xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <asm/extable.h>
14 #include <asm/set_memory.h>
15 #include <asm/nospec-branch.h>
16 #include <asm/text-patching.h>
17 
18 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
19 {
20 	if (len == 1)
21 		*ptr = bytes;
22 	else if (len == 2)
23 		*(u16 *)ptr = bytes;
24 	else {
25 		*(u32 *)ptr = bytes;
26 		barrier();
27 	}
28 	return ptr + len;
29 }
30 
31 #define EMIT(bytes, len) \
32 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
33 
34 #define EMIT1(b1)		EMIT(b1, 1)
35 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
36 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
37 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
38 
39 #define EMIT1_off32(b1, off) \
40 	do { EMIT1(b1); EMIT(off, 4); } while (0)
41 #define EMIT2_off32(b1, b2, off) \
42 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
43 #define EMIT3_off32(b1, b2, b3, off) \
44 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
45 #define EMIT4_off32(b1, b2, b3, b4, off) \
46 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
47 
48 static bool is_imm8(int value)
49 {
50 	return value <= 127 && value >= -128;
51 }
52 
53 static bool is_simm32(s64 value)
54 {
55 	return value == (s64)(s32)value;
56 }
57 
58 static bool is_uimm32(u64 value)
59 {
60 	return value == (u64)(u32)value;
61 }
62 
63 /* mov dst, src */
64 #define EMIT_mov(DST, SRC)								 \
65 	do {										 \
66 		if (DST != SRC)								 \
67 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
68 	} while (0)
69 
70 static int bpf_size_to_x86_bytes(int bpf_size)
71 {
72 	if (bpf_size == BPF_W)
73 		return 4;
74 	else if (bpf_size == BPF_H)
75 		return 2;
76 	else if (bpf_size == BPF_B)
77 		return 1;
78 	else if (bpf_size == BPF_DW)
79 		return 4; /* imm32 */
80 	else
81 		return 0;
82 }
83 
84 /*
85  * List of x86 cond jumps opcodes (. + s8)
86  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
87  */
88 #define X86_JB  0x72
89 #define X86_JAE 0x73
90 #define X86_JE  0x74
91 #define X86_JNE 0x75
92 #define X86_JBE 0x76
93 #define X86_JA  0x77
94 #define X86_JL  0x7C
95 #define X86_JGE 0x7D
96 #define X86_JLE 0x7E
97 #define X86_JG  0x7F
98 
99 /* Pick a register outside of BPF range for JIT internal work */
100 #define AUX_REG (MAX_BPF_JIT_REG + 1)
101 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
102 
103 /*
104  * The following table maps BPF registers to x86-64 registers.
105  *
106  * x86-64 register R12 is unused, since if used as base address
107  * register in load/store instructions, it always needs an
108  * extra byte of encoding and is callee saved.
109  *
110  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
111  * trampoline. x86-64 register R10 is used for blinding (if enabled).
112  */
113 static const int reg2hex[] = {
114 	[BPF_REG_0] = 0,  /* RAX */
115 	[BPF_REG_1] = 7,  /* RDI */
116 	[BPF_REG_2] = 6,  /* RSI */
117 	[BPF_REG_3] = 2,  /* RDX */
118 	[BPF_REG_4] = 1,  /* RCX */
119 	[BPF_REG_5] = 0,  /* R8  */
120 	[BPF_REG_6] = 3,  /* RBX callee saved */
121 	[BPF_REG_7] = 5,  /* R13 callee saved */
122 	[BPF_REG_8] = 6,  /* R14 callee saved */
123 	[BPF_REG_9] = 7,  /* R15 callee saved */
124 	[BPF_REG_FP] = 5, /* RBP readonly */
125 	[BPF_REG_AX] = 2, /* R10 temp register */
126 	[AUX_REG] = 3,    /* R11 temp register */
127 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
128 };
129 
130 static const int reg2pt_regs[] = {
131 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
132 	[BPF_REG_1] = offsetof(struct pt_regs, di),
133 	[BPF_REG_2] = offsetof(struct pt_regs, si),
134 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
135 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
136 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
137 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
138 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
139 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
140 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
141 };
142 
143 /*
144  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
145  * which need extra byte of encoding.
146  * rax,rcx,...,rbp have simpler encoding
147  */
148 static bool is_ereg(u32 reg)
149 {
150 	return (1 << reg) & (BIT(BPF_REG_5) |
151 			     BIT(AUX_REG) |
152 			     BIT(BPF_REG_7) |
153 			     BIT(BPF_REG_8) |
154 			     BIT(BPF_REG_9) |
155 			     BIT(X86_REG_R9) |
156 			     BIT(BPF_REG_AX));
157 }
158 
159 static bool is_axreg(u32 reg)
160 {
161 	return reg == BPF_REG_0;
162 }
163 
164 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
165 static u8 add_1mod(u8 byte, u32 reg)
166 {
167 	if (is_ereg(reg))
168 		byte |= 1;
169 	return byte;
170 }
171 
172 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
173 {
174 	if (is_ereg(r1))
175 		byte |= 1;
176 	if (is_ereg(r2))
177 		byte |= 4;
178 	return byte;
179 }
180 
181 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
182 static u8 add_1reg(u8 byte, u32 dst_reg)
183 {
184 	return byte + reg2hex[dst_reg];
185 }
186 
187 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
188 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
189 {
190 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
191 }
192 
193 static void jit_fill_hole(void *area, unsigned int size)
194 {
195 	/* Fill whole space with INT3 instructions */
196 	memset(area, 0xcc, size);
197 }
198 
199 struct jit_context {
200 	int cleanup_addr; /* Epilogue code offset */
201 };
202 
203 /* Maximum number of bytes emitted while JITing one eBPF insn */
204 #define BPF_MAX_INSN_SIZE	128
205 #define BPF_INSN_SAFETY		64
206 
207 /* Number of bytes emit_patch() needs to generate instructions */
208 #define X86_PATCH_SIZE		5
209 
210 #define PROLOGUE_SIZE		25
211 
212 /*
213  * Emit x86-64 prologue code for BPF program and check its size.
