xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168 	return is_ereg(reg) ||
169 	    (1 << reg) & (BIT(BPF_REG_1) |
170 			  BIT(BPF_REG_2) |
171 			  BIT(BPF_REG_FP));
172 }
173 
174 static bool is_axreg(u32 reg)
175 {
176 	return reg == BPF_REG_0;
177 }
178 
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182 	if (is_ereg(reg))
183 		byte |= 1;
184 	return byte;
185 }
186 
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189 	if (is_ereg(r1))
190 		byte |= 1;
191 	if (is_ereg(r2))
192 		byte |= 4;
193 	return byte;
194 }
195 
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199 	return byte + reg2hex[dst_reg];
200 }
201 
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207 
208 /* Some 1-byte opcodes for binary ALU operations */
209 static u8 simple_alu_opcodes[] = {
210 	[BPF_ADD] = 0x01,
211 	[BPF_SUB] = 0x29,
212 	[BPF_AND] = 0x21,
213 	[BPF_OR] = 0x09,
214 	[BPF_XOR] = 0x31,
215 	[BPF_LSH] = 0xE0,
216 	[BPF_RSH] = 0xE8,
217 	[BPF_ARSH] = 0xF8,
218 };
219 
220 static void jit_fill_hole(void *area, unsigned int size)
221 {
222 	/* Fill whole space with INT3 instructions */
223 	memset(area, 0xcc, size);
224 }
225 
226 struct jit_context {
227 	int cleanup_addr; /* Epilogue code offset */
228 };
229 
230 /* Maximum number of bytes emitted while JITing one eBPF insn */
231 #define BPF_MAX_INSN_SIZE	128
232 #define BPF_INSN_SAFETY		64
233 
234 /* Number of bytes emit_patch() needs to generate instructions */
235 #define X86_PATCH_SIZE		5
236 /* Number of bytes that will be skipped on tailcall */
237 #define X86_TAIL_CALL_OFFSET	11
238 
239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
240 {
241 	u8 *prog = *pprog;
242 
243 	if (callee_regs_used[0])
244 		EMIT1(0x53);         /* push rbx */
245 	if (callee_regs_used[1])
246 		EMIT2(0x41, 0x55);   /* push r13 */
247 	if (callee_regs_used[2])
248 		EMIT2(0x41, 0x56);   /* push r14 */
249 	if (callee_regs_used[3])
250 		EMIT2(0x41, 0x57);   /* push r15 */
251 	*pprog = prog;
252 }
253 
254 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
255 {
256 	u8 *prog = *pprog;
257 
258 	if (callee_regs_used[3])
259 		EMIT2(0x41, 0x5F);   /* pop r15 */
260 	if (callee_regs_used[2])
261 		EMIT2(0x41, 0x5E);   /* pop r14 */
262 	if (callee_regs_used[1])
263 		EMIT2(0x41, 0x5D);   /* pop r13 */
264 	if (callee_regs_used[0])
265 		EMIT1(0x5B);         /* pop rbx */
266 	*pprog = prog;
267 }
268 
269 /*
270  * Emit x86-64 prologue code for BPF program.
271  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
272  * while jumping to another program
273  */
274 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
275 			  bool tail_call_reachable, bool is_subprog)
276 {
277 	u8 *prog = *pprog;
278 
279 	/* BPF trampoline can be made to work without these nops,
280 	 * but let's waste 5 bytes for now and optimize later
281 	 */
282 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
283 	prog += X86_PATCH_SIZE;
284 	if (!ebpf_from_cbpf) {
285 		if (tail_call_reachable && !is_subprog)
286 			EMIT2(0x31, 0xC0); /* xor eax, eax */
287 		else
288 			EMIT2(0x66, 0x90); /* nop2 */
289 	}
290 	EMIT1(0x55);             /* push rbp */
291 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
292 	/* sub rsp, rounded_stack_depth */
293 	if (stack_depth)
294 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
295 	if (tail_call_reachable)
296 		EMIT1(0x50);         /* push rax */
297 	*pprog = prog;
298 }
299 
300 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
301 {
302 	u8 *prog = *pprog;
303 	s64 offset;
304 
305 	offset = func - (ip + X86_PATCH_SIZE);
306 	if (!is_simm32(offset)) {
307 		pr_err("Target call %p is out of range\n", func);
308 		return -ERANGE;
309 	}
310 	EMIT1_off32(opcode, offset);
311 	*pprog = prog;
312 	return 0;
313 }
314 
315 static int emit_call(u8 **pprog, void *func, void *ip)
316 {
317 	return emit_patch(pprog, func, ip, 0xE8);
318 }
319 
320 static int emit_jump(u8 **pprog, void *func, void *ip)
321 {
322 	return emit_patch(pprog, func, ip, 0xE9);
323 }
324 
325 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
326 				void *old_addr, void *new_addr,
327 				const bool text_live)
328 {
329 	const u8 *nop_insn = x86_nops[5];
330 	u8 old_insn[X86_PATCH_SIZE];
331 	u8 new_insn[X86_PATCH_SIZE];
332 	u8 *prog;
333 	int ret;
334 
335 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
336 	if (old_addr) {
337 		prog = old_insn;
338 		ret = t == BPF_MOD_CALL ?
339 		      emit_call(&prog, old_addr, ip) :
340 		      emit_jump(&prog, old_addr, ip);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
346 	if (new_addr) {
347 		prog = new_insn;
348 		ret = t == BPF_MOD_CALL ?
