xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 static bool is_axreg(u32 reg)
162 {
163 	return reg == BPF_REG_0;
164 }
165 
166 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
167 static u8 add_1mod(u8 byte, u32 reg)
168 {
169 	if (is_ereg(reg))
170 		byte |= 1;
171 	return byte;
172 }
173 
174 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
175 {
176 	if (is_ereg(r1))
177 		byte |= 1;
178 	if (is_ereg(r2))
179 		byte |= 4;
180 	return byte;
181 }
182 
183 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
184 static u8 add_1reg(u8 byte, u32 dst_reg)
185 {
186 	return byte + reg2hex[dst_reg];
187 }
188 
189 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
190 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
191 {
192 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
193 }
194 
195 static void jit_fill_hole(void *area, unsigned int size)
196 {
197 	/* Fill whole space with INT3 instructions */
198 	memset(area, 0xcc, size);
199 }
200 
201 struct jit_context {
202 	int cleanup_addr; /* Epilogue code offset */
203 };
204 
205 /* Maximum number of bytes emitted while JITing one eBPF insn */
206 #define BPF_MAX_INSN_SIZE	128
207 #define BPF_INSN_SAFETY		64
208 
209 /* Number of bytes emit_patch() needs to generate instructions */
210 #define X86_PATCH_SIZE		5
211 
212 #define PROLOGUE_SIZE		25
213 
214 /*
215  * Emit x86-64 prologue code for BPF program and check its size.
216  * bpf_tail_call helper will skip it while jumping into another program
217  */
218 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
219 {
220 	u8 *prog = *pprog;
221 	int cnt = X86_PATCH_SIZE;
222 
223 	/* BPF trampoline can be made to work without these nops,
224 	 * but let's waste 5 bytes for now and optimize later
225 	 */
226 	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
227 	prog += cnt;
228 	EMIT1(0x55);             /* push rbp */
229 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
230 	/* sub rsp, rounded_stack_depth */
231 	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
232 	EMIT1(0x53);             /* push rbx */
233 	EMIT2(0x41, 0x55);       /* push r13 */
234 	EMIT2(0x41, 0x56);       /* push r14 */
235 	EMIT2(0x41, 0x57);       /* push r15 */
236 	if (!ebpf_from_cbpf) {
237 		/* zero init tail_call_cnt */
238 		EMIT2(0x6a, 0x00);
239 		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
240 	}
241 	*pprog = prog;
242 }
243 
244 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
245 {
246 	u8 *prog = *pprog;
247 	int cnt = 0;
248 	s64 offset;
249 
250 	offset = func - (ip + X86_PATCH_SIZE);
251 	if (!is_simm32(offset)) {
252 		pr_err("Target call %p is out of range\n", func);
253 		return -ERANGE;
254 	}
255 	EMIT1_off32(opcode, offset);
256 	*pprog = prog;
257 	return 0;
258 }
259 
260 static int emit_call(u8 **pprog, void *func, void *ip)
261 {
262 	return emit_patch(pprog, func, ip, 0xE8);
263 }
264 
265 static int emit_jump(u8 **pprog, void *func, void *ip)
266 {
267 	return emit_patch(pprog, func, ip, 0xE9);
268 }
269 
270 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
271 				void *old_addr, void *new_addr,
272 				const bool text_live)
273 {
274 	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
275 	u8 old_insn[X86_PATCH_SIZE];
276 	u8 new_insn[X86_PATCH_SIZE];
277 	u8 *prog;
278 	int ret;
279 
280 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
281 	if (old_addr) {
282 		prog = old_insn;
283 		ret = t == BPF_MOD_CALL ?
284 		      emit_call(&prog, old_addr, ip) :
285 		      emit_jump(&prog, old_addr, ip);
286 		if (ret)
287 			return ret;
288 	}
289 
290 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
291 	if (new_addr) {
292 		prog = new_insn;
293 		ret = t == BPF_MOD_CALL ?
294 		      emit_call(&prog, new_addr, ip) :
295 		      emit_jump(&prog, new_addr, ip);
296 		if (ret)
297 			return ret;
298 	}
299 
300 	ret = -EBUSY;
301 	mutex_lock(&text_mutex);
302 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
303 		goto out;
304 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
305 		if (text_live)
306 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
307 		else
308 			memcpy(ip, new_insn, X86_PATCH_SIZE);
309 	}
310 	ret = 0;
311 out:
312 	mutex_unlock(&text_mutex);
313 	return ret;
314 }
315 
316 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
317 		       void *old_addr, void *new_addr)
318 {
319 	if (!is_kernel_text((long)ip) &&
320 	    !is_bpf_text_address((long)ip))
321 		/* BPF poking in modules is not supported */
322 		return -EINVAL;
323 
324 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
325 }
326 
327 /*
328  * Generate the following code:
329  *
330  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
331  *   if (index >= array->map.max_entries)
332  *     goto out;
333  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
334  *     goto out;
335  *   prog = array->ptrs[index];
336  *   if (prog == NULL)
337  *     goto out;
338  *   goto *(prog->bpf_func + prologue_size);
339  * out:
340  */
341 static void emit_bpf_tail_call_indirect(u8 **pprog)
342 {
343 	u8 *prog = *pprog;
344 	int label1, label2, label3;
345 	int cnt = 0;
346 
347 	/*
348 	 * rdi - pointer to ctx
349 	 * rsi - pointer to bpf_array
350 	 * rdx - index in bpf_array
351 	 */
352 
353 	/*
354 	 * if (index >= array->map.max_entries)
355 	 *	goto out;
356 	 */
357 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
358 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
359 	      offsetof(struct bpf_array, map.max_entries));
360 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
361 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
362 	label1 = cnt;
363 
364 	/*
365 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
366 	 *	goto out;
367 	 */
368 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
369 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
370 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
371 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
372 	label2 = cnt;
373 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
374 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
375 
376 	/* prog = array->ptrs[index]; */
377 	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
378 		    offsetof(struct bpf_array, ptrs));
379 
380 	/*
381 	 * if (prog == NULL)
382 	 *	goto out;
383 	 */
384 	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
385 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
386 	EMIT2(X86_JE, OFFSET3);                   /* je out */
387 	label3 = cnt;
388 
389 	/* goto *(prog->bpf_func + prologue_size); */
390 	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
391 	      offsetof(struct bpf_prog, bpf_func));
392 	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
393 
394 	/*
395 	 * Wow we're ready to jump into next BPF program
396 	 * rdi == ctx (1st arg)
397 	 * rax == prog->bpf_func + prologue_size
398 	 */
399 	RETPOLINE_RAX_BPF_JIT();
400 
401 	/* out: */
402 	BUILD_BUG_ON(cnt - label1 != OFFSET1);
403 	BUILD_BUG_ON(cnt - label2 != OFFSET2);
404 	BUILD_BUG_ON(cnt - label3 != OFFSET3);
405 	*pprog = prog;
406 }
407 
408 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
409 				      u8 **pprog, int addr, u8 *image)
410 {
411 	u8 *prog = *pprog;
412 	int cnt = 0;
413 
414 	/*
415 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
416 	 *	goto out;
417 	 */
418 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
419 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
420 	EMIT2(X86_JA, 14);                            /* ja out */
421 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
422 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
423 
424 	poke->ip = image + (addr - X86_PATCH_SIZE);
425 	poke->adj_off = PROLOGUE_SIZE;
426 
427 	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
428 	prog += X86_PATCH_SIZE;
429 	/* out: */
430 
431 	*pprog = prog;
432 }
433 
434 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
435 {
436 	struct bpf_jit_poke_descriptor *poke;
437 	struct bpf_array *array;
438 	struct bpf_prog *target;
439 	int i, ret;
440 
441 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
442 		poke = &prog->aux->poke_tab[i];
443 		WARN_ON_ONCE(READ_ONCE(poke->ip_stable));
444 
445 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
446 			continue;
447 
448 		array = container_of(poke->tail_call.map, struct bpf_array, map);
449 		mutex_lock(&array->aux->poke_mutex);
450 		target = array->ptrs[poke->tail_call.key];
451 		if (target) {
452 			/* Plain memcpy is used when image is not live yet
453 			 * and still not locked as read-only. Once poke
454 			 * location is active (poke->ip_stable), any parallel
455 			 * bpf_arch_text_poke() might occur still on the
456 			 * read-write image until we finally locked it as
457 			 * read-only. Both modifications on the given image
458 			 * are under text_mutex to avoid interference.