214  * bpf_tail_call helper will skip it while jumping into another program
215  */
216 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
217 {
218 	u8 *prog = *pprog;
219 	int cnt = X86_PATCH_SIZE;
220 
221 	/* BPF trampoline can be made to work without these nops,
222 	 * but let's waste 5 bytes for now and optimize later
223 	 */
224 	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
225 	prog += cnt;
226 	EMIT1(0x55);             /* push rbp */
227 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
228 	/* sub rsp, rounded_stack_depth */
229 	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
230 	EMIT1(0x53);             /* push rbx */
231 	EMIT2(0x41, 0x55);       /* push r13 */
232 	EMIT2(0x41, 0x56);       /* push r14 */
233 	EMIT2(0x41, 0x57);       /* push r15 */
234 	if (!ebpf_from_cbpf) {
235 		/* zero init tail_call_cnt */
236 		EMIT2(0x6a, 0x00);
237 		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
238 	}
239 	*pprog = prog;
240 }
241 
242 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
243 {
244 	u8 *prog = *pprog;
245 	int cnt = 0;
246 	s64 offset;
247 
248 	offset = func - (ip + X86_PATCH_SIZE);
249 	if (!is_simm32(offset)) {
250 		pr_err("Target call %p is out of range\n", func);
251 		return -ERANGE;
252 	}
253 	EMIT1_off32(opcode, offset);
254 	*pprog = prog;
255 	return 0;
256 }
257 
258 static int emit_call(u8 **pprog, void *func, void *ip)
259 {
260 	return emit_patch(pprog, func, ip, 0xE8);
261 }
262 
263 static int emit_jump(u8 **pprog, void *func, void *ip)
264 {
265 	return emit_patch(pprog, func, ip, 0xE9);
266 }
267 
268 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
269 				void *old_addr, void *new_addr,
270 				const bool text_live)
271 {
272 	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
273 	u8 old_insn[X86_PATCH_SIZE];
274 	u8 new_insn[X86_PATCH_SIZE];
275 	u8 *prog;
276 	int ret;
277 
278 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
279 	if (old_addr) {
280 		prog = old_insn;
281 		ret = t == BPF_MOD_CALL ?
282 		      emit_call(&prog, old_addr, ip) :
283 		      emit_jump(&prog, old_addr, ip);
284 		if (ret)
285 			return ret;
286 	}
287 
288 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
289 	if (new_addr) {
290 		prog = new_insn;
291 		ret = t == BPF_MOD_CALL ?
292 		      emit_call(&prog, new_addr, ip) :
293 		      emit_jump(&prog, new_addr, ip);
294 		if (ret)
295 			return ret;
296 	}
297 
298 	ret = -EBUSY;
299 	mutex_lock(&text_mutex);
300 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
301 		goto out;
302 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
303 		if (text_live)
304 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
305 		else
306 			memcpy(ip, new_insn, X86_PATCH_SIZE);
307 	}
308 	ret = 0;
309 out:
310 	mutex_unlock(&text_mutex);
311 	return ret;
312 }
313 
314 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
315 		       void *old_addr, void *new_addr)
316 {
317 	if (!is_kernel_text((long)ip) &&
318 	    !is_bpf_text_address((long)ip))
319 		/* BPF poking in modules is not supported */
320 		return -EINVAL;
321 
322 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
323 }
324 
325 /*
326  * Generate the following code:
327  *
328  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
329  *   if (index >= array->map.max_entries)
330  *     goto out;
331  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
332  *     goto out;
333  *   prog = array->ptrs[index];
334  *   if (prog == NULL)
335  *     goto out;
336  *   goto *(prog->bpf_func + prologue_size);
337  * out:
338  */
339 static void emit_bpf_tail_call_indirect(u8 **pprog)
340 {
341 	u8 *prog = *pprog;
342 	int label1, label2, label3;
343 	int cnt = 0;
344 
345 	/*
346 	 * rdi - pointer to ctx
347 	 * rsi - pointer to bpf_array
348 	 * rdx - index in bpf_array
349 	 */
350 
351 	/*
352 	 * if (index >= array->map.max_entries)
353 	 *	goto out;
354 	 */
355 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
356 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
357 	      offsetof(struct bpf_array, map.max_entries));
358 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
359 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
360 	label1 = cnt;
361 
362 	/*
363 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
364 	 *	goto out;
365 	 */
366 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
367 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
368 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
369 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
370 	label2 = cnt;
371 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
372 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
373 
374 	/* prog = array->ptrs[index]; */
375 	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
376 		    offsetof(struct bpf_array, ptrs));
377 
378 	/*
379 	 * if (prog == NULL)
380 	 *	goto out;
381 	 */
382 	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
383 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
384 	EMIT2(X86_JE, OFFSET3);                   /* je out */
385 	label3 = cnt;
386 
387 	/* goto *(prog->bpf_func + prologue_size); */
388 	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
389 	      offsetof(struct bpf_prog, bpf_func));
390 	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
391 
392 	/*
393 	 * Wow we're ready to jump into next BPF program
394 	 * rdi == ctx (1st arg)
395 	 * rax == prog->bpf_func + prologue_size
396 	 */
397 	RETPOLINE_RAX_BPF_JIT();
398 
399 	/* out: */
400 	BUILD_BUG_ON(cnt - label1 != OFFSET1);
401 	BUILD_BUG_ON(cnt - label2 != OFFSET2);
402 	BUILD_BUG_ON(cnt - label3 != OFFSET3);
403 	*pprog = prog;
404 }
405 
406 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
407 				      u8 **pprog, int addr, u8 *image)
408 {
409 	u8 *prog = *pprog;
410 	int cnt = 0;
411 
412 	/*
413 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
414 	 *	goto out;
415 	 */
416 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
417 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
418 	EMIT2(X86_JA, 14);                            /* ja out */
419 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
420 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
421 
422 	poke->ip = image + (addr - X86_PATCH_SIZE);
423 	poke->adj_off = PROLOGUE_SIZE;
424 
425 	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
426 	prog += X86_PATCH_SIZE;
427 	/* out: */
428 
429 	*pprog = prog;
430 }
431 
432 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
433 {
434 	struct bpf_jit_poke_descriptor *poke;
435 	struct bpf_array *array;
436 	struct bpf_prog *target;
437 	int i, ret;
438 
439 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
440 		poke = &prog->aux->poke_tab[i];
441 		WARN_ON_ONCE(READ_ONCE(poke->ip_stable));
442 
443 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
444 			continue;
445 
446 		array = container_of(poke->tail_call.map, struct bpf_array, map);
447 		mutex_lock(&array->aux->poke_mutex);
448 		target = array->ptrs[poke->tail_call.key];
449 		if (target) {
450 			/* Plain memcpy is used when image is not live yet
451 			 * and still not locked as read-only. Once poke
452 			 * location is active (poke->ip_stable), any parallel
453 			 * bpf_arch_text_poke() might occur still on the
454 			 * read-write image until we finally locked it as
455 			 * read-only. Both modifications on the given image
456 			 * are under text_mutex to avoid interference.
457 			 */
458 			ret = __bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, NULL,
459 						   (u8 *)target->bpf_func +
460 						   poke->adj_off, false);
461 			BUG_ON(ret < 0);
462 		}
463 		WRITE_ONCE(poke->ip_stable, true);
464 		mutex_unlock(&array->aux->poke_mutex);
465 	}
466 }
467 
468 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
469 			   u32 dst_reg, const u32 imm32)
470 {
471 	u8 *prog = *pprog;
472 	u8 b1, b2, b3;
473 	int cnt = 0;
474 
475 	/*
476 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
477 	 * (which zero-extends imm32) to save 2 bytes.
478 	 */
479 	if (sign_propagate && (s32)imm32 < 0) {
480 		/* 'mov %rax, imm32' sign extends imm32 */
481 		b1 = add_1mod(0x48, dst_reg);
482 		b2 = 0xC7;
483 		b3 = 0xC0;
484 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
485 		goto done;
486 	}
487 
488 	/*
489 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
490 	 * to save 3 bytes.