349 		      emit_call(&prog, new_addr, ip) :
350 		      emit_jump(&prog, new_addr, ip);
351 		if (ret)
352 			return ret;
353 	}
354 
355 	ret = -EBUSY;
356 	mutex_lock(&text_mutex);
357 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
358 		goto out;
359 	ret = 1;
360 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
361 		if (text_live)
362 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
363 		else
364 			memcpy(ip, new_insn, X86_PATCH_SIZE);
365 		ret = 0;
366 	}
367 out:
368 	mutex_unlock(&text_mutex);
369 	return ret;
370 }
371 
372 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
373 		       void *old_addr, void *new_addr)
374 {
375 	if (!is_kernel_text((long)ip) &&
376 	    !is_bpf_text_address((long)ip))
377 		/* BPF poking in modules is not supported */
378 		return -EINVAL;
379 
380 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
381 }
382 
383 static int get_pop_bytes(bool *callee_regs_used)
384 {
385 	int bytes = 0;
386 
387 	if (callee_regs_used[3])
388 		bytes += 2;
389 	if (callee_regs_used[2])
390 		bytes += 2;
391 	if (callee_regs_used[1])
392 		bytes += 2;
393 	if (callee_regs_used[0])
394 		bytes += 1;
395 
396 	return bytes;
397 }
398 
399 /*
400  * Generate the following code:
401  *
402  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
403  *   if (index >= array->map.max_entries)
404  *     goto out;
405  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
406  *     goto out;
407  *   prog = array->ptrs[index];
408  *   if (prog == NULL)
409  *     goto out;
410  *   goto *(prog->bpf_func + prologue_size);
411  * out:
412  */
413 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
414 					u32 stack_depth)
415 {
416 	int tcc_off = -4 - round_up(stack_depth, 8);
417 	u8 *prog = *pprog;
418 	int pop_bytes = 0;
419 	int off1 = 42;
420 	int off2 = 31;
421 	int off3 = 9;
422 
423 	/* count the additional bytes used for popping callee regs from stack
424 	 * that need to be taken into account for each of the offsets that
425 	 * are used for bailing out of the tail call
426 	 */
427 	pop_bytes = get_pop_bytes(callee_regs_used);
428 	off1 += pop_bytes;
429 	off2 += pop_bytes;
430 	off3 += pop_bytes;
431 
432 	if (stack_depth) {
433 		off1 += 7;
434 		off2 += 7;
435 		off3 += 7;
436 	}
437 
438 	/*
439 	 * rdi - pointer to ctx
440 	 * rsi - pointer to bpf_array
441 	 * rdx - index in bpf_array
442 	 */
443 
444 	/*
445 	 * if (index >= array->map.max_entries)
446 	 *	goto out;
447 	 */
448 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
449 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
450 	      offsetof(struct bpf_array, map.max_entries));
451 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
452 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
453 
454 	/*
455 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
456 	 *	goto out;
457 	 */
458 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
459 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
460 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
461 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
462 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
463 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
464 
465 	/* prog = array->ptrs[index]; */
466 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
467 		    offsetof(struct bpf_array, ptrs));
468 
469 	/*
470 	 * if (prog == NULL)
471 	 *	goto out;
472 	 */
473 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
474 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
475 	EMIT2(X86_JE, OFFSET3);                   /* je out */
476 
477 	*pprog = prog;
478 	pop_callee_regs(pprog, callee_regs_used);
479 	prog = *pprog;
480 
481 	EMIT1(0x58);                              /* pop rax */
482 	if (stack_depth)
483 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
484 			    round_up(stack_depth, 8));
485 
486 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
487 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
488 	      offsetof(struct bpf_prog, bpf_func));
489 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
490 	      X86_TAIL_CALL_OFFSET);
491 	/*
492 	 * Now we're ready to jump into next BPF program
493 	 * rdi == ctx (1st arg)
494 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
495 	 */
496 	RETPOLINE_RCX_BPF_JIT();
497 
498 	/* out: */
499 	*pprog = prog;
500 }
501 
502 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
503 				      u8 **pprog, int addr, u8 *image,
504 				      bool *callee_regs_used, u32 stack_depth)
505 {
506 	int tcc_off = -4 - round_up(stack_depth, 8);
507 	u8 *prog = *pprog;
508 	int pop_bytes = 0;
509 	int off1 = 20;
510 	int poke_off;
511 
512 	/* count the additional bytes used for popping callee regs to stack
513 	 * that need to be taken into account for jump offset that is used for
514 	 * bailing out from of the tail call when limit is reached
515 	 */
516 	pop_bytes = get_pop_bytes(callee_regs_used);
517 	off1 += pop_bytes;
518 
519 	/*
520 	 * total bytes for:
521 	 * - nop5/ jmpq $off
522 	 * - pop callee regs
523 	 * - sub rsp, $val if depth > 0
524 	 * - pop rax
525 	 */
526 	poke_off = X86_PATCH_SIZE + pop_bytes + 1;
527 	if (stack_depth) {
528 		poke_off += 7;
529 		off1 += 7;
530 	}
531 
532 	/*
533 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
534 	 *	goto out;
535 	 */
536 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
537 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
538 	EMIT2(X86_JA, off1);                          /* ja out */
539 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
540 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
541 
542 	poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
543 	poke->adj_off = X86_TAIL_CALL_OFFSET;
544 	poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
545 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
546 
547 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
548 		  poke->tailcall_bypass);
549 
550 	*pprog = prog;
551 	pop_callee_regs(pprog, callee_regs_used);
552 	prog = *pprog;
553 	EMIT1(0x58);                                  /* pop rax */
554 	if (stack_depth)
555 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
556 
557 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
558 	prog += X86_PATCH_SIZE;
559 	/* out: */
560 
561 	*pprog = prog;
562 }
563 
564 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
565 {
566 	struct bpf_jit_poke_descriptor *poke;
567 	struct bpf_array *array;
568 	struct bpf_prog *target;
569 	int i, ret;
570 
571 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
572 		poke = &prog->aux->poke_tab[i];
573 		if (poke->aux && poke->aux != prog->aux)
574 			continue;
575 
576 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
577 
578 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
579 			continue;
580 
581 		array = container_of(poke->tail_call.map, struct bpf_array, map);
582 		mutex_lock(&array->aux->poke_mutex);
583 		target = array->ptrs[poke->tail_call.key];
584 		if (target) {
585 			/* Plain memcpy is used when image is not live yet
586 			 * and still not locked as read-only. Once poke
587 			 * location is active (poke->tailcall_target_stable),
588 			 * any parallel bpf_arch_text_poke() might occur
589 			 * still on the read-write image until we finally
590 			 * locked it as read-only. Both modifications on
591 			 * the given image are under text_mutex to avoid
592 			 * interference.