459 			 */
460 			ret = __bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, NULL,
461 						   (u8 *)target->bpf_func +
462 						   poke->adj_off, false);
463 			BUG_ON(ret < 0);
464 		}
465 		WRITE_ONCE(poke->ip_stable, true);
466 		mutex_unlock(&array->aux->poke_mutex);
467 	}
468 }
469 
470 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
471 			   u32 dst_reg, const u32 imm32)
472 {
473 	u8 *prog = *pprog;
474 	u8 b1, b2, b3;
475 	int cnt = 0;
476 
477 	/*
478 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
479 	 * (which zero-extends imm32) to save 2 bytes.
480 	 */
481 	if (sign_propagate && (s32)imm32 < 0) {
482 		/* 'mov %rax, imm32' sign extends imm32 */
483 		b1 = add_1mod(0x48, dst_reg);
484 		b2 = 0xC7;
485 		b3 = 0xC0;
486 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
487 		goto done;
488 	}
489 
490 	/*
491 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
492 	 * to save 3 bytes.
493 	 */
494 	if (imm32 == 0) {
495 		if (is_ereg(dst_reg))
496 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
497 		b2 = 0x31; /* xor */
498 		b3 = 0xC0;
499 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
500 		goto done;
501 	}
502 
503 	/* mov %eax, imm32 */
504 	if (is_ereg(dst_reg))
505 		EMIT1(add_1mod(0x40, dst_reg));
506 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
507 done:
508 	*pprog = prog;
509 }
510 
511 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
512 			   const u32 imm32_hi, const u32 imm32_lo)
513 {
514 	u8 *prog = *pprog;
515 	int cnt = 0;
516 
517 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
518 		/*
519 		 * For emitting plain u32, where sign bit must not be
520 		 * propagated LLVM tends to load imm64 over mov32
521 		 * directly, so save couple of bytes by just doing
522 		 * 'mov %eax, imm32' instead.
523 		 */
524 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
525 	} else {
526 		/* movabsq %rax, imm64 */
527 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
528 		EMIT(imm32_lo, 4);
529 		EMIT(imm32_hi, 4);
530 	}
531 
532 	*pprog = prog;
533 }
534 
535 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
536 {
537 	u8 *prog = *pprog;
538 	int cnt = 0;
539 
540 	if (is64) {
541 		/* mov dst, src */
542 		EMIT_mov(dst_reg, src_reg);
543 	} else {
544 		/* mov32 dst, src */
545 		if (is_ereg(dst_reg) || is_ereg(src_reg))
546 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
547 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
548 	}
549 
550 	*pprog = prog;
551 }
552 
553 /* LDX: dst_reg = *(u8*)(src_reg + off) */
554 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
555 {
556 	u8 *prog = *pprog;
557 	int cnt = 0;
558 
559 	switch (size) {
560 	case BPF_B:
561 		/* Emit 'movzx rax, byte ptr [rax + off]' */
562 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
563 		break;
564 	case BPF_H:
565 		/* Emit 'movzx rax, word ptr [rax + off]' */
566 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
567 		break;
568 	case BPF_W:
569 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
570 		if (is_ereg(dst_reg) || is_ereg(src_reg))
571 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
572 		else
573 			EMIT1(0x8B);
574 		break;
575 	case BPF_DW:
576 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
577 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
578 		break;
579 	}
580 	/*
581 	 * If insn->off == 0 we can save one extra byte, but
582 	 * special case of x86 R13 which always needs an offset
583 	 * is not worth the hassle
584 	 */
585 	if (is_imm8(off))
586 		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
587 	else
588 		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
589 	*pprog = prog;
590 }
591 
592 /* STX: *(u8*)(dst_reg + off) = src_reg */
593 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
594 {
595 	u8 *prog = *pprog;
596 	int cnt = 0;
597 
598 	switch (size) {
599 	case BPF_B:
600 		/* Emit 'mov byte ptr [rax + off], al' */
601 		if (is_ereg(dst_reg) || is_ereg(src_reg) ||
602 		    /* We have to add extra byte for x86 SIL, DIL regs */
603 		    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
604 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
605 		else
606 			EMIT1(0x88);
607 		break;
608 	case BPF_H:
609 		if (is_ereg(dst_reg) || is_ereg(src_reg))
610 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
611 		else
612 			EMIT2(0x66, 0x89);
613 		break;
614 	case BPF_W:
615 		if (is_ereg(dst_reg) || is_ereg(src_reg))
616 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
617 		else
618 			EMIT1(0x89);
619 		break;
620 	case BPF_DW:
621 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
622 		break;
623 	}
624 	if (is_imm8(off))
625 		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
626 	else
627 		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
628 	*pprog = prog;
629 }
630 
631 static bool ex_handler_bpf(const struct exception_table_entry *x,
632 			   struct pt_regs *regs, int trapnr,
633 			   unsigned long error_code, unsigned long fault_addr)
634 {
635 	u32 reg = x->fixup >> 8;
636 
637 	/* jump over faulting load and clear dest register */
638 	*(unsigned long *)((void *)regs + reg) = 0;
639 	regs->ip += x->fixup & 0xff;
640 	return true;
641 }
642 
643 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
644 		  int oldproglen, struct jit_context *ctx)
645 {
646 	struct bpf_insn *insn = bpf_prog->insnsi;
647 	int insn_cnt = bpf_prog->len;
648 	bool seen_exit = false;
649 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
650 	int i, cnt = 0, excnt = 0;
651 	int proglen = 0;
652 	u8 *prog = temp;
653 
654 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
655 		      bpf_prog_was_classic(bpf_prog));
656 	addrs[0] = prog - temp;
657 
658 	for (i = 1; i <= insn_cnt; i++, insn++) {
659 		const s32 imm32 = insn->imm;
660 		u32 dst_reg = insn->dst_reg;
661 		u32 src_reg = insn->src_reg;
662 		u8 b2 = 0, b3 = 0;
663 		s64 jmp_offset;