491 	 */
492 	if (imm32 == 0) {
493 		if (is_ereg(dst_reg))
494 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
495 		b2 = 0x31; /* xor */
496 		b3 = 0xC0;
497 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
498 		goto done;
499 	}
500 
501 	/* mov %eax, imm32 */
502 	if (is_ereg(dst_reg))
503 		EMIT1(add_1mod(0x40, dst_reg));
504 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
505 done:
506 	*pprog = prog;
507 }
508 
509 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
510 			   const u32 imm32_hi, const u32 imm32_lo)
511 {
512 	u8 *prog = *pprog;
513 	int cnt = 0;
514 
515 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
516 		/*
517 		 * For emitting plain u32, where sign bit must not be
518 		 * propagated LLVM tends to load imm64 over mov32
519 		 * directly, so save couple of bytes by just doing
520 		 * 'mov %eax, imm32' instead.
521 		 */
522 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
523 	} else {
524 		/* movabsq %rax, imm64 */
525 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
526 		EMIT(imm32_lo, 4);
527 		EMIT(imm32_hi, 4);
528 	}
529 
530 	*pprog = prog;
531 }
532 
533 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
534 {
535 	u8 *prog = *pprog;
536 	int cnt = 0;
537 
538 	if (is64) {
539 		/* mov dst, src */
540 		EMIT_mov(dst_reg, src_reg);
541 	} else {
542 		/* mov32 dst, src */
543 		if (is_ereg(dst_reg) || is_ereg(src_reg))
544 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
545 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
546 	}
547 
548 	*pprog = prog;
549 }
550 
551 /* LDX: dst_reg = *(u8*)(src_reg + off) */
552 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
553 {
554 	u8 *prog = *pprog;
555 	int cnt = 0;
556 
557 	switch (size) {
558 	case BPF_B:
559 		/* Emit 'movzx rax, byte ptr [rax + off]' */
560 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
561 		break;
562 	case BPF_H:
563 		/* Emit 'movzx rax, word ptr [rax + off]' */
564 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
565 		break;
566 	case BPF_W:
567 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
568 		if (is_ereg(dst_reg) || is_ereg(src_reg))
569 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
570 		else
571 			EMIT1(0x8B);
572 		break;
573 	case BPF_DW:
574 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
575 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
576 		break;
577 	}
578 	/*
579 	 * If insn->off == 0 we can save one extra byte, but
580 	 * special case of x86 R13 which always needs an offset
581 	 * is not worth the hassle
582 	 */
583 	if (is_imm8(off))
584 		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
585 	else
586 		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
587 	*pprog = prog;
588 }
589 
590 /* STX: *(u8*)(dst_reg + off) = src_reg */
591 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
592 {
593 	u8 *prog = *pprog;
594 	int cnt = 0;
595 
596 	switch (size) {
597 	case BPF_B:
598 		/* Emit 'mov byte ptr [rax + off], al' */
599 		if (is_ereg(dst_reg) || is_ereg(src_reg) ||
600 		    /* We have to add extra byte for x86 SIL, DIL regs */
601 		    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
602 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
603 		else
604 			EMIT1(0x88);
605 		break;
606 	case BPF_H:
607 		if (is_ereg(dst_reg) || is_ereg(src_reg))
608 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
609 		else
610 			EMIT2(0x66, 0x89);
611 		break;
612 	case BPF_W:
613 		if (is_ereg(dst_reg) || is_ereg(src_reg))
614 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
615 		else
616 			EMIT1(0x89);
617 		break;
618 	case BPF_DW:
619 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
620 		break;
621 	}
622 	if (is_imm8(off))
623 		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
624 	else
625 		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
626 	*pprog = prog;
627 }
628 
629 static bool ex_handler_bpf(const struct exception_table_entry *x,
630 			   struct pt_regs *regs, int trapnr,
631 			   unsigned long error_code, unsigned long fault_addr)
632 {
633 	u32 reg = x->fixup >> 8;
634 
635 	/* jump over faulting load and clear dest register */
636 	*(unsigned long *)((void *)regs + reg) = 0;
637 	regs->ip += x->fixup & 0xff;
638 	return true;
639 }
640 
641 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
642 		  int oldproglen, struct jit_context *ctx)
643 {
644 	struct bpf_insn *insn = bpf_prog->insnsi;
645 	int insn_cnt = bpf_prog->len;
646 	bool seen_exit = false;
647 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
648 	int i, cnt = 0, excnt = 0;
649 	int proglen = 0;
650 	u8 *prog = temp;
651 
652 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
653 		      bpf_prog_was_classic(bpf_prog));
654 	addrs[0] = prog - temp;
655 
656 	for (i = 1; i <= insn_cnt; i++, insn++) {
657 		const s32 imm32 = insn->imm;
658 		u32 dst_reg = insn->dst_reg;
659 		u32 src_reg = insn->src_reg;
660 		u8 b2 = 0, b3 = 0;
661 		s64 jmp_offset;
662 		u8 jmp_cond;
663 		int ilen;
664 		u8 *func;
665 
666 		switch (insn->code) {
667 			/* ALU */
668 		case BPF_ALU | BPF_ADD | BPF_X:
669 		case BPF_ALU | BPF_SUB | BPF_X:
670 		case BPF_ALU | BPF_AND | BPF_X:
671 		case BPF_ALU | BPF_OR | BPF_X:
672 		case BPF_ALU | BPF_XOR | BPF_X:
673 		case BPF_ALU64 | BPF_ADD | BPF_X:
674 		case BPF_ALU64 | BPF_SUB | BPF_X:
675 		case BPF_ALU64 | BPF_AND | BPF_X:
676 		case BPF_ALU64 | BPF_OR | BPF_X:
677 		case BPF_ALU64 | BPF_XOR | BPF_X:
678 			switch (BPF_OP(insn->code)) {
679 			case BPF_ADD: b2 = 0x01; break;
680 			case BPF_SUB: b2 = 0x29; break;
681 			case BPF_AND: b2 = 0x21; break;
682 			case BPF_OR: b2 = 0x09; break;
683 			case BPF_XOR: b2 = 0x31; break;
684 			}
685 			if (BPF_CLASS(insn->code) == BPF_ALU64)
686 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
687 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
688 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
689 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
690 			break;
691 
692 		case BPF_ALU64 | BPF_MOV | BPF_X:
693 		case BPF_ALU | BPF_MOV | BPF_X:
694 			emit_mov_reg(&prog,
695 				     BPF_CLASS(insn->code) == BPF_ALU64,
696 				     dst_reg, src_reg);
697 			break;
698 
699 			/* neg dst */
700 		case BPF_ALU | BPF_NEG:
701 		case BPF_ALU64 | BPF_NEG:
702 			if (BPF_CLASS(insn->code) == BPF_ALU64)
703 				EMIT1(add_1mod(0x48, dst_reg));
704 			else if (is_ereg(dst_reg))
705 				EMIT1(add_1mod(0x40, dst_reg));
706 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
707 			break;
708 
709 		case BPF_ALU | BPF_ADD | BPF_K:
710 		case BPF_ALU | BPF_SUB | BPF_K:
711 		case BPF_ALU | BPF_AND | BPF_K:
712 		case BPF_ALU | BPF_OR | BPF_K:
713 		case BPF_ALU | BPF_XOR | BPF_K:
714 		case BPF_ALU64 | BPF_ADD | BPF_K:
715 		case BPF_ALU64 | BPF_SUB | BPF_K:
716 		case BPF_ALU64 | BPF_AND | BPF_K:
717 		case BPF_ALU64 | BPF_OR | BPF_K:
718 		case BPF_ALU64 | BPF_XOR | BPF_K:
719 			if (BPF_CLASS(insn->code) == BPF_ALU64)
720 				EMIT1(add_1mod(0x48, dst_reg));
721 			else if (is_ereg(dst_reg))
722 				EMIT1(add_1mod(0x40, dst_reg));
723 
724 			/*
725 			 * b3 holds 'normal' opcode, b2 short form only valid
726 			 * in case dst is eax/rax.