593 			 */
594 			ret = __bpf_arch_text_poke(poke->tailcall_target,
595 						   BPF_MOD_JUMP, NULL,
596 						   (u8 *)target->bpf_func +
597 						   poke->adj_off, false);
598 			BUG_ON(ret < 0);
599 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
600 						   BPF_MOD_JUMP,
601 						   (u8 *)poke->tailcall_target +
602 						   X86_PATCH_SIZE, NULL, false);
603 			BUG_ON(ret < 0);
604 		}
605 		WRITE_ONCE(poke->tailcall_target_stable, true);
606 		mutex_unlock(&array->aux->poke_mutex);
607 	}
608 }
609 
610 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
611 			   u32 dst_reg, const u32 imm32)
612 {
613 	u8 *prog = *pprog;
614 	u8 b1, b2, b3;
615 
616 	/*
617 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
618 	 * (which zero-extends imm32) to save 2 bytes.
619 	 */
620 	if (sign_propagate && (s32)imm32 < 0) {
621 		/* 'mov %rax, imm32' sign extends imm32 */
622 		b1 = add_1mod(0x48, dst_reg);
623 		b2 = 0xC7;
624 		b3 = 0xC0;
625 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
626 		goto done;
627 	}
628 
629 	/*
630 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
631 	 * to save 3 bytes.
632 	 */
633 	if (imm32 == 0) {
634 		if (is_ereg(dst_reg))
635 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
636 		b2 = 0x31; /* xor */
637 		b3 = 0xC0;
638 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
639 		goto done;
640 	}
641 
642 	/* mov %eax, imm32 */
643 	if (is_ereg(dst_reg))
644 		EMIT1(add_1mod(0x40, dst_reg));
645 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
646 done:
647 	*pprog = prog;
648 }
649 
650 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
651 			   const u32 imm32_hi, const u32 imm32_lo)
652 {
653 	u8 *prog = *pprog;
654 
655 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
656 		/*
657 		 * For emitting plain u32, where sign bit must not be
658 		 * propagated LLVM tends to load imm64 over mov32
659 		 * directly, so save couple of bytes by just doing
660 		 * 'mov %eax, imm32' instead.
661 		 */
662 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
663 	} else {
664 		/* movabsq %rax, imm64 */
665 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
666 		EMIT(imm32_lo, 4);
667 		EMIT(imm32_hi, 4);
668 	}
669 
670 	*pprog = prog;
671 }
672 
673 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
674 {
675 	u8 *prog = *pprog;
676 
677 	if (is64) {
678 		/* mov dst, src */
679 		EMIT_mov(dst_reg, src_reg);
680 	} else {
681 		/* mov32 dst, src */
682 		if (is_ereg(dst_reg) || is_ereg(src_reg))
683 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
684 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
685 	}
686 
687 	*pprog = prog;
688 }
689 
690 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
691 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
692 {
693 	u8 *prog = *pprog;
694 
695 	if (is_imm8(off)) {
696 		/* 1-byte signed displacement.
697 		 *
698 		 * If off == 0 we could skip this and save one extra byte, but
699 		 * special case of x86 R13 which always needs an offset is not
700 		 * worth the hassle
701 		 */
702 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
703 	} else {
704 		/* 4-byte signed displacement */
705 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
706 	}
707 	*pprog = prog;
708 }
709 
710 /*
711  * Emit a REX byte if it will be necessary to address these registers
712  */
713 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
714 {
715 	u8 *prog = *pprog;
716 
717 	if (is64)
718 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
719 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
720 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
721 	*pprog = prog;
722 }
723 
724 /* LDX: dst_reg = *(u8*)(src_reg + off) */
725 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
726 {
727 	u8 *prog = *pprog;
728 
729 	switch (size) {
730 	case BPF_B:
731 		/* Emit 'movzx rax, byte ptr [rax + off]' */
732 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
733 		break;
734 	case BPF_H:
735 		/* Emit 'movzx rax, word ptr [rax + off]' */
736 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
737 		break;
738 	case BPF_W:
739 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
740 		if (is_ereg(dst_reg) || is_ereg(src_reg))
741 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
742 		else
743 			EMIT1(0x8B);
744 		break;
745 	case BPF_DW:
746 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
747 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
748 		break;
749 	}
750 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
751 	*pprog = prog;
752 }
753 
754 /* STX: *(u8*)(dst_reg + off) = src_reg */
755 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
756 {
757 	u8 *prog = *pprog;
758 
759 	switch (size) {
760 	case BPF_B:
761 		/* Emit 'mov byte ptr [rax + off], al' */
762 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
763 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
764 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
765 		else
766 			EMIT1(0x88);
767 		break;
768 	case BPF_H:
769 		if (is_ereg(dst_reg) || is_ereg(src_reg))
770 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
771 		else
772 			EMIT2(0x66, 0x89);
773 		break;
774 	case BPF_W:
775 		if (is_ereg(dst_reg) || is_ereg(src_reg))
776 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
777 		else
778 			EMIT1(0x89);
779 		break;
780 	case BPF_DW:
781 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
782 		break;
783 	}
784 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
785 	*pprog = prog;
786 }
787 
788 static int emit_atomic(u8 **pprog, u8 atomic_op,
789 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