664 		u8 jmp_cond;
665 		int ilen;
666 		u8 *func;
667 
668 		switch (insn->code) {
669 			/* ALU */
670 		case BPF_ALU | BPF_ADD | BPF_X:
671 		case BPF_ALU | BPF_SUB | BPF_X:
672 		case BPF_ALU | BPF_AND | BPF_X:
673 		case BPF_ALU | BPF_OR | BPF_X:
674 		case BPF_ALU | BPF_XOR | BPF_X:
675 		case BPF_ALU64 | BPF_ADD | BPF_X:
676 		case BPF_ALU64 | BPF_SUB | BPF_X:
677 		case BPF_ALU64 | BPF_AND | BPF_X:
678 		case BPF_ALU64 | BPF_OR | BPF_X:
679 		case BPF_ALU64 | BPF_XOR | BPF_X:
680 			switch (BPF_OP(insn->code)) {
681 			case BPF_ADD: b2 = 0x01; break;
682 			case BPF_SUB: b2 = 0x29; break;
683 			case BPF_AND: b2 = 0x21; break;
684 			case BPF_OR: b2 = 0x09; break;
685 			case BPF_XOR: b2 = 0x31; break;
686 			}
687 			if (BPF_CLASS(insn->code) == BPF_ALU64)
688 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
689 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
690 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
691 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
692 			break;
693 
694 		case BPF_ALU64 | BPF_MOV | BPF_X:
695 		case BPF_ALU | BPF_MOV | BPF_X:
696 			emit_mov_reg(&prog,
697 				     BPF_CLASS(insn->code) == BPF_ALU64,
698 				     dst_reg, src_reg);
699 			break;
700 
701 			/* neg dst */
702 		case BPF_ALU | BPF_NEG:
703 		case BPF_ALU64 | BPF_NEG:
704 			if (BPF_CLASS(insn->code) == BPF_ALU64)
705 				EMIT1(add_1mod(0x48, dst_reg));
706 			else if (is_ereg(dst_reg))
707 				EMIT1(add_1mod(0x40, dst_reg));
708 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
709 			break;
710 
711 		case BPF_ALU | BPF_ADD | BPF_K:
712 		case BPF_ALU | BPF_SUB | BPF_K:
713 		case BPF_ALU | BPF_AND | BPF_K:
714 		case BPF_ALU | BPF_OR | BPF_K:
715 		case BPF_ALU | BPF_XOR | BPF_K:
716 		case BPF_ALU64 | BPF_ADD | BPF_K:
717 		case BPF_ALU64 | BPF_SUB | BPF_K:
718 		case BPF_ALU64 | BPF_AND | BPF_K:
719 		case BPF_ALU64 | BPF_OR | BPF_K:
720 		case BPF_ALU64 | BPF_XOR | BPF_K:
721 			if (BPF_CLASS(insn->code) == BPF_ALU64)
722 				EMIT1(add_1mod(0x48, dst_reg));
723 			else if (is_ereg(dst_reg))
724 				EMIT1(add_1mod(0x40, dst_reg));
725 
726 			/*
727 			 * b3 holds 'normal' opcode, b2 short form only valid
728 			 * in case dst is eax/rax.
729 			 */
730 			switch (BPF_OP(insn->code)) {
731 			case BPF_ADD:
732 				b3 = 0xC0;
733 				b2 = 0x05;
734 				break;
735 			case BPF_SUB:
736 				b3 = 0xE8;
737 				b2 = 0x2D;
738 				break;
739 			case BPF_AND:
740 				b3 = 0xE0;
741 				b2 = 0x25;
742 				break;
743 			case BPF_OR:
744 				b3 = 0xC8;
745 				b2 = 0x0D;
746 				break;
747 			case BPF_XOR:
748 				b3 = 0xF0;
749 				b2 = 0x35;
750 				break;
751 			}
752 
753 			if (is_imm8(imm32))
754 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
755 			else if (is_axreg(dst_reg))
756 				EMIT1_off32(b2, imm32);
757 			else
758 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
759 			break;
760 
761 		case BPF_ALU64 | BPF_MOV | BPF_K:
762 		case BPF_ALU | BPF_MOV | BPF_K:
763 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
764 				       dst_reg, imm32);
765 			break;
766 
767 		case BPF_LD | BPF_IMM | BPF_DW:
768 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
769 			insn++;
770 			i++;
771 			break;
772 
773 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
774 		case BPF_ALU | BPF_MOD | BPF_X:
775 		case BPF_ALU | BPF_DIV | BPF_X:
776 		case BPF_ALU | BPF_MOD | BPF_K:
777 		case BPF_ALU | BPF_DIV | BPF_K:
778 		case BPF_ALU64 | BPF_MOD | BPF_X:
779 		case BPF_ALU64 | BPF_DIV | BPF_X:
780 		case BPF_ALU64 | BPF_MOD | BPF_K:
781 		case BPF_ALU64 | BPF_DIV | BPF_K:
782 			EMIT1(0x50); /* push rax */
783 			EMIT1(0x52); /* push rdx */
784 
785 			if (BPF_SRC(insn->code) == BPF_X)
786 				/* mov r11, src_reg */
787 				EMIT_mov(AUX_REG, src_reg);
788 			else
789 				/* mov r11, imm32 */
790 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
791 
792 			/* mov rax, dst_reg */
793 			EMIT_mov(BPF_REG_0, dst_reg);
794 
795 			/*
796 			 * xor edx, edx
797 			 * equivalent to 'xor rdx, rdx', but one byte less
798 			 */
799 			EMIT2(0x31, 0xd2);
800 
801 			if (BPF_CLASS(insn->code) == BPF_ALU64)
802 				/* div r11 */
803 				EMIT3(0x49, 0xF7, 0xF3);
804 			else
805 				/* div r11d */
806 				EMIT3(0x41, 0xF7, 0xF3);
807 
808 			if (BPF_OP(insn->code) == BPF_MOD)
809 				/* mov r11, rdx */
810 				EMIT3(0x49, 0x89, 0xD3);
811 			else
812 				/* mov r11, rax */
813 				EMIT3(0x49, 0x89, 0xC3);
814 
815 			EMIT1(0x5A); /* pop rdx */
816 			EMIT1(0x58); /* pop rax */
817 
818 			/* mov dst_reg, r11 */
819 			EMIT_mov(dst_reg, AUX_REG);
820 			break;
821 
822 		case BPF_ALU | BPF_MUL | BPF_K:
823 		case BPF_ALU | BPF_MUL | BPF_X:
824 		case BPF_ALU64 | BPF_MUL | BPF_K:
825 		case BPF_ALU64 | BPF_MUL | BPF_X:
826 		{
827 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
828 
829 			if (dst_reg != BPF_REG_0)
830 				EMIT1(0x50); /* push rax */
831 			if (dst_reg != BPF_REG_3)
832 				EMIT1(0x52); /* push rdx */
833 
834 			/* mov r11, dst_reg */
835 			EMIT_mov(AUX_REG, dst_reg);
836 
837 			if (BPF_SRC(insn->code) == BPF_X)
838 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
839 			else
840 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
841 
842 			if (is64)
843 				EMIT1(add_1mod(0x48, AUX_REG));
844 			else if (is_ereg(AUX_REG))
845 				EMIT1(add_1mod(0x40, AUX_REG));
846 			/* mul(q) r11 */
847 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
848 
849 			if (dst_reg != BPF_REG_3)
850 				EMIT1(0x5A); /* pop rdx */
851 			if (dst_reg != BPF_REG_0) {
852 				/* mov dst_reg, rax */
853 				EMIT_mov(dst_reg, BPF_REG_0);
854 				EMIT1(0x58); /* pop rax */
855 			}
856 			break;
857 		}
858 			/* Shifts */
859 		case BPF_ALU | BPF_LSH | BPF_K:
860 		case BPF_ALU | BPF_RSH | BPF_K:
861 		case BPF_ALU | BPF_ARSH | BPF_K:
862 		case BPF_ALU64 | BPF_LSH | BPF_K:
863 		case BPF_ALU64 | BPF_RSH | BPF_K:
864 		case BPF_ALU64 | BPF_ARSH | BPF_K:
865 			if (BPF_CLASS(insn->code) == BPF_ALU64)