727 			 */
728 			switch (BPF_OP(insn->code)) {
729 			case BPF_ADD:
730 				b3 = 0xC0;
731 				b2 = 0x05;
732 				break;
733 			case BPF_SUB:
734 				b3 = 0xE8;
735 				b2 = 0x2D;
736 				break;
737 			case BPF_AND:
738 				b3 = 0xE0;
739 				b2 = 0x25;
740 				break;
741 			case BPF_OR:
742 				b3 = 0xC8;
743 				b2 = 0x0D;
744 				break;
745 			case BPF_XOR:
746 				b3 = 0xF0;
747 				b2 = 0x35;
748 				break;
749 			}
750 
751 			if (is_imm8(imm32))
752 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
753 			else if (is_axreg(dst_reg))
754 				EMIT1_off32(b2, imm32);
755 			else
756 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
757 			break;
758 
759 		case BPF_ALU64 | BPF_MOV | BPF_K:
760 		case BPF_ALU | BPF_MOV | BPF_K:
761 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
762 				       dst_reg, imm32);
763 			break;
764 
765 		case BPF_LD | BPF_IMM | BPF_DW:
766 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
767 			insn++;
768 			i++;
769 			break;
770 
771 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
772 		case BPF_ALU | BPF_MOD | BPF_X:
773 		case BPF_ALU | BPF_DIV | BPF_X:
774 		case BPF_ALU | BPF_MOD | BPF_K:
775 		case BPF_ALU | BPF_DIV | BPF_K:
776 		case BPF_ALU64 | BPF_MOD | BPF_X:
777 		case BPF_ALU64 | BPF_DIV | BPF_X:
778 		case BPF_ALU64 | BPF_MOD | BPF_K:
779 		case BPF_ALU64 | BPF_DIV | BPF_K:
780 			EMIT1(0x50); /* push rax */
781 			EMIT1(0x52); /* push rdx */
782 
783 			if (BPF_SRC(insn->code) == BPF_X)
784 				/* mov r11, src_reg */
785 				EMIT_mov(AUX_REG, src_reg);
786 			else
787 				/* mov r11, imm32 */
788 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
789 
790 			/* mov rax, dst_reg */
791 			EMIT_mov(BPF_REG_0, dst_reg);
792 
793 			/*
794 			 * xor edx, edx
795 			 * equivalent to 'xor rdx, rdx', but one byte less
796 			 */
797 			EMIT2(0x31, 0xd2);
798 
799 			if (BPF_CLASS(insn->code) == BPF_ALU64)
800 				/* div r11 */
801 				EMIT3(0x49, 0xF7, 0xF3);
802 			else
803 				/* div r11d */
804 				EMIT3(0x41, 0xF7, 0xF3);
805 
806 			if (BPF_OP(insn->code) == BPF_MOD)
807 				/* mov r11, rdx */
808 				EMIT3(0x49, 0x89, 0xD3);
809 			else
810 				/* mov r11, rax */
811 				EMIT3(0x49, 0x89, 0xC3);
812 
813 			EMIT1(0x5A); /* pop rdx */
814 			EMIT1(0x58); /* pop rax */
815 
816 			/* mov dst_reg, r11 */
817 			EMIT_mov(dst_reg, AUX_REG);
818 			break;
819 
820 		case BPF_ALU | BPF_MUL | BPF_K:
821 		case BPF_ALU | BPF_MUL | BPF_X:
822 		case BPF_ALU64 | BPF_MUL | BPF_K:
823 		case BPF_ALU64 | BPF_MUL | BPF_X:
824 		{
825 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
826 
827 			if (dst_reg != BPF_REG_0)
828 				EMIT1(0x50); /* push rax */
829 			if (dst_reg != BPF_REG_3)
830 				EMIT1(0x52); /* push rdx */
831 
832 			/* mov r11, dst_reg */
833 			EMIT_mov(AUX_REG, dst_reg);
834 
835 			if (BPF_SRC(insn->code) == BPF_X)
836 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
837 			else
838 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
839 
840 			if (is64)
841 				EMIT1(add_1mod(0x48, AUX_REG));
842 			else if (is_ereg(AUX_REG))
843 				EMIT1(add_1mod(0x40, AUX_REG));
844 			/* mul(q) r11 */
845 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
846 
847 			if (dst_reg != BPF_REG_3)
848 				EMIT1(0x5A); /* pop rdx */
849 			if (dst_reg != BPF_REG_0) {
850 				/* mov dst_reg, rax */
851 				EMIT_mov(dst_reg, BPF_REG_0);
852 				EMIT1(0x58); /* pop rax */
853 			}
854 			break;
855 		}
856 			/* Shifts */
857 		case BPF_ALU | BPF_LSH | BPF_K:
858 		case BPF_ALU | BPF_RSH | BPF_K:
859 		case BPF_ALU | BPF_ARSH | BPF_K:
860 		case BPF_ALU64 | BPF_LSH | BPF_K:
861 		case BPF_ALU64 | BPF_RSH | BPF_K:
862 		case BPF_ALU64 | BPF_ARSH | BPF_K:
863 			if (BPF_CLASS(insn->code) == BPF_ALU64)
864 				EMIT1(add_1mod(0x48, dst_reg));
865 			else if (is_ereg(dst_reg))
866 				EMIT1(add_1mod(0x40, dst_reg));
867 
868 			switch (BPF_OP(insn->code)) {
869 			case BPF_LSH: b3 = 0xE0; break;
870 			case BPF_RSH: b3 = 0xE8; break;
871 			case BPF_ARSH: b3 = 0xF8; break;
872 			}
873 
874 			if (imm32 == 1)
875 				EMIT2(0xD1, add_1reg(b3, dst_reg));
876 			else
877 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
878 			break;
879 
880 		case BPF_ALU | BPF_LSH | BPF_X:
881 		case BPF_ALU | BPF_RSH | BPF_X:
882 		case BPF_ALU | BPF_ARSH | BPF_X:
883 		case BPF_ALU64 | BPF_LSH | BPF_X:
884 		case BPF_ALU64 | BPF_RSH | BPF_X:
885 		case BPF_ALU64 | BPF_ARSH | BPF_X:
886 
887 			/* Check for bad case when dst_reg == rcx */
888 			if (dst_reg == BPF_REG_4) {
889 				/* mov r11, dst_reg */
890 				EMIT_mov(AUX_REG, dst_reg);
891 				dst_reg = AUX_REG;
892 			}
893 
894 			if (src_reg != BPF_REG_4) { /* common case */
895 				EMIT1(0x51); /* push rcx */
896 
897 				/* mov rcx, src_reg */
898 				EMIT_mov(BPF_REG_4, src_reg);
899 			}
900 
901 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
902 			if (BPF_CLASS(insn->code) == BPF_ALU64)
903 				EMIT1(add_1mod(0x48, dst_reg));
904 			else if (is_ereg(dst_reg))