790 {
791 	u8 *prog = *pprog;
792 
793 	EMIT1(0xF0); /* lock prefix */
794 
795 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
796 
797 	/* emit opcode */
798 	switch (atomic_op) {
799 	case BPF_ADD:
800 	case BPF_SUB:
801 	case BPF_AND:
802 	case BPF_OR:
803 	case BPF_XOR:
804 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
805 		EMIT1(simple_alu_opcodes[atomic_op]);
806 		break;
807 	case BPF_ADD | BPF_FETCH:
808 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
809 		EMIT2(0x0F, 0xC1);
810 		break;
811 	case BPF_XCHG:
812 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
813 		EMIT1(0x87);
814 		break;
815 	case BPF_CMPXCHG:
816 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
817 		EMIT2(0x0F, 0xB1);
818 		break;
819 	default:
820 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
821 		return -EFAULT;
822 	}
823 
824 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
825 
826 	*pprog = prog;
827 	return 0;
828 }
829 
830 static bool ex_handler_bpf(const struct exception_table_entry *x,
831 			   struct pt_regs *regs, int trapnr,
832 			   unsigned long error_code, unsigned long fault_addr)
833 {
834 	u32 reg = x->fixup >> 8;
835 
836 	/* jump over faulting load and clear dest register */
837 	*(unsigned long *)((void *)regs + reg) = 0;
838 	regs->ip += x->fixup & 0xff;
839 	return true;
840 }
841 
842 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
843 			     bool *regs_used, bool *tail_call_seen)
844 {
845 	int i;
846 
847 	for (i = 1; i <= insn_cnt; i++, insn++) {
848 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
849 			*tail_call_seen = true;
850 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
851 			regs_used[0] = true;
852 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
853 			regs_used[1] = true;
854 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
855 			regs_used[2] = true;
856 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
857 			regs_used[3] = true;
858 	}
859 }
860 
861 static void emit_nops(u8 **pprog, int len)
862 {
863 	u8 *prog = *pprog;
864 	int i, noplen;
865 
866 	while (len > 0) {
867 		noplen = len;
868 
869 		if (noplen > ASM_NOP_MAX)
870 			noplen = ASM_NOP_MAX;
871 
872 		for (i = 0; i < noplen; i++)
873 			EMIT1(x86_nops[noplen][i]);
874 		len -= noplen;
875 	}
876 
877 	*pprog = prog;
878 }
879 
880 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
881 
882 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
883 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
884 {
885 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
886 	struct bpf_insn *insn = bpf_prog->insnsi;
887 	bool callee_regs_used[4] = {};
888 	int insn_cnt = bpf_prog->len;
889 	bool tail_call_seen = false;
890 	bool seen_exit = false;
891 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
892 	int i, excnt = 0;
893 	int ilen, proglen = 0;
894 	u8 *prog = temp;
895 	int err;
896 
897 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
898 			 &tail_call_seen);
899 
900 	/* tail call's presence in current prog implies it is reachable */
901 	tail_call_reachable |= tail_call_seen;
902 
903 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
904 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
905 		      bpf_prog->aux->func_idx != 0);
906 	push_callee_regs(&prog, callee_regs_used);
907 
908 	ilen = prog - temp;
909 	if (image)
910 		memcpy(image + proglen, temp, ilen);
911 	proglen += ilen;
912 	addrs[0] = proglen;
913 	prog = temp;
914 
915 	for (i = 1; i <= insn_cnt; i++, insn++) {
916 		const s32 imm32 = insn->imm;
917 		u32 dst_reg = insn->dst_reg;
918 		u32 src_reg = insn->src_reg;
919 		u8 b2 = 0, b3 = 0;
920 		u8 *start_of_ldx;
921 		s64 jmp_offset;
922 		u8 jmp_cond;
923 		u8 *func;
924 		int nops;
925 
926 		switch (insn->code) {
927 			/* ALU */
928 		case BPF_ALU | BPF_ADD | BPF_X:
929 		case BPF_ALU | BPF_SUB | BPF_X:
930 		case BPF_ALU | BPF_AND | BPF_X:
931 		case BPF_ALU | BPF_OR | BPF_X:
932 		case BPF_ALU | BPF_XOR | BPF_X:
933 		case BPF_ALU64 | BPF_ADD | BPF_X:
934 		case BPF_ALU64 | BPF_SUB | BPF_X:
935 		case BPF_ALU64 | BPF_AND | BPF_X:
936 		case BPF_ALU64 | BPF_OR | BPF_X:
937 		case BPF_ALU64 | BPF_XOR | BPF_X:
938 			maybe_emit_mod(&prog, dst_reg, src_reg,
939 				       BPF_CLASS(insn->code) == BPF_ALU64);
940 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
941 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
942 			break;
943 
944 		case BPF_ALU64 | BPF_MOV | BPF_X:
945 		case BPF_ALU | BPF_MOV | BPF_X:
946 			emit_mov_reg(&prog,
947 				     BPF_CLASS(insn->code) == BPF_ALU64,
948 				     dst_reg, src_reg);
949 			break;
950 
951 			/* neg dst */
952 		case BPF_ALU | BPF_NEG:
953 		case BPF_ALU64 | BPF_NEG:
954 			if (BPF_CLASS(insn->code) == BPF_ALU64)
955 				EMIT1(add_1mod(0x48, dst_reg));
956 			else if (is_ereg(dst_reg))
957 				EMIT1(add_1mod(0x40, dst_reg));
958 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
959 			break;
960 
961 		case BPF_ALU | BPF_ADD | BPF_K:
962 		case BPF_ALU | BPF_SUB | BPF_K:
963 		case BPF_ALU | BPF_AND | BPF_K:
964 		case BPF_ALU | BPF_OR | BPF_K:
965 		case BPF_ALU | BPF_XOR | BPF_K:
966 		case BPF_ALU64 | BPF_ADD | BPF_K:
967 		case BPF_ALU64 | BPF_SUB | BPF_K:
968 		case BPF_ALU64 | BPF_AND | BPF_K:
969 		case BPF_ALU64 | BPF_OR | BPF_K:
970 		case BPF_ALU64 | BPF_XOR | BPF_K:
971 			if (BPF_CLASS(insn->code) == BPF_ALU64)
972 				EMIT1(add_1mod(0x48, dst_reg));
973 			else if (is_ereg(dst_reg))
974 				EMIT1(add_1mod(0x40, dst_reg));
975 
976 			/*
977 			 * b3 holds 'normal' opcode, b2 short form only valid
978 			 * in case dst is eax/rax.