866 				EMIT1(add_1mod(0x48, dst_reg));
867 			else if (is_ereg(dst_reg))
868 				EMIT1(add_1mod(0x40, dst_reg));
869 
870 			switch (BPF_OP(insn->code)) {
871 			case BPF_LSH: b3 = 0xE0; break;
872 			case BPF_RSH: b3 = 0xE8; break;
873 			case BPF_ARSH: b3 = 0xF8; break;
874 			}
875 
876 			if (imm32 == 1)
877 				EMIT2(0xD1, add_1reg(b3, dst_reg));
878 			else
879 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
880 			break;
881 
882 		case BPF_ALU | BPF_LSH | BPF_X:
883 		case BPF_ALU | BPF_RSH | BPF_X:
884 		case BPF_ALU | BPF_ARSH | BPF_X:
885 		case BPF_ALU64 | BPF_LSH | BPF_X:
886 		case BPF_ALU64 | BPF_RSH | BPF_X:
887 		case BPF_ALU64 | BPF_ARSH | BPF_X:
888 
889 			/* Check for bad case when dst_reg == rcx */
890 			if (dst_reg == BPF_REG_4) {
891 				/* mov r11, dst_reg */
892 				EMIT_mov(AUX_REG, dst_reg);
893 				dst_reg = AUX_REG;
894 			}
895 
896 			if (src_reg != BPF_REG_4) { /* common case */
897 				EMIT1(0x51); /* push rcx */
898 
899 				/* mov rcx, src_reg */
900 				EMIT_mov(BPF_REG_4, src_reg);
901 			}
902 
903 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
904 			if (BPF_CLASS(insn->code) == BPF_ALU64)
905 				EMIT1(add_1mod(0x48, dst_reg));
906 			else if (is_ereg(dst_reg))
907 				EMIT1(add_1mod(0x40, dst_reg));
908 
909 			switch (BPF_OP(insn->code)) {
910 			case BPF_LSH: b3 = 0xE0; break;
911 			case BPF_RSH: b3 = 0xE8; break;
912 			case BPF_ARSH: b3 = 0xF8; break;
913 			}
914 			EMIT2(0xD3, add_1reg(b3, dst_reg));
915 
916 			if (src_reg != BPF_REG_4)
917 				EMIT1(0x59); /* pop rcx */
918 
919 			if (insn->dst_reg == BPF_REG_4)
920 				/* mov dst_reg, r11 */
921 				EMIT_mov(insn->dst_reg, AUX_REG);
922 			break;
923 
924 		case BPF_ALU | BPF_END | BPF_FROM_BE:
925 			switch (imm32) {
926 			case 16:
927 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
928 				EMIT1(0x66);
929 				if (is_ereg(dst_reg))
930 					EMIT1(0x41);
931 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
932 
933 				/* Emit 'movzwl eax, ax' */
934 				if (is_ereg(dst_reg))
935 					EMIT3(0x45, 0x0F, 0xB7);
936 				else
937 					EMIT2(0x0F, 0xB7);
938 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
939 				break;
940 			case 32:
941 				/* Emit 'bswap eax' to swap lower 4 bytes */
942 				if (is_ereg(dst_reg))
943 					EMIT2(0x41, 0x0F);
944 				else
945 					EMIT1(0x0F);
946 				EMIT1(add_1reg(0xC8, dst_reg));
947 				break;
948 			case 64:
949 				/* Emit 'bswap rax' to swap 8 bytes */
950 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
951 				      add_1reg(0xC8, dst_reg));
952 				break;
953 			}
954 			break;
955 
956 		case BPF_ALU | BPF_END | BPF_FROM_LE:
957 			switch (imm32) {
958 			case 16:
959 				/*
960 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
961 				 * into 64 bit
962 				 */
963 				if (is_ereg(dst_reg))
964 					EMIT3(0x45, 0x0F, 0xB7);
965 				else
966 					EMIT2(0x0F, 0xB7);
967 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
968 				break;
969 			case 32:
970 				/* Emit 'mov eax, eax' to clear upper 32-bits */
971 				if (is_ereg(dst_reg))
972 					EMIT1(0x45);
973 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
974 				break;
975 			case 64:
976 				/* nop */
977 				break;
978 			}
979 			break;
980 
981 			/* ST: *(u8*)(dst_reg + off) = imm */
982 		case BPF_ST | BPF_MEM | BPF_B:
983 			if (is_ereg(dst_reg))
984 				EMIT2(0x41, 0xC6);
985 			else
986 				EMIT1(0xC6);
987 			goto st;
988 		case BPF_ST | BPF_MEM | BPF_H:
989 			if (is_ereg(dst_reg))
990 				EMIT3(0x66, 0x41, 0xC7);
991 			else
992 				EMIT2(0x66, 0xC7);
993 			goto st;
994 		case BPF_ST | BPF_MEM | BPF_W:
995 			if (is_ereg(dst_reg))
996 				EMIT2(0x41, 0xC7);
997 			else
998 				EMIT1(0xC7);
999 			goto st;
1000 		case BPF_ST | BPF_MEM | BPF_DW:
1001 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1002 
1003 st:			if (is_imm8(insn->off))
1004 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1005 			else
1006 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1007 
1008 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1009 			break;
1010 
1011 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1012 		case BPF_STX | BPF_MEM | BPF_B:
1013 		case BPF_STX | BPF_MEM | BPF_H:
1014 		case BPF_STX | BPF_MEM | BPF_W:
1015 		case BPF_STX | BPF_MEM | BPF_DW:
1016 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1017 			break;
1018 
1019 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1020 		case BPF_LDX | BPF_MEM | BPF_B:
1021 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1022 		case BPF_LDX | BPF_MEM | BPF_H:
1023 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1024 		case BPF_LDX | BPF_MEM | BPF_W:
1025 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1026 		case BPF_LDX | BPF_MEM | BPF_DW:
1027 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1028 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1029 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1030 				struct exception_table_entry *ex;
1031 				u8 *_insn = image + proglen;
1032 				s64 delta;
1033 
1034 				if (!bpf_prog->aux->extable)
1035 					break;
1036 
1037 				if (excnt >= bpf_prog->aux->num_exentries) {
1038 					pr_err("ex gen bug\n");
1039 					return -EFAULT;
1040 				}
1041 				ex = &bpf_prog->aux->extable[excnt++];
1042 
1043 				delta = _insn - (u8 *)&ex->insn;
1044 				if (!is_simm32(delta)) {
1045 					pr_err("extable->insn doesn't fit into 32-bit\n");
1046 					return -EFAULT;
1047 				}
1048 				ex->insn = delta;
1049 
1050 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1051 				if (!is_simm32(delta)) {
1052 					pr_err("extable->handler doesn't fit into 32-bit\n");
1053 					return -EFAULT;
1054 				}
1055 				ex->handler = delta;
1056 
1057 				if (dst_reg > BPF_REG_9) {
1058 					pr_err("verifier error\n");
1059 					return -EFAULT;
1060 				}
1061 				/*
1062 				 * Compute size of x86 insn and its target dest x86 register.