905 				EMIT1(add_1mod(0x40, dst_reg));
906 
907 			switch (BPF_OP(insn->code)) {
908 			case BPF_LSH: b3 = 0xE0; break;
909 			case BPF_RSH: b3 = 0xE8; break;
910 			case BPF_ARSH: b3 = 0xF8; break;
911 			}
912 			EMIT2(0xD3, add_1reg(b3, dst_reg));
913 
914 			if (src_reg != BPF_REG_4)
915 				EMIT1(0x59); /* pop rcx */
916 
917 			if (insn->dst_reg == BPF_REG_4)
918 				/* mov dst_reg, r11 */
919 				EMIT_mov(insn->dst_reg, AUX_REG);
920 			break;
921 
922 		case BPF_ALU | BPF_END | BPF_FROM_BE:
923 			switch (imm32) {
924 			case 16:
925 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
926 				EMIT1(0x66);
927 				if (is_ereg(dst_reg))
928 					EMIT1(0x41);
929 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
930 
931 				/* Emit 'movzwl eax, ax' */
932 				if (is_ereg(dst_reg))
933 					EMIT3(0x45, 0x0F, 0xB7);
934 				else
935 					EMIT2(0x0F, 0xB7);
936 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
937 				break;
938 			case 32:
939 				/* Emit 'bswap eax' to swap lower 4 bytes */
940 				if (is_ereg(dst_reg))
941 					EMIT2(0x41, 0x0F);
942 				else
943 					EMIT1(0x0F);
944 				EMIT1(add_1reg(0xC8, dst_reg));
945 				break;
946 			case 64:
947 				/* Emit 'bswap rax' to swap 8 bytes */
948 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
949 				      add_1reg(0xC8, dst_reg));
950 				break;
951 			}
952 			break;
953 
954 		case BPF_ALU | BPF_END | BPF_FROM_LE:
955 			switch (imm32) {
956 			case 16:
957 				/*
958 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
959 				 * into 64 bit
960 				 */
961 				if (is_ereg(dst_reg))
962 					EMIT3(0x45, 0x0F, 0xB7);
963 				else
964 					EMIT2(0x0F, 0xB7);
965 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
966 				break;
967 			case 32:
968 				/* Emit 'mov eax, eax' to clear upper 32-bits */
969 				if (is_ereg(dst_reg))
970 					EMIT1(0x45);
971 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
972 				break;
973 			case 64:
974 				/* nop */
975 				break;
976 			}
977 			break;
978 
979 			/* ST: *(u8*)(dst_reg + off) = imm */
980 		case BPF_ST | BPF_MEM | BPF_B:
981 			if (is_ereg(dst_reg))
982 				EMIT2(0x41, 0xC6);
983 			else
984 				EMIT1(0xC6);
985 			goto st;
986 		case BPF_ST | BPF_MEM | BPF_H:
987 			if (is_ereg(dst_reg))
988 				EMIT3(0x66, 0x41, 0xC7);
989 			else
990 				EMIT2(0x66, 0xC7);
991 			goto st;
992 		case BPF_ST | BPF_MEM | BPF_W:
993 			if (is_ereg(dst_reg))
994 				EMIT2(0x41, 0xC7);
995 			else
996 				EMIT1(0xC7);
997 			goto st;
998 		case BPF_ST | BPF_MEM | BPF_DW:
999 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1000 
1001 st:			if (is_imm8(insn->off))
1002 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1003 			else
1004 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1005 
1006 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1007 			break;
1008 
1009 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1010 		case BPF_STX | BPF_MEM | BPF_B:
1011 		case BPF_STX | BPF_MEM | BPF_H:
1012 		case BPF_STX | BPF_MEM | BPF_W:
1013 		case BPF_STX | BPF_MEM | BPF_DW:
1014 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1015 			break;
1016 
1017 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1018 		case BPF_LDX | BPF_MEM | BPF_B:
1019 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1020 		case BPF_LDX | BPF_MEM | BPF_H:
1021 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1022 		case BPF_LDX | BPF_MEM | BPF_W:
1023 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1024 		case BPF_LDX | BPF_MEM | BPF_DW:
1025 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1026 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1027 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1028 				struct exception_table_entry *ex;
1029 				u8 *_insn = image + proglen;
1030 				s64 delta;
1031 
1032 				if (!bpf_prog->aux->extable)
1033 					break;
1034 
1035 				if (excnt >= bpf_prog->aux->num_exentries) {
1036 					pr_err("ex gen bug\n");
1037 					return -EFAULT;
1038 				}
1039 				ex = &bpf_prog->aux->extable[excnt++];
1040 
1041 				delta = _insn - (u8 *)&ex->insn;
1042 				if (!is_simm32(delta)) {
1043 					pr_err("extable->insn doesn't fit into 32-bit\n");
1044 					return -EFAULT;
1045 				}
1046 				ex->insn = delta;
1047 
1048 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1049 				if (!is_simm32(delta)) {
1050 					pr_err("extable->handler doesn't fit into 32-bit\n");
1051 					return -EFAULT;
1052 				}
1053 				ex->handler = delta;
1054 
1055 				if (dst_reg > BPF_REG_9) {
1056 					pr_err("verifier error\n");
1057 					return -EFAULT;
1058 				}
1059 				/*
1060 				 * Compute size of x86 insn and its target dest x86 register.
1061 				 * ex_handler_bpf() will use lower 8 bits to adjust
1062 				 * pt_regs->ip to jump over this x86 instruction
1063 				 * and upper bits to figure out which pt_regs to zero out.
1064 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1065 				 * of 4 bytes will be ignored and rbx will be zero inited.