979 			 */
980 			switch (BPF_OP(insn->code)) {
981 			case BPF_ADD:
982 				b3 = 0xC0;
983 				b2 = 0x05;
984 				break;
985 			case BPF_SUB:
986 				b3 = 0xE8;
987 				b2 = 0x2D;
988 				break;
989 			case BPF_AND:
990 				b3 = 0xE0;
991 				b2 = 0x25;
992 				break;
993 			case BPF_OR:
994 				b3 = 0xC8;
995 				b2 = 0x0D;
996 				break;
997 			case BPF_XOR:
998 				b3 = 0xF0;
999 				b2 = 0x35;
1000 				break;
1001 			}
1002 
1003 			if (is_imm8(imm32))
1004 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1005 			else if (is_axreg(dst_reg))
1006 				EMIT1_off32(b2, imm32);
1007 			else
1008 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1009 			break;
1010 
1011 		case BPF_ALU64 | BPF_MOV | BPF_K:
1012 		case BPF_ALU | BPF_MOV | BPF_K:
1013 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1014 				       dst_reg, imm32);
1015 			break;
1016 
1017 		case BPF_LD | BPF_IMM | BPF_DW:
1018 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1019 			insn++;
1020 			i++;
1021 			break;
1022 
1023 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1024 		case BPF_ALU | BPF_MOD | BPF_X:
1025 		case BPF_ALU | BPF_DIV | BPF_X:
1026 		case BPF_ALU | BPF_MOD | BPF_K:
1027 		case BPF_ALU | BPF_DIV | BPF_K:
1028 		case BPF_ALU64 | BPF_MOD | BPF_X:
1029 		case BPF_ALU64 | BPF_DIV | BPF_X:
1030 		case BPF_ALU64 | BPF_MOD | BPF_K:
1031 		case BPF_ALU64 | BPF_DIV | BPF_K:
1032 			EMIT1(0x50); /* push rax */
1033 			EMIT1(0x52); /* push rdx */
1034 
1035 			if (BPF_SRC(insn->code) == BPF_X)
1036 				/* mov r11, src_reg */
1037 				EMIT_mov(AUX_REG, src_reg);
1038 			else
1039 				/* mov r11, imm32 */
1040 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1041 
1042 			/* mov rax, dst_reg */
1043 			EMIT_mov(BPF_REG_0, dst_reg);
1044 
1045 			/*
1046 			 * xor edx, edx
1047 			 * equivalent to 'xor rdx, rdx', but one byte less
1048 			 */
1049 			EMIT2(0x31, 0xd2);
1050 
1051 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1052 				/* div r11 */
1053 				EMIT3(0x49, 0xF7, 0xF3);
1054 			else
1055 				/* div r11d */
1056 				EMIT3(0x41, 0xF7, 0xF3);
1057 
1058 			if (BPF_OP(insn->code) == BPF_MOD)
1059 				/* mov r11, rdx */
1060 				EMIT3(0x49, 0x89, 0xD3);
1061 			else
1062 				/* mov r11, rax */
1063 				EMIT3(0x49, 0x89, 0xC3);
1064 
1065 			EMIT1(0x5A); /* pop rdx */
1066 			EMIT1(0x58); /* pop rax */
1067 
1068 			/* mov dst_reg, r11 */
1069 			EMIT_mov(dst_reg, AUX_REG);
1070 			break;
1071 
1072 		case BPF_ALU | BPF_MUL | BPF_K:
1073 		case BPF_ALU | BPF_MUL | BPF_X:
1074 		case BPF_ALU64 | BPF_MUL | BPF_K:
1075 		case BPF_ALU64 | BPF_MUL | BPF_X:
1076 		{
1077 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1078 
1079 			if (dst_reg != BPF_REG_0)
1080 				EMIT1(0x50); /* push rax */
1081 			if (dst_reg != BPF_REG_3)
1082 				EMIT1(0x52); /* push rdx */
1083 
1084 			/* mov r11, dst_reg */
1085 			EMIT_mov(AUX_REG, dst_reg);
1086 
1087 			if (BPF_SRC(insn->code) == BPF_X)
1088 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
1089 			else
1090 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1091 
1092 			if (is64)
1093 				EMIT1(add_1mod(0x48, AUX_REG));
1094 			else if (is_ereg(AUX_REG))
1095 				EMIT1(add_1mod(0x40, AUX_REG));
1096 			/* mul(q) r11 */
1097 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1098 
1099 			if (dst_reg != BPF_REG_3)
1100 				EMIT1(0x5A); /* pop rdx */
1101 			if (dst_reg != BPF_REG_0) {
1102 				/* mov dst_reg, rax */
1103 				EMIT_mov(dst_reg, BPF_REG_0);
1104 				EMIT1(0x58); /* pop rax */
1105 			}
1106 			break;
1107 		}
1108 			/* Shifts */
1109 		case BPF_ALU | BPF_LSH | BPF_K:
1110 		case BPF_ALU | BPF_RSH | BPF_K:
1111 		case BPF_ALU | BPF_ARSH | BPF_K:
1112 		case BPF_ALU64 | BPF_LSH | BPF_K:
1113 		case BPF_ALU64 | BPF_RSH | BPF_K:
1114 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1115 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1116 				EMIT1(add_1mod(0x48, dst_reg));
1117 			else if (is_ereg(dst_reg))
1118 				EMIT1(add_1mod(0x40, dst_reg));
1119 
1120 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1121 			if (imm32 == 1)
1122 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1123 			else
1124 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1125 			break;
1126 
1127 		case BPF_ALU | BPF_LSH | BPF_X:
1128 		case BPF_ALU | BPF_RSH | BPF_X:
1129 		case BPF_ALU | BPF_ARSH | BPF_X:
1130 		case BPF_ALU64 | BPF_LSH | BPF_X:
1131 		case BPF_ALU64 | BPF_RSH | BPF_X:
1132 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1133 
1134 			/* Check for bad case when dst_reg == rcx */
1135 			if (dst_reg == BPF_REG_4) {
1136 				/* mov r11, dst_reg */
1137 				EMIT_mov(AUX_REG, dst_reg);
1138 				dst_reg = AUX_REG;
1139 			}
1140 
1141 			if (src_reg != BPF_REG_4) { /* common case */
1142 				EMIT1(0x51); /* push rcx */
1143 
1144 				/* mov rcx, src_reg */
1145 				EMIT_mov(BPF_REG_4, src_reg);
1146 			}
1147 
1148 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1149 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1150 				EMIT1(add_1mod(0x48, dst_reg));
1151 			else if (is_ereg(dst_reg))
1152 				EMIT1(add_1mod(0x40, dst_reg));
1153 
1154 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1155 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1156 
1157 			if (src_reg != BPF_REG_4)
1158 				EMIT1(0x59); /* pop rcx */
1159 
1160 			if (insn->dst_reg == BPF_REG_4)
1161 				/* mov dst_reg, r11 */
1162 				EMIT_mov(insn->dst_reg, AUX_REG);
1163 			break;
1164 
