prog; 2562 goto out_addrs; 2563 } 2564 if (image) { 2565 if (proglen != oldproglen) { 2566 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 2567 proglen, oldproglen); 2568 goto out_image; 2569 } 2570 break; 2571 } 2572 if (proglen == oldproglen) { 2573 header = bpf_jit_binary_alloc(proglen, &image, 2574 1, jit_fill_hole); 2575 if (!header) { 2576 prog = orig_prog; 2577 goto out_addrs; 2578 } 2579 } 2580 oldproglen = proglen; 2581 cond_resched(); 2582 } 2583 2584 if (bpf_jit_enable > 1) 2585 bpf_jit_dump(prog->len, proglen, pass + 1, image); 2586 2587 if (image) { 2588 bpf_jit_binary_lock_ro(header); 2589 prog->bpf_func = (void *)image; 2590 prog->jited = 1; 2591 prog->jited_len = proglen; 2592 } else { 2593 prog = orig_prog; 2594 } 2595 2596 out_addrs: 2597 kfree(addrs); 2598 out: 2599 if (tmp_blinded) 2600 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2601 tmp : orig_prog); 2602 return prog; 2603 } 2604 2605 bool bpf_jit_supports_kfunc_call(void) 2606 { 2607 return true; 2608 } 2609