1066 				 */
1067 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1068 			}
1069 			break;
1070 
1071 			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1072 		case BPF_STX | BPF_XADD | BPF_W:
1073 			/* Emit 'lock add dword ptr [rax + off], eax' */
1074 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1075 				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1076 			else
1077 				EMIT2(0xF0, 0x01);
1078 			goto xadd;
1079 		case BPF_STX | BPF_XADD | BPF_DW:
1080 			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1081 xadd:			if (is_imm8(insn->off))
1082 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1083 			else
1084 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1085 					    insn->off);
1086 			break;
1087 
1088 			/* call */
1089 		case BPF_JMP | BPF_CALL:
1090 			func = (u8 *) __bpf_call_base + imm32;
1091 			if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1092 				return -EINVAL;
1093 			break;
1094 
1095 		case BPF_JMP | BPF_TAIL_CALL:
1096 			if (imm32)
1097 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1098 							  &prog, addrs[i], image);
1099 			else
1100 				emit_bpf_tail_call_indirect(&prog);
1101 			break;
1102 
1103 			/* cond jump */
1104 		case BPF_JMP | BPF_JEQ | BPF_X:
1105 		case BPF_JMP | BPF_JNE | BPF_X:
1106 		case BPF_JMP | BPF_JGT | BPF_X:
1107 		case BPF_JMP | BPF_JLT | BPF_X:
1108 		case BPF_JMP | BPF_JGE | BPF_X:
1109 		case BPF_JMP | BPF_JLE | BPF_X:
1110 		case BPF_JMP | BPF_JSGT | BPF_X:
1111 		case BPF_JMP | BPF_JSLT | BPF_X:
1112 		case BPF_JMP | BPF_JSGE | BPF_X:
1113 		case BPF_JMP | BPF_JSLE | BPF_X:
1114 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1115 		case BPF_JMP32 | BPF_JNE | BPF_X:
1116 		case BPF_JMP32 | BPF_JGT | BPF_X:
1117 		case BPF_JMP32 | BPF_JLT | BPF_X:
1118 		case BPF_JMP32 | BPF_JGE | BPF_X:
1119 		case BPF_JMP32 | BPF_JLE | BPF_X:
1120 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1121 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1122 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1123 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1124 			/* cmp dst_reg, src_reg */
1125 			if (BPF_CLASS(insn->code) == BPF_JMP)
1126 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1127 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1128 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1129 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1130 			goto emit_cond_jmp;
1131 
1132 		case BPF_JMP | BPF_JSET | BPF_X:
1133 		case BPF_JMP32 | BPF_JSET | BPF_X:
1134 			/* test dst_reg, src_reg */
1135 			if (BPF_CLASS(insn->code) == BPF_JMP)
1136 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1137 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1138 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1139 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1140 			goto emit_cond_jmp;
1141 
1142 		case BPF_JMP | BPF_JSET | BPF_K:
1143 		case BPF_JMP32 | BPF_JSET | BPF_K:
1144 			/* test dst_reg, imm32 */
1145 			if (BPF_CLASS(insn->code) == BPF_JMP)
1146 				EMIT1(add_1mod(0x48, dst_reg));
1147 			else if (is_ereg(dst_reg))
1148 				EMIT1(add_1mod(0x40, dst_reg));
1149 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1150 			goto emit_cond_jmp;
1151 
1152 		case BPF_JMP | BPF_JEQ | BPF_K:
1153 		case BPF_JMP | BPF_JNE | BPF_K:
1154 		case BPF_JMP | BPF_JGT | BPF_K:
1155 		case BPF_JMP | BPF_JLT | BPF_K:
1156 		case BPF_JMP | BPF_JGE | BPF_K:
1157 		case BPF_JMP | BPF_JLE | BPF_K:
1158 		case BPF_JMP | BPF_JSGT | BPF_K:
1159 		case BPF_JMP | BPF_JSLT | BPF_K:
1160 		case BPF_JMP | BPF_JSGE | BPF_K:
1161 		case BPF_JMP | BPF_JSLE | BPF_K:
1162 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1163 		case BPF_JMP32 | BPF_JNE | BPF_K:
1164 		case BPF_JMP32 | BPF_JGT | BPF_K:
1165 		case BPF_JMP32 | BPF_JLT | BPF_K:
1166 		case BPF_JMP32 | BPF_JGE | BPF_K:
1167 		case BPF_JMP32 | BPF_JLE | BPF_K:
1168 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1169 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1170 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1171 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1172 			/* test dst_reg, dst_reg to save one extra byte */
1173 			if (imm32 == 0) {
1174 				if (BPF_CLASS(insn->code) == BPF_JMP)
1175 					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1176 				else if (is_ereg(dst_reg))
1177 					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1178 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1179 				goto emit_cond_jmp;
1180 			}
1181 
1182 			/* cmp dst_reg, imm8/32 */
1183 			if (BPF_CLASS(insn->code) == BPF_JMP)
1184 				EMIT1(add_1mod(0x48, dst_reg));
1185 			else if (is_ereg(dst_reg))
1186 				EMIT1(add_1mod(0x40, dst_reg));
1187 
1188 			if (is_imm8(imm32))
1189 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1190 			else
1191 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1192 
1193 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1194 			switch (BPF_OP(insn->code)) {
1195 			case BPF_JEQ:
1196 				jmp_cond = X86_JE;
1197 				break;
1198 			case BPF_JSET:
1199 			case BPF_JNE:
1200 				jmp_cond = X86_JNE;
1201 				break;
1202 			case BPF_JGT:
1203 				/* GT is unsigned '>', JA in x86 */
1204 				jmp_cond = X86_JA;
1205 				break;
1206 			case BPF_JLT:
1207 				/* LT is unsigned '<', JB in x86 */
1208 				jmp_cond = X86_JB;
1209 				break;
1210 			case BPF_JGE:
1211 				/* GE is unsigned '>=', JAE in x86 */
1212 				jmp_cond = X86_JAE;
1213 				break;
1214 			case BPF_JLE:
1215 				/* LE is unsigned '<=', JBE in x86 */
1216 				jmp_cond = X86_JBE;
1217 				break;
1218 			case BPF_JSGT:
1219 				/* Signed '>', GT in x86 */
1220 				jmp_cond = X86_JG;
1221 				break;
1222 			case BPF_JSLT:
1223 				/* Signed '<', LT in x86 */
1224 				jmp_cond = X86_JL;
1225 				break;
1226 			case BPF_JSGE:
1227 				/* Signed '>=', GE in x86 */
1228 				jmp_cond = X86_JGE;
1229 				break;
1230 			case BPF_JSLE:
1231 				/* Signed '<=', LE in x86 */
1232 				jmp_cond = X86_JLE;
1233 				break;
1234 			default: /* to silence GCC warning */
1235 				return -EFAULT;
1236 			}
1237 			jmp_offset = addrs[i + insn->off] - addrs[i];
1238 			if (is_imm8(jmp_offset)) {
1239 				EMIT2(jmp_cond, jmp_offset);
1240 			} else if (is_simm32(jmp_offset)) {
1241 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1242 			} else {
1243 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1244 				return -EFAULT;
1245 			}
1246 
1247 			break;
1248 
1249 		case BPF_JMP | BPF_JA:
1250 			if (insn->off == -1)
1251 				/* -1 jmp instructions will always jump
1252 				 * backwards two bytes. Explicitly handling
1253 				 * this case avoids wasting too many passes
1254 				 * when there are long sequences of replaced
1255 				 * dead code.