1063 				 * ex_handler_bpf() will use lower 8 bits to adjust
1064 				 * pt_regs->ip to jump over this x86 instruction
1065 				 * and upper bits to figure out which pt_regs to zero out.
1066 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1067 				 * of 4 bytes will be ignored and rbx will be zero inited.
1068 				 */
1069 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1070 			}
1071 			break;
1072 
1073 			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1074 		case BPF_STX | BPF_XADD | BPF_W:
1075 			/* Emit 'lock add dword ptr [rax + off], eax' */
1076 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1077 				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1078 			else
1079 				EMIT2(0xF0, 0x01);
1080 			goto xadd;
1081 		case BPF_STX | BPF_XADD | BPF_DW:
1082 			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1083 xadd:			if (is_imm8(insn->off))
1084 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1085 			else
1086 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1087 					    insn->off);
1088 			break;
1089 
1090 			/* call */
1091 		case BPF_JMP | BPF_CALL:
1092 			func = (u8 *) __bpf_call_base + imm32;
1093 			if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1094 				return -EINVAL;
1095 			break;
1096 
1097 		case BPF_JMP | BPF_TAIL_CALL:
1098 			if (imm32)
1099 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1100 							  &prog, addrs[i], image);
1101 			else
1102 				emit_bpf_tail_call_indirect(&prog);
1103 			break;
1104 
1105 			/* cond jump */
1106 		case BPF_JMP | BPF_JEQ | BPF_X:
1107 		case BPF_JMP | BPF_JNE | BPF_X:
1108 		case BPF_JMP | BPF_JGT | BPF_X:
1109 		case BPF_JMP | BPF_JLT | BPF_X:
1110 		case BPF_JMP | BPF_JGE | BPF_X:
1111 		case BPF_JMP | BPF_JLE | BPF_X:
1112 		case BPF_JMP | BPF_JSGT | BPF_X:
1113 		case BPF_JMP | BPF_JSLT | BPF_X:
1114 		case BPF_JMP | BPF_JSGE | BPF_X:
1115 		case BPF_JMP | BPF_JSLE | BPF_X:
1116 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1117 		case BPF_JMP32 | BPF_JNE | BPF_X:
1118 		case BPF_JMP32 | BPF_JGT | BPF_X:
1119 		case BPF_JMP32 | BPF_JLT | BPF_X:
1120 		case BPF_JMP32 | BPF_JGE | BPF_X:
1121 		case BPF_JMP32 | BPF_JLE | BPF_X:
1122 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1123 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1124 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1125 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1126 			/* cmp dst_reg, src_reg */
1127 			if (BPF_CLASS(insn->code) == BPF_JMP)
1128 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1129 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1130 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1131 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1132 			goto emit_cond_jmp;
1133 
1134 		case BPF_JMP | BPF_JSET | BPF_X:
1135 		case BPF_JMP32 | BPF_JSET | BPF_X:
1136 			/* test dst_reg, src_reg */
1137 			if (BPF_CLASS(insn->code) == BPF_JMP)
1138 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1139 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1140 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1141 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1142 			goto emit_cond_jmp;
1143 
1144 		case BPF_JMP | BPF_JSET | BPF_K:
1145 		case BPF_JMP32 | BPF_JSET | BPF_K:
1146 			/* test dst_reg, imm32 */
1147 			if (BPF_CLASS(insn->code) == BPF_JMP)
1148 				EMIT1(add_1mod(0x48, dst_reg));
1149 			else if (is_ereg(dst_reg))
1150 				EMIT1(add_1mod(0x40, dst_reg));
1151 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1152 			goto emit_cond_jmp;
1153 
1154 		case BPF_JMP | BPF_JEQ | BPF_K:
1155 		case BPF_JMP | BPF_JNE | BPF_K:
1156 		case BPF_JMP | BPF_JGT | BPF_K:
1157 		case BPF_JMP | BPF_JLT | BPF_K:
1158 		case BPF_JMP | BPF_JGE | BPF_K:
1159 		case BPF_JMP | BPF_JLE | BPF_K:
1160 		case BPF_JMP | BPF_JSGT | BPF_K:
1161 		case BPF_JMP | BPF_JSLT | BPF_K:
1162 		case BPF_JMP | BPF_JSGE | BPF_K:
1163 		case BPF_JMP | BPF_JSLE | BPF_K:
1164 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1165 		case BPF_JMP32 | BPF_JNE | BPF_K:
1166 		case BPF_JMP32 | BPF_JGT | BPF_K:
1167 		case BPF_JMP32 | BPF_JLT | BPF_K:
1168 		case BPF_JMP32 | BPF_JGE | BPF_K:
1169 		case BPF_JMP32 | BPF_JLE | BPF_K:
1170 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1171 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1172 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1173 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1174 			/* test dst_reg, dst_reg to save one extra byte */
1175 			if (imm32 == 0) {
1176 				if (BPF_CLASS(insn->code) == BPF_JMP)
1177 					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1178 				else if (is_ereg(dst_reg))
1179 					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1180 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1181 				goto emit_cond_jmp;
1182 			}
1183 
1184 			/* cmp dst_reg, imm8/32 */
1185 			if (BPF_CLASS(insn->code) == BPF_JMP)