1165 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1166 			switch (imm32) {
1167 			case 16:
1168 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1169 				EMIT1(0x66);
1170 				if (is_ereg(dst_reg))
1171 					EMIT1(0x41);
1172 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1173 
1174 				/* Emit 'movzwl eax, ax' */
1175 				if (is_ereg(dst_reg))
1176 					EMIT3(0x45, 0x0F, 0xB7);
1177 				else
1178 					EMIT2(0x0F, 0xB7);
1179 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1180 				break;
1181 			case 32:
1182 				/* Emit 'bswap eax' to swap lower 4 bytes */
1183 				if (is_ereg(dst_reg))
1184 					EMIT2(0x41, 0x0F);
1185 				else
1186 					EMIT1(0x0F);
1187 				EMIT1(add_1reg(0xC8, dst_reg));
1188 				break;
1189 			case 64:
1190 				/* Emit 'bswap rax' to swap 8 bytes */
1191 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1192 				      add_1reg(0xC8, dst_reg));
1193 				break;
1194 			}
1195 			break;
1196 
1197 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1198 			switch (imm32) {
1199 			case 16:
1200 				/*
1201 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1202 				 * into 64 bit
1203 				 */
1204 				if (is_ereg(dst_reg))
1205 					EMIT3(0x45, 0x0F, 0xB7);
1206 				else
1207 					EMIT2(0x0F, 0xB7);
1208 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1209 				break;
1210 			case 32:
1211 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1212 				if (is_ereg(dst_reg))
1213 					EMIT1(0x45);
1214 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1215 				break;
1216 			case 64:
1217 				/* nop */
1218 				break;
1219 			}
1220 			break;
1221 
1222 			/* speculation barrier */
1223 		case BPF_ST | BPF_NOSPEC:
1224 			if (boot_cpu_has(X86_FEATURE_XMM2))
1225 				/* Emit 'lfence' */
1226 				EMIT3(0x0F, 0xAE, 0xE8);
1227 			break;
1228 
1229 			/* ST: *(u8*)(dst_reg + off) = imm */
1230 		case BPF_ST | BPF_MEM | BPF_B:
1231 			if (is_ereg(dst_reg))
1232 				EMIT2(0x41, 0xC6);
1233 			else
1234 				EMIT1(0xC6);
1235 			goto st;
1236 		case BPF_ST | BPF_MEM | BPF_H:
1237 			if (is_ereg(dst_reg))
1238 				EMIT3(0x66, 0x41, 0xC7);
1239 			else
1240 				EMIT2(0x66, 0xC7);
1241 			goto st;
1242 		case BPF_ST | BPF_MEM | BPF_W:
1243 			if (is_ereg(dst_reg))
1244 				EMIT2(0x41, 0xC7);
1245 			else
1246 				EMIT1(0xC7);
1247 			goto st;
1248 		case BPF_ST | BPF_MEM | BPF_DW:
1249 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1250 
1251 st:			if (is_imm8(insn->off))
1252 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1253 			else
1254 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1255 
1256 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1257 			break;
1258 
1259 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1260 		case BPF_STX | BPF_MEM | BPF_B:
1261 		case BPF_STX | BPF_MEM | BPF_H:
1262 		case BPF_STX | BPF_MEM | BPF_W:
1263 		case BPF_STX | BPF_MEM | BPF_DW:
1264 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1265 			break;
1266 
1267 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1268 		case BPF_LDX | BPF_MEM | BPF_B:
1269 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1270 		case BPF_LDX | BPF_MEM | BPF_H:
1271 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1272 		case BPF_LDX | BPF_MEM | BPF_W:
1273 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1274 		case BPF_LDX | BPF_MEM | BPF_DW:
1275 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1276 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1277 				/* test src_reg, src_reg */
1278 				maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */
1279 				EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg));
1280 				/* jne start_of_ldx */
1281 				EMIT2(X86_JNE, 0);
1282 				/* xor dst_reg, dst_reg */
1283 				emit_mov_imm32(&prog, false, dst_reg, 0);
1284 				/* jmp byte_after_ldx */
1285 				EMIT2(0xEB, 0);
1286 
1287 				/* populate jmp_offset for JNE above */
1288 				temp[4] = prog - temp - 5 /* sizeof(test + jne) */;
1289 				start_of_ldx = prog;
1290 			}
1291 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1292 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1293 				struct exception_table_entry *ex;
1294 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1295 				s64 delta;
1296 
1297 				/* populate jmp_offset for JMP above */
1298 				start_of_ldx[-1] = prog - start_of_ldx;
1299 
1300 				if (!bpf_prog->aux->extable)
1301 					break;
1302 
1303 				if (excnt >= bpf_prog->aux->num_exentries) {
1304 					pr_err("ex gen bug\n");
1305 					return -EFAULT;
1306 				}
1307 				ex = &bpf_prog->aux->extable[excnt++];
1308 
1309 				delta = _insn - (u8 *)&ex->insn;
1310 				if (!is_simm32(delta)) {
1311 					pr_err("extable->insn doesn't fit into 32-bit\n");
1312 					return -EFAULT;
1313 				}
1314 				ex->insn = delta;
1315 
1316 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1317 				if (!is_simm32(delta)) {
1318 					pr_err("extable->handler doesn't fit into 32-bit\n");
1319 					return -EFAULT;
1320 				}
1321 				ex->handler = delta;
1322 
1323 				if (dst_reg > BPF_REG_9) {
1324 					pr_err("verifier error\n");
1325 					return -EFAULT;
1326 				}
1327 				/*
1328 				 * Compute size of x86 insn and its target dest x86 register.
1329 				 * ex_handler_bpf() will use lower 8 bits to adjust
1330 				 * pt_regs->ip to jump over this x86 instruction
1331 				 * and upper bits to figure out which pt_regs to zero out.
1332 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1333 				 * of 4 bytes will be ignored and rbx will be zero inited.