1256 				 */
1257 				jmp_offset = -2;
1258 			else
1259 				jmp_offset = addrs[i + insn->off] - addrs[i];
1260 
1261 			if (!jmp_offset)
1262 				/* Optimize out nop jumps */
1263 				break;
1264 emit_jmp:
1265 			if (is_imm8(jmp_offset)) {
1266 				EMIT2(0xEB, jmp_offset);
1267 			} else if (is_simm32(jmp_offset)) {
1268 				EMIT1_off32(0xE9, jmp_offset);
1269 			} else {
1270 				pr_err("jmp gen bug %llx\n", jmp_offset);
1271 				return -EFAULT;
1272 			}
1273 			break;
1274 
1275 		case BPF_JMP | BPF_EXIT:
1276 			if (seen_exit) {
1277 				jmp_offset = ctx->cleanup_addr - addrs[i];
1278 				goto emit_jmp;
1279 			}
1280 			seen_exit = true;
1281 			/* Update cleanup_addr */
1282 			ctx->cleanup_addr = proglen;
1283 			if (!bpf_prog_was_classic(bpf_prog))
1284 				EMIT1(0x5B); /* get rid of tail_call_cnt */
1285 			EMIT2(0x41, 0x5F);   /* pop r15 */
1286 			EMIT2(0x41, 0x5E);   /* pop r14 */
1287 			EMIT2(0x41, 0x5D);   /* pop r13 */
1288 			EMIT1(0x5B);         /* pop rbx */
1289 			EMIT1(0xC9);         /* leave */
1290 			EMIT1(0xC3);         /* ret */
1291 			break;
1292 
1293 		default:
1294 			/*
1295 			 * By design x86-64 JIT should support all BPF instructions.
1296 			 * This error will be seen if new instruction was added
1297 			 * to the interpreter, but not to the JIT, or if there is
1298 			 * junk in bpf_prog.
1299 			 */
1300 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1301 			return -EINVAL;
1302 		}
1303 
1304 		ilen = prog - temp;
1305 		if (ilen > BPF_MAX_INSN_SIZE) {
1306 			pr_err("bpf_jit: fatal insn size error\n");
1307 			return -EFAULT;
1308 		}
1309 
1310 		if (image) {
1311 			if (unlikely(proglen + ilen > oldproglen)) {
1312 				pr_err("bpf_jit: fatal error\n");
1313 				return -EFAULT;
1314 			}
1315 			memcpy(image + proglen, temp, ilen);
1316 		}
1317 		proglen += ilen;
1318 		addrs[i] = proglen;
1319 		prog = temp;
1320 	}
1321 
1322 	if (image && excnt != bpf_prog->aux->num_exentries) {
1323 		pr_err("extable is not populated\n");
1324 		return -EFAULT;
1325 	}
1326 	return proglen;
1327 }
1328 
1329 static void save_regs(struct btf_func_model *m, u8 **prog, int nr_args,
1330 		      int stack_size)
1331 {
1332 	int i;
1333 	/* Store function arguments to stack.
1334 	 * For a function that accepts two pointers the sequence will be:
1335 	 * mov QWORD PTR [rbp-0x10],rdi
1336 	 * mov QWORD PTR [rbp-0x8],rsi
1337 	 */
1338 	for (i = 0; i < min(nr_args, 6); i++)
1339 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1340 			 BPF_REG_FP,
1341 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1342 			 -(stack_size - i * 8));
1343 }
1344 
1345 static void restore_regs(struct btf_func_model *m, u8 **prog, int nr_args,
1346 			 int stack_size)
1347 {
1348 	int i;
1349 
1350 	/* Restore function arguments from stack.
1351 	 * For a function that accepts two pointers the sequence will be:
1352 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1353 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1354 	 */
1355 	for (i = 0; i < min(nr_args, 6); i++)
1356 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1357 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1358 			 BPF_REG_FP,
1359 			 -(stack_size - i * 8));
1360 }
1361 
1362 static int invoke_bpf(struct btf_func_model *m, u8 **pprog,
1363 		      struct bpf_prog **progs, int prog_cnt, int stack_size)
1364 {
1365 	u8 *prog = *pprog;
1366 	int cnt = 0, i;
1367 
1368 	for (i = 0; i < prog_cnt; i++) {
1369 		if (emit_call(&prog, __bpf_prog_enter, prog))
1370 			return -EINVAL;
1371 		/* remember prog start time returned by __bpf_prog_enter */
1372 		emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1373 
1374 		/* arg1: lea rdi, [rbp - stack_size] */
1375 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1376 		/* arg2: progs[i]->insnsi for interpreter */
1377 		if (!progs[i]->jited)
1378 			emit_mov_imm64(&prog, BPF_REG_2,
1379 				       (long) progs[i]->insnsi >> 32,
1380 				       (u32) (long) progs[i]->insnsi);
1381 		/* call JITed bpf program or interpreter */
1382 		if (emit_call(&prog, progs[i]->bpf_func, prog))
1383 			return -EINVAL;
1384 
1385 		/* arg1: mov rdi, progs[i] */
1386 		emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
1387 			       (u32) (long) progs[i]);
1388 		/* arg2: mov rsi, rbx <- start time in nsec */
1389 		emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1390 		if (emit_call(&prog, __bpf_prog_exit, prog))
1391 			return -EINVAL;
1392 	}
1393 	*pprog = prog;
1394 	return 0;
1395 }
1396 
1397 /* Example:
1398  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1399  * its 'struct btf_func_model' will be nr_args=2
1400  * The assembly code when eth_type_trans is executing after trampoline:
1401  *
1402  * push rbp
1403  * mov rbp, rsp
1404  * sub rsp, 16                     // space for skb and dev
1405  * push rbx                        // temp regs to pass start time
1406  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1407  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1408  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1409  * mov rbx, rax                    // remember start time in bpf stats are enabled
1410  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1411  * call addr_of_jited_FENTRY_prog
1412  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1413  * mov rsi, rbx                    // prog start time
1414  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1415  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1416  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1417  * pop rbx
1418  * leave
1419  * ret
1420  *
1421  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1422  * replaced with 'call generated_bpf_trampoline'. When it returns
1423  * eth_type_trans will continue executing with original skb and dev pointers.
1424  *
1425  * The assembly code when eth_type_trans is called from trampoline:
1426  *
1427  * push rbp
1428  * mov rbp, rsp
1429  * sub rsp, 24                     // space for skb, dev, return value
1430  * push rbx                        // temp regs to pass start time
1431  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1432  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1433  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1434  * mov rbx, rax                    // remember start time if bpf stats are enabled
1435  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1436  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1437  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1438  * mov rsi, rbx                    // prog start time
1439  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1440  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1441  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1442  * call eth_type_trans+5           // execute body of eth_type_trans
1443  * mov qword ptr [rbp - 8], rax    // save return value
1444  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1445  * mov rbx, rax                    // remember start time in bpf stats are enabled
1446  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1447  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1448  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1449  * mov rsi, rbx                    // prog start time
1450  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1451  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1452  * pop rbx
1453  * leave
1454  * add rsp, 8                      // skip eth_type_trans's frame
1455  * ret                             // return to its caller
1456  */
1457 int arch_prepare_bpf_trampoline(void *image, struct btf_func_model *m, u32 flags,
1458 				struct bpf_prog **fentry_progs, int fentry_cnt,
1459 				struct bpf_prog **fexit_progs, int fexit_cnt,
1460 				void *orig_call)
1461 {
1462 	int cnt = 0, nr_args = m->nr_args;
1463 	int stack_size = nr_args * 8;
1464 	u8 *prog;
1465 
1466 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1467 	if (nr_args > 6)
1468 		return -ENOTSUPP;
1469 
1470 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1471 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1472 		return -EINVAL;
1473 
1474 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1475 		stack_size += 8; /* room for return value of orig_call */
1476 
1477 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1478 		/* skip patched call instruction and point orig_call to actual
1479 		 * body of the kernel function.