1186 				EMIT1(add_1mod(0x48, dst_reg));
1187 			else if (is_ereg(dst_reg))
1188 				EMIT1(add_1mod(0x40, dst_reg));
1189 
1190 			if (is_imm8(imm32))
1191 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1192 			else
1193 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1194 
1195 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1196 			switch (BPF_OP(insn->code)) {
1197 			case BPF_JEQ:
1198 				jmp_cond = X86_JE;
1199 				break;
1200 			case BPF_JSET:
1201 			case BPF_JNE:
1202 				jmp_cond = X86_JNE;
1203 				break;
1204 			case BPF_JGT:
1205 				/* GT is unsigned '>', JA in x86 */
1206 				jmp_cond = X86_JA;
1207 				break;
1208 			case BPF_JLT:
1209 				/* LT is unsigned '<', JB in x86 */
1210 				jmp_cond = X86_JB;
1211 				break;
1212 			case BPF_JGE:
1213 				/* GE is unsigned '>=', JAE in x86 */
1214 				jmp_cond = X86_JAE;
1215 				break;
1216 			case BPF_JLE:
1217 				/* LE is unsigned '<=', JBE in x86 */
1218 				jmp_cond = X86_JBE;
1219 				break;
1220 			case BPF_JSGT:
1221 				/* Signed '>', GT in x86 */
1222 				jmp_cond = X86_JG;
1223 				break;
1224 			case BPF_JSLT:
1225 				/* Signed '<', LT in x86 */
1226 				jmp_cond = X86_JL;
1227 				break;
1228 			case BPF_JSGE:
1229 				/* Signed '>=', GE in x86 */
1230 				jmp_cond = X86_JGE;
1231 				break;
1232 			case BPF_JSLE:
1233 				/* Signed '<=', LE in x86 */
1234 				jmp_cond = X86_JLE;
1235 				break;
1236 			default: /* to silence GCC warning */
1237 				return -EFAULT;
1238 			}
1239 			jmp_offset = addrs[i + insn->off] - addrs[i];
1240 			if (is_imm8(jmp_offset)) {
1241 				EMIT2(jmp_cond, jmp_offset);
1242 			} else if (is_simm32(jmp_offset)) {
1243 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1244 			} else {
1245 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1246 				return -EFAULT;
1247 			}
1248 
1249 			break;
1250 
1251 		case BPF_JMP | BPF_JA:
1252 			if (insn->off == -1)
1253 				/* -1 jmp instructions will always jump
1254 				 * backwards two bytes. Explicitly handling
1255 				 * this case avoids wasting too many passes
1256 				 * when there are long sequences of replaced
1257 				 * dead code.
1258 				 */
1259 				jmp_offset = -2;
1260 			else
1261 				jmp_offset = addrs[i + insn->off] - addrs[i];
1262 
1263 			if (!jmp_offset)
1264 				/* Optimize out nop jumps */
1265 				break;
1266 emit_jmp:
1267 			if (is_imm8(jmp_offset)) {
1268 				EMIT2(0xEB, jmp_offset);
1269 			} else if (is_simm32(jmp_offset)) {
1270 				EMIT1_off32(0xE9, jmp_offset);
1271 			} else {
1272 				pr_err("jmp gen bug %llx\n", jmp_offset);
1273 				return -EFAULT;
1274 			}
1275 			break;
1276 
1277 		case BPF_JMP | BPF_EXIT:
1278 			if (seen_exit) {
1279 				jmp_offset = ctx->cleanup_addr - addrs[i];
1280 				goto emit_jmp;
1281 			}
1282 			seen_exit = true;
1283 			/* Update cleanup_addr */
1284 			ctx->cleanup_addr = proglen;
1285 			if (!bpf_prog_was_classic(bpf_prog))
1286 				EMIT1(0x5B); /* get rid of tail_call_cnt */
1287 			EMIT2(0x41, 0x5F);   /* pop r15 */
1288 			EMIT2(0x41, 0x5E);   /* pop r14 */
1289 			EMIT2(0x41, 0x5D);   /* pop r13 */
1290 			EMIT1(0x5B);         /* pop rbx */
1291 			EMIT1(0xC9);         /* leave */
1292 			EMIT1(0xC3);         /* ret */
1293 			break;
1294 
1295 		default:
1296 			/*
1297 			 * By design x86-64 JIT should support all BPF instructions.
1298 			 * This error will be seen if new instruction was added
1299 			 * to the interpreter, but not to the JIT, or if there is
1300 			 * junk in bpf_prog.
1301 			 */
1302 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1303 			return -EINVAL;
1304 		}
1305 
1306 		ilen = prog - temp;
1307 		if (ilen > BPF_MAX_INSN_SIZE) {
1308 			pr_err("bpf_jit: fatal insn size error\n");
1309 			return -EFAULT;
1310 		}
1311 
1312 		if (image) {
1313 			if (unlikely(proglen + ilen > oldproglen)) {
1314 				pr_err("bpf_jit: fatal error\n");
1315 				return -EFAULT;
1316 			}
1317 			memcpy(image + proglen, temp, ilen);
1318 		}
1319 		proglen += ilen;
1320 		addrs[i] = proglen;
1321 		prog = temp;
1322 	}
1323 
1324 	if (image && excnt != bpf_prog->aux->num_exentries) {
1325 		pr_err("extable is not populated\n");
1326 		return -EFAULT;
1327 	}
1328 	return proglen;
1329 }
1330 
1331 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1332 		      int stack_size)
1333 {
1334 	int i;
1335 	/* Store function arguments to stack.
1336 	 * For a function that accepts two pointers the sequence will be:
1337 	 * mov QWORD PTR [rbp-0x10],rdi
1338 	 * mov QWORD PTR [rbp-0x8],rsi
1339 	 */
1340 	for (i = 0; i < min(nr_args, 6); i++)
1341 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1342 			 BPF_REG_FP,
1343 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1344 			 -(stack_size - i * 8));
1345 }
1346 
1347 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1348 			 int stack_size)
1349 {
1350 	int i;
1351 
1352 	/* Restore function arguments from stack.