1480 		 */
1481 		orig_call += X86_PATCH_SIZE;
1482 
1483 	prog = image;
1484 
1485 	EMIT1(0x55);		 /* push rbp */
1486 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1487 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1488 	EMIT1(0x53);		 /* push rbx */
1489 
1490 	save_regs(m, &prog, nr_args, stack_size);
1491 
1492 	if (fentry_cnt)
1493 		if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
1494 			return -EINVAL;
1495 
1496 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1497 		if (fentry_cnt)
1498 			restore_regs(m, &prog, nr_args, stack_size);
1499 
1500 		/* call original function */
1501 		if (emit_call(&prog, orig_call, prog))
1502 			return -EINVAL;
1503 		/* remember return value in a stack for bpf prog to access */
1504 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1505 	}
1506 
1507 	if (fexit_cnt)
1508 		if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
1509 			return -EINVAL;
1510 
1511 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1512 		restore_regs(m, &prog, nr_args, stack_size);
1513 
1514 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1515 		/* restore original return value back into RAX */
1516 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1517 
1518 	EMIT1(0x5B); /* pop rbx */
1519 	EMIT1(0xC9); /* leave */
1520 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1521 		/* skip our return address and return to parent */
1522 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1523 	EMIT1(0xC3); /* ret */
1524 	/* One half of the page has active running trampoline.
1525 	 * Another half is an area for next trampoline.
1526 	 * Make sure the trampoline generation logic doesn't overflow.
1527 	 */
1528 	if (WARN_ON_ONCE(prog - (u8 *)image > PAGE_SIZE / 2 - BPF_INSN_SAFETY))
1529 		return -EFAULT;
1530 	return 0;
1531 }
1532 
1533 struct x64_jit_data {
1534 	struct bpf_binary_header *header;
1535 	int *addrs;
1536 	u8 *image;
1537 	int proglen;
1538 	struct jit_context ctx;
1539 };
1540 
1541 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1542 {
1543 	struct bpf_binary_header *header = NULL;
1544 	struct bpf_prog *tmp, *orig_prog = prog;
1545 	struct x64_jit_data *jit_data;
1546 	int proglen, oldproglen = 0;
1547 	struct jit_context ctx = {};
1548 	bool tmp_blinded = false;
1549 	bool extra_pass = false;
1550 	u8 *image = NULL;
1551 	int *addrs;
1552 	int pass;
1553 	int i;
1554 
1555 	if (!prog->jit_requested)
1556 		return orig_prog;
1557 
1558 	tmp = bpf_jit_blind_constants(prog);
1559 	/*
1560 	 * If blinding was requested and we failed during blinding,
1561 	 * we must fall back to the interpreter.
1562 	 */
1563 	if (IS_ERR(tmp))
1564 		return orig_prog;
1565 	if (tmp != prog) {
1566 		tmp_blinded = true;
1567 		prog = tmp;
1568 	}
1569 
1570 	jit_data = prog->aux->jit_data;
1571 	if (!jit_data) {
1572 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1573 		if (!jit_data) {
1574 			prog = orig_prog;
1575 			goto out;
1576 		}
1577 		prog->aux->jit_data = jit_data;
1578 	}
1579 	addrs = jit_data->addrs;
1580 	if (addrs) {
1581 		ctx = jit_data->ctx;
1582 		oldproglen = jit_data->proglen;
1583 		image = jit_data->image;
1584 		header = jit_data->header;
1585 		extra_pass = true;
1586 		goto skip_init_addrs;
1587 	}
1588 	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1589 	if (!addrs) {
1590 		prog = orig_prog;
1591 		goto out_addrs;
1592 	}
1593 
1594 	/*
1595 	 * Before first pass, make a rough estimation of addrs[]
1596 	 * each BPF instruction is translated to less than 64 bytes
1597 	 */
1598 	for (proglen = 0, i = 0; i <= prog->len; i++) {
1599 		proglen += 64;
1600 		addrs[i] = proglen;
1601 	}
1602 	ctx.cleanup_addr = proglen;
1603 skip_init_addrs:
1604 
1605 	/*
1606 	 * JITed image shrinks with every pass and the loop iterates
1607 	 * until the image stops shrinking. Very large BPF programs
1608 	 * may converge on the last pass. In such case do one more
1609 	 * pass to emit the final image.
1610 	 */
1611 	for (pass = 0; pass < 20 || image; pass++) {
1612 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1613 		if (proglen <= 0) {
1614 out_image:
1615 			image = NULL;
1616 			if (header)
1617 				bpf_jit_binary_free(header);
1618 			prog = orig_prog;
1619 			goto out_addrs;
1620 		}
1621 		if (image) {
1622 			if (proglen != oldproglen) {
1623 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1624 				       proglen, oldproglen);
1625 				goto out_image;
1626 			}
1627 			break;
1628 		}
1629 		if (proglen == oldproglen) {
1630 			/*
1631 			 * The number of entries in extable is the number of BPF_LDX
1632 			 * insns that access kernel memory via "pointer to BTF type".
1633 			 * The verifier changed their opcode from LDX|MEM|size
1634 			 * to LDX|PROBE_MEM|size to make JITing easier.
1635 			 */
1636 			u32 align = __alignof__(struct exception_table_entry);
1637 			u32 extable_size = prog->aux->num_exentries *
1638 				sizeof(struct exception_table_entry);
1639 
1640 			/* allocate module memory for x86 insns and extable */
1641 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
1642 						      &image, align, jit_fill_hole);
1643 			if (!header) {
1644 				prog = orig_prog;
1645 				goto out_addrs;
1646 			}
1647 			prog->aux->extable = (void *) image + roundup(proglen, align);
1648 		}
1649 		oldproglen = proglen;
1650 		cond_resched();
1651 	}
1652 
1653 	if (bpf_jit_enable > 1)
1654 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1655 
1656 	if (image) {
1657 		if (!prog->is_func || extra_pass) {
1658 			bpf_tail_call_direct_fixup(prog);
1659 			bpf_jit_binary_lock_ro(header);
1660 		} else {
1661 			jit_data->addrs = addrs;
1662 			jit_data->ctx = ctx;
1663 			jit_data->proglen = proglen;
1664 			jit_data->image = image;
1665 			jit_data->header = header;
1666 		}
1667 		prog->bpf_func = (void *)image;
1668 		prog->jited = 1;
1669 		prog->jited_len = proglen;
1670 	} else {
1671 		prog = orig_prog;
1672 	}
1673 
1674 	if (!image || !prog->is_func || extra_pass) {
1675 		if (image)
1676 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1677 out_addrs:
1678 		kfree(addrs);
1679 		kfree(jit_data);
1680 		prog->aux->jit_data = NULL;
1681 	}
1682 out:
1683 	if (tmp_blinded)
1684 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1685 					   tmp : orig_prog);
1686 	return prog;
1687 }
1688