1353 	 * For a function that accepts two pointers the sequence will be:
1354 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1355 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1356 	 */
1357 	for (i = 0; i < min(nr_args, 6); i++)
1358 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1359 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1360 			 BPF_REG_FP,
1361 			 -(stack_size - i * 8));
1362 }
1363 
1364 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1365 		      struct bpf_prog **progs, int prog_cnt, int stack_size)
1366 {
1367 	u8 *prog = *pprog;
1368 	int cnt = 0, i;
1369 
1370 	for (i = 0; i < prog_cnt; i++) {
1371 		if (emit_call(&prog, __bpf_prog_enter, prog))
1372 			return -EINVAL;
1373 		/* remember prog start time returned by __bpf_prog_enter */
1374 		emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1375 
1376 		/* arg1: lea rdi, [rbp - stack_size] */
1377 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1378 		/* arg2: progs[i]->insnsi for interpreter */
1379 		if (!progs[i]->jited)
1380 			emit_mov_imm64(&prog, BPF_REG_2,
1381 				       (long) progs[i]->insnsi >> 32,
1382 				       (u32) (long) progs[i]->insnsi);
1383 		/* call JITed bpf program or interpreter */
1384 		if (emit_call(&prog, progs[i]->bpf_func, prog))
1385 			return -EINVAL;
1386 
1387 		/* arg1: mov rdi, progs[i] */
1388 		emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
1389 			       (u32) (long) progs[i]);
1390 		/* arg2: mov rsi, rbx <- start time in nsec */
1391 		emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1392 		if (emit_call(&prog, __bpf_prog_exit, prog))
1393 			return -EINVAL;
1394 	}
1395 	*pprog = prog;
1396 	return 0;
1397 }
1398 
1399 /* Example:
1400  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1401  * its 'struct btf_func_model' will be nr_args=2
1402  * The assembly code when eth_type_trans is executing after trampoline:
1403  *
1404  * push rbp
1405  * mov rbp, rsp
1406  * sub rsp, 16                     // space for skb and dev
1407  * push rbx                        // temp regs to pass start time
1408  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1409  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1410  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1411  * mov rbx, rax                    // remember start time in bpf stats are enabled
1412  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1413  * call addr_of_jited_FENTRY_prog
1414  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1415  * mov rsi, rbx                    // prog start time
1416  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1417  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1418  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1419  * pop rbx
1420  * leave
1421  * ret
1422  *
1423  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1424  * replaced with 'call generated_bpf_trampoline'. When it returns
1425  * eth_type_trans will continue executing with original skb and dev pointers.
1426  *
1427  * The assembly code when eth_type_trans is called from trampoline:
1428  *
1429  * push rbp
1430  * mov rbp, rsp
1431  * sub rsp, 24                     // space for skb, dev, return value
1432  * push rbx                        // temp regs to pass start time
1433  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1434  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1435  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1436  * mov rbx, rax                    // remember start time if bpf stats are enabled
1437  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1438  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1439  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1440  * mov rsi, rbx                    // prog start time
1441  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1442  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1443  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1444  * call eth_type_trans+5           // execute body of eth_type_trans
1445  * mov qword ptr [rbp - 8], rax    // save return value
1446  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1447  * mov rbx, rax                    // remember start time in bpf stats are enabled
1448  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1449  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1450  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1451  * mov rsi, rbx                    // prog start time
1452  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1453  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1454  * pop rbx
1455  * leave
1456  * add rsp, 8                      // skip eth_type_trans's frame
1457  * ret                             // return to its caller
1458  */
1459 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1460 				const struct btf_func_model *m, u32 flags,
1461 				struct bpf_prog **fentry_progs, int fentry_cnt,
1462 				struct bpf_prog **fexit_progs, int fexit_cnt,
1463 				void *orig_call)
1464 {
1465 	int cnt = 0, nr_args = m->nr_args;
1466 	int stack_size = nr_args * 8;
1467 	u8 *prog;
1468 
1469 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1470 	if (nr_args > 6)
1471 		return -ENOTSUPP;
1472 
1473 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1474 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1475 		return -EINVAL;
1476 
1477 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1478 		stack_size += 8; /* room for return value of orig_call */
1479 
1480 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1481 		/* skip patched call instruction and point orig_call to actual
1482 		 * body of the kernel function.
1483 		 */
1484 		orig_call += X86_PATCH_SIZE;
1485 
1486 	prog = image;
1487 
1488 	EMIT1(0x55);		 /* push rbp */
1489 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1490 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1491 	EMIT1(0x53);		 /* push rbx */
1492 
1493 	save_regs(m, &prog, nr_args, stack_size);
1494 
1495 	if (fentry_cnt)
1496 		if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
1497 			return -EINVAL;
1498 
1499 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1500 		if (fentry_cnt)
1501 			restore_regs(m, &prog, nr_args, stack_size);
1502 
1503 		/* call original function */
1504 		if (emit_call(&prog, orig_call, prog))
1505 			return -EINVAL;
1506 		/* remember return value in a stack for bpf prog to access */
1507 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1508 	}
1509 
1510 	if (fexit_cnt)
1511 		if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
1512 			return -EINVAL;
1513 
1514 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1515 		restore_regs(m, &prog, nr_args, stack_size);
1516 
1517 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1518 		/* restore original return value back into RAX */
1519 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1520 
1521 	EMIT1(0x5B); /* pop rbx */
1522 	EMIT1(0xC9); /* leave */
1523 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1524 		/* skip our return address and return to parent */
1525 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1526 	EMIT1(0xC3); /* ret */
1527 	/* Make sure the trampoline generation logic doesn't overflow */
1528 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY))
1529 		return -EFAULT;
1530 	return prog - (u8 *)image;
1531 }
1532 
1533 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1534 {
1535 	u8 *prog = *pprog;
1536 	int cnt = 0;
1537 	s64 offset;
1538 
1539 	offset = func - (ip + 2 + 4);
1540 	if (!is_simm32(offset)) {
1541 		pr_err("Target %p is out of range\n", func);
1542 		return -EINVAL;
1543 	}
1544 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1545 	*pprog = prog;
1546 	return 0;
1547 }
1548 
1549 static void emit_nops(u8 **pprog, unsigned int len)
1550 {
1551 	unsigned int i, noplen;
1552 	u8 *prog = *pprog;
1553 	int cnt = 0;
1554 
1555 	while (len > 0) {
1556 		noplen = len;
1557 
1558 		if (noplen > ASM_NOP_MAX)
1559 			noplen = ASM_NOP_MAX;
1560 
1561 		for (i = 0; i < noplen; i++)
1562 			EMIT1(ideal_nops[noplen][i]);
1563 		len -= noplen;
1564 	}
1565 
1566 	*pprog = prog;
1567 }
1568 
1569 static int emit_fallback_jump(u8 **pprog)
1570 {
1571 	u8 *prog = *pprog;
1572 	int err = 0;
1573 
1574 #ifdef CONFIG_RETPOLINE
1575 	/* Note that this assumes the the compiler uses external
1576 	 * thunks for indirect calls. Both clang and GCC use the same
1577 	 * naming convention for external thunks.
1578 	 */
1579 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1580 #else
1581 	int cnt = 0;
1582 
1583 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
1584 #endif
1585 	*pprog = prog;
1586 	return err;
1587 }
1588 
1589 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1590 {
1591 	u8 *jg_reloc, *jg_target, *prog = *pprog;
1592 	int pivot, err, jg_bytes = 1, cnt = 0;
1593 	s64 jg_offset;
1594 
1595 	if (a == b) {
1596 		/* Leaf node of recursion, i.e. not a range of indices
1597 		 * anymore.
1598 		 */
1599 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
1600 		if (!is_simm32(progs[a]))
1601 			return -1;
1602 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1603 			    progs[a]);
1604 		err = emit_cond_near_jump(&prog,	/* je func */
1605 					  (void *)progs[a], prog,
1606 					  X86_JE);
1607 		if (err)
1608 			return err;
1609 
1610 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
1611 		if (err)
1612 			return err;
1613 
1614 		*pprog = prog;
1615 		return 0;
1616 	}
1617 
1618 	/* Not a leaf node, so we pivot, and recursively descend into
1619 	 * the lower and upper ranges.
1620 	 */
1621 	pivot = (b - a) / 2;
1622 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
1623 	if (!is_simm32(progs[a + pivot]))
1624 		return -1;
1625 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1626 
1627 	if (pivot > 2) {				/* jg upper_part */
1628 		/* Require near jump. */
1629 		jg_bytes = 4;
1630 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1631 	} else {
1632 		EMIT2(X86_JG, 0);
1633 	}
1634 	jg_reloc = prog;
1635 
1636 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
1637 				  progs);
1638 	if (err)
1639 		return err;
1640 
1641 	/* From Intel 64 and IA-32 Architectures Optimization
1642 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1643 	 * Coding Rule 11: All branch targets should be 16-byte
1644 	 * aligned.
1645 	 */
1646 	jg_target = PTR_ALIGN(prog, 16);
1647 	if (jg_target != prog)
1648 		emit_nops(&prog, jg_target - prog);
1649 	jg_offset = prog - jg_reloc;
1650 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1651 
1652 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
1653 				  b, progs);
1654 	if (err)
1655 		return err;
1656 
1657 	*pprog = prog;
1658 	return 0;
1659 }
1660 
1661 static int cmp_ips(const void *a, const void *b)
1662 {
1663 	const s64 *ipa = a;
1664 	const s64 *ipb = b;
1665 
1666 	if (*ipa > *ipb)
1667 		return 1;
1668 	if (*ipa < *ipb)
1669 		return -1;
1670 	return 0;
1671 }
1672 
1673 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1674 {
1675 	u8 *prog = image;
1676 
1677 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1678 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1679 }
1680 
1681 struct x64_jit_data {
1682 	struct bpf_binary_header *header;
1683 	int *addrs;
1684 	u8 *image;
1685 	int proglen;
1686 	struct jit_context ctx;
1687 };
1688 
1689 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1690 {
1691 	struct bpf_binary_header *header = NULL;
1692 	struct bpf_prog *tmp, *orig_prog = prog;
1693 	struct x64_jit_data *jit_data;
1694 	int proglen, oldproglen = 0;
1695 	struct jit_context ctx = {};
1696 	bool tmp_blinded = false;
1697 	bool extra_pass = false;
1698 	u8 *image = NULL;
1699 	int *addrs;
1700 	int pass;
1701 	int i;
1702 
1703 	if (!prog->jit_requested)
1704 		return orig_prog;
1705 
1706 	tmp = bpf_jit_blind_constants(prog);
1707 	/*
1708 	 * If blinding was requested and we failed during blinding,
1709 	 * we must fall back to the interpreter.
1710 	 */
1711 	if (IS_ERR(tmp))
1712 		return orig_prog;
1713 	if (tmp != prog) {
1714 		tmp_blinded = true;
1715 		prog = tmp;
1716 	}
1717 
1718 	jit_data = prog->aux->jit_data;
1719 	if (!jit_data) {
1720 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1721 		if (!jit_data) {
1722 			prog = orig_prog;
1723 			goto out;
1724 		}
1725 		prog->aux->jit_data = jit_data;
1726 	}
1727 	addrs = jit_data->addrs;
1728 	if (addrs) {
1729 		ctx = jit_data->ctx;
1730 		oldproglen = jit_data->proglen;
1731 		image = jit_data->image;
1732 		header = jit_data->header;
1733 		extra_pass = true;
1734 		goto skip_init_addrs;
1735 	}
1736 	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1737 	if (!addrs) {
1738 		prog = orig_prog;
1739 		goto out_addrs;
1740 	}
1741 
1742 	/*
1743 	 * Before first pass, make a rough estimation of addrs[]
1744 	 * each BPF instruction is translated to less than 64 bytes
1745 	 */
1746 	for (proglen = 0, i = 0; i <= prog->len; i++) {
1747 		proglen += 64;
1748 		addrs[i] = proglen;
1749 	}
1750 	ctx.cleanup_addr = proglen;
1751 skip_init_addrs:
1752 
1753 	/*
1754 	 * JITed image shrinks with every pass and the loop iterates
1755 	 * until the image stops shrinking. Very large BPF programs
1756 	 * may converge on the last pass. In such case do one more
1757 	 * pass to emit the final image.
1758 	 */
1759 	for (pass = 0; pass < 20 || image; pass++) {
1760 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1761 		if (proglen <= 0) {
1762 out_image:
1763 			image = NULL;
1764 			if (header)
1765 				bpf_jit_binary_free(header);
1766 			prog = orig_prog;
1767 			goto out_addrs;
1768 		}
1769 		if (image) {
1770 			if (proglen != oldproglen) {
1771 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1772 				       proglen, oldproglen);
1773 				goto out_image;
1774 			}
1775 			break;
1776 		}
1777 		if (proglen == oldproglen) {
1778 			/*
1779 			 * The number of entries in extable is the number of BPF_LDX
1780 			 * insns that access kernel memory via "pointer to BTF type".
1781 			 * The verifier changed their opcode from LDX|MEM|size
1782 			 * to LDX|PROBE_MEM|size to make JITing easier.
1783 			 */
1784 			u32 align = __alignof__(struct exception_table_entry);
1785 			u32 extable_size = prog->aux->num_exentries *
1786 				sizeof(struct exception_table_entry);
1787 
1788 			/* allocate module memory for x86 insns and extable */
1789 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
1790 						      &image, align, jit_fill_hole);
1791 			if (!header) {
1792 				prog = orig_prog;
1793 				goto out_addrs;
1794 			}
1795 			prog->aux->extable = (void *) image + roundup(proglen, align);
1796 		}
1797 		oldproglen = proglen;
1798 		cond_resched();
1799 	}
1800 
1801 	if (bpf_jit_enable > 1)
1802 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1803 
1804 	if (image) {
1805 		if (!prog->is_func || extra_pass) {
1806 			bpf_tail_call_direct_fixup(prog);
1807 			bpf_jit_binary_lock_ro(header);
1808 		} else {
1809 			jit_data->addrs = addrs;
1810 			jit_data->ctx = ctx;
1811 			jit_data->proglen = proglen;
1812 			jit_data->image = image;
1813 			jit_data->header = header;
1814 		}
1815 		prog->bpf_func = (void *)image;
1816 		prog->jited = 1;
1817 		prog->jited_len = proglen;
1818 	} else {
1819 		prog = orig_prog;
1820 	}
1821 
1822 	if (!image || !prog->is_func || extra_pass) {
1823 		if (image)
1824 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1825 out_addrs:
1826 		kfree(addrs);
1827 		kfree(jit_data);
1828 		prog->aux->jit_data = NULL;
1829 	}
1830 out:
1831 	if (tmp_blinded)
1832 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1833 					   tmp : orig_prog);
1834 	return prog;
1835 }
1836