1334 				 */
1335 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1336 			}
1337 			break;
1338 
1339 		case BPF_STX | BPF_ATOMIC | BPF_W:
1340 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1341 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1342 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1343 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1344 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1345 				u32 real_src_reg = src_reg;
1346 				u32 real_dst_reg = dst_reg;
1347 				u8 *branch_target;
1348 
1349 				/*
1350 				 * Can't be implemented with a single x86 insn.
1351 				 * Need to do a CMPXCHG loop.
1352 				 */
1353 
1354 				/* Will need RAX as a CMPXCHG operand so save R0 */
1355 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1356 				if (src_reg == BPF_REG_0)
1357 					real_src_reg = BPF_REG_AX;
1358 				if (dst_reg == BPF_REG_0)
1359 					real_dst_reg = BPF_REG_AX;
1360 
1361 				branch_target = prog;
1362 				/* Load old value */
1363 				emit_ldx(&prog, BPF_SIZE(insn->code),
1364 					 BPF_REG_0, real_dst_reg, insn->off);
1365 				/*
1366 				 * Perform the (commutative) operation locally,
1367 				 * put the result in the AUX_REG.
1368 				 */
1369 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1370 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1371 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1372 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1373 				/* Attempt to swap in new value */
1374 				err = emit_atomic(&prog, BPF_CMPXCHG,
1375 						  real_dst_reg, AUX_REG,
1376 						  insn->off,
1377 						  BPF_SIZE(insn->code));
1378 				if (WARN_ON(err))
1379 					return err;
1380 				/*
1381 				 * ZF tells us whether we won the race. If it's
1382 				 * cleared we need to try again.
1383 				 */
1384 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1385 				/* Return the pre-modification value */
1386 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1387 				/* Restore R0 after clobbering RAX */
1388 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1389 				break;
1390 			}
1391 
1392 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1393 					  insn->off, BPF_SIZE(insn->code));
1394 			if (err)
1395 				return err;
1396 			break;
1397 
1398 			/* call */
1399 		case BPF_JMP | BPF_CALL:
1400 			func = (u8 *) __bpf_call_base + imm32;
1401 			if (tail_call_reachable) {
1402 				EMIT3_off32(0x48, 0x8B, 0x85,
1403 					    -(bpf_prog->aux->stack_depth + 8));
1404 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1405 					return -EINVAL;
1406 			} else {
1407 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1408 					return -EINVAL;
1409 			}
1410 			break;
1411 
1412 		case BPF_JMP | BPF_TAIL_CALL:
1413 			if (imm32)
1414 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1415 							  &prog, addrs[i], image,
1416 							  callee_regs_used,
1417 							  bpf_prog->aux->stack_depth);
1418 			else
1419 				emit_bpf_tail_call_indirect(&prog,
1420 							    callee_regs_used,
1421 							    bpf_prog->aux->stack_depth);
1422 			break;
1423 
1424 			/* cond jump */
1425 		case BPF_JMP | BPF_JEQ | BPF_X:
1426 		case BPF_JMP | BPF_JNE | BPF_X:
1427 		case BPF_JMP | BPF_JGT | BPF_X:
1428 		case BPF_JMP | BPF_JLT | BPF_X:
1429 		case BPF_JMP | BPF_JGE | BPF_X:
1430 		case BPF_JMP | BPF_JLE | BPF_X:
1431 		case BPF_JMP | BPF_JSGT | BPF_X:
1432 		case BPF_JMP | BPF_JSLT | BPF_X:
1433 		case BPF_JMP | BPF_JSGE | BPF_X:
1434 		case BPF_JMP | BPF_JSLE | BPF_X:
1435 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1436 		case BPF_JMP32 | BPF_JNE | BPF_X:
1437 		case BPF_JMP32 | BPF_JGT | BPF_X:
1438 		case BPF_JMP32 | BPF_JLT | BPF_X:
1439 		case BPF_JMP32 | BPF_JGE | BPF_X:
1440 		case BPF_JMP32 | BPF_JLE | BPF_X:
1441 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1442 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1443 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1444 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1445 			/* cmp dst_reg, src_reg */
1446 			maybe_emit_mod(&prog, dst_reg, src_reg,
1447 				       BPF_CLASS(insn->code) == BPF_JMP);
1448 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1449 			goto emit_cond_jmp;
1450 
1451 		case BPF_JMP | BPF_JSET | BPF_X:
1452 		case BPF_JMP32 | BPF_JSET | BPF_X:
1453 			/* test dst_reg, src_reg */
1454 			maybe_emit_mod(&prog, dst_reg, src_reg,
1455 				       BPF_CLASS(insn->code) == BPF_JMP);
1456 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1457 			goto emit_cond_jmp;
1458 
1459 		case BPF_JMP | BPF_JSET | BPF_K:
1460 		case BPF_JMP32 | BPF_JSET | BPF_K:
1461 			/* test dst_reg, imm32 */
1462 			if (BPF_CLASS(insn->code) == BPF_JMP)
1463 				EMIT1(add_1mod(0x48, dst_reg));
1464 			else if (is_ereg(dst_reg))
1465 				EMIT1(add_1mod(0x40, dst_reg));
1466 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1467 			goto emit_cond_jmp;
1468 
1469 		case BPF_JMP | BPF_JEQ | BPF_K:
1470 		case BPF_JMP | BPF_JNE | BPF_K:
1471 		case BPF_JMP | BPF_JGT | BPF_K:
1472 		case BPF_JMP | BPF_JLT | BPF_K:
1473 		case BPF_JMP | BPF_JGE | BPF_K:
1474 		case BPF_JMP | BPF_JLE | BPF_K:
1475 		case BPF_JMP | BPF_JSGT | BPF_K:
1476 		case BPF_JMP | BPF_JSLT | BPF_K:
1477 		case BPF_JMP | BPF_JSGE | BPF_K:
1478 		case BPF_JMP | BPF_JSLE | BPF_K:
1479 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1480 		case BPF_JMP32 | BPF_JNE | BPF_K:
1481 		case BPF_JMP32 | BPF_JGT | BPF_K:
1482 		case BPF_JMP32 | BPF_JLT | BPF_K:
1483 		case BPF_JMP32 | BPF_JGE | BPF_K:
1484 		case BPF_JMP32 | BPF_JLE | BPF_K:
1485 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1486 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1487 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1488 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1489 			/* test dst_reg, dst_reg to save one extra byte */
1490 			if (imm32 == 0) {
1491 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1492 					       BPF_CLASS(insn->code) == BPF_JMP);
1493 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1494 				goto emit_cond_jmp;
1495 			}
1496 
1497 			/* cmp dst_reg, imm8/32 */
1498 			if (BPF_CLASS(insn->code) == BPF_JMP)
1499 				EMIT1(add_1mod(0x48, dst_reg));
1500 			else if (is_ereg(dst_reg))
1501 				EMIT1(add_1mod(0x40, dst_reg));
1502 
1503 			if (is_imm8(imm32))
1504 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1505 			else
1506 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1507 
1508 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1509 			switch (BPF_OP(insn->code)) {
1510 			case BPF_JEQ:
1511 				jmp_cond = X86_JE;
1512 				break;
1513 			case BPF_JSET:
1514 			case BPF_JNE:
1515 				jmp_cond = X86_JNE;
1516 				break;
1517 			case BPF_JGT:
1518 				/* GT is unsigned '>', JA in x86 */
1519 				jmp_cond = X86_JA;
1520 				break;
1521 			case BPF_JLT:
1522 				/* LT is unsigned '<', JB in x86 */
1523 				jmp_cond = X86_JB;
1524 				break;
1525 			case BPF_JGE:
1526 				/* GE is unsigned '>=', JAE in x86 */
1527 				jmp_cond = X86_JAE;
1528 				break;
1529 			case BPF_JLE:
1530 				/* LE is unsigned '<=', JBE in x86 */
1531 				jmp_cond = X86_JBE;
1532 				break;
1533 			case BPF_JSGT:
1534 				/* Signed '>', GT in x86 */
1535 				jmp_cond = X86_JG;
1536 				break;
1537 			case BPF_JSLT:
1538 				/* Signed '<', LT in x86 */
1539 				jmp_cond = X86_JL;
1540 				break;
1541 			case BPF_JSGE:
1542 				/* Signed '>=', GE in x86 */
1543 				jmp_cond = X86_JGE;
1544 				break;
1545 			case BPF_JSLE:
1546 				/* Signed '<=', LE in x86 */
1547 				jmp_cond = X86_JLE;
1548 				break;
1549 			default: /* to silence GCC warning */
1550 				return -EFAULT;
1551 			}
1552 			jmp_offset = addrs[i + insn->off] - addrs[i];
1553 			if (is_imm8(jmp_offset)) {
1554 				if (jmp_padding) {
1555 					/* To keep the jmp_offset valid, the extra bytes are
1556 					 * padded before the jump insn, so we subtract the
1557 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1558 					 *
1559 					 * If the previous pass already emits an imm8
1560 					 * jmp_cond, then this BPF insn won't shrink, so
1561 					 * "nops" is 0.
1562 					 *
1563 					 * On the other hand, if the previous pass emits an
1564 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1565 					 * keep the image from shrinking further.
1566 					 *
1567 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1568 					 *     is 2 bytes, so the size difference is 4 bytes.
1569 					 */
1570 					nops = INSN_SZ_DIFF - 2;
1571 					if (nops != 0 && nops != 4) {
1572 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1573 						       nops);
1574 						return -EFAULT;
1575 					}
1576 					emit_nops(&prog, nops);
1577 				}
1578 				EMIT2(jmp_cond, jmp_offset);
1579 			} else if (is_simm32(jmp_offset)) {
1580 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1581 			} else {
1582 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1583 				return -EFAULT;
1584 			}
1585 
1586 			break;
1587 
1588 		case BPF_JMP | BPF_JA:
1589 			if (insn->off == -1)
1590 				/* -1 jmp instructions will always jump
1591 				 * backwards two bytes. Explicitly handling
1592 				 * this case avoids wasting too many passes
1593 				 * when there are long sequences of replaced
1594 				 * dead code.
1595 				 */
1596 				jmp_offset = -2;
1597 			else
1598 				jmp_offset = addrs[i + insn->off] - addrs[i];
1599 
1600 			if (!jmp_offset) {
1601 				/*
1602 				 * If jmp_padding is enabled, the extra nops will
1603 				 * be inserted. Otherwise, optimize out nop jumps.
1604 				 */
1605 				if (jmp_padding) {
1606 					/* There are 3 possible conditions.
1607 					 * (1) This BPF_JA is already optimized out in
1608 					 *     the previous run, so there is no need
1609 					 *     to pad any extra byte (0 byte).
1610 					 * (2) The previous pass emits an imm8 jmp,
1611 					 *     so we pad 2 bytes to match the previous
1612 					 *     insn size.
1613 					 * (3) Similarly, the previous pass emits an
1614 					 *     imm32 jmp, and 5 bytes is padded.
1615 					 */
1616 					nops = INSN_SZ_DIFF;
1617 					if (nops != 0 && nops != 2 && nops != 5) {
1618 						pr_err("unexpected nop jump padding: %d bytes\n",
1619 						       nops);
1620 						return -EFAULT;
1621 					}
1622 					emit_nops(&prog, nops);
1623 				}
1624 				break;
1625 			}
1626 emit_jmp:
1627 			if (is_imm8(jmp_offset)) {
1628 				if (jmp_padding) {
1629 					/* To avoid breaking jmp_offset, the extra bytes
1630 					 * are padded before the actual jmp insn, so
1631 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1632 					 *
1633 					 * If the previous pass already emits an imm8
1634 					 * jmp, there is nothing to pad (0 byte).
1635 					 *
1636 					 * If it emits an imm32 jmp (5 bytes) previously
1637 					 * and now an imm8 jmp (2 bytes), then we pad
1638 					 * (5 - 2 = 3) bytes to stop the image from
1639 					 * shrinking further.
1640 					 */
1641 					nops = INSN_SZ_DIFF - 2;
1642 					if (nops != 0 && nops != 3) {
1643 						pr_err("unexpected jump padding: %d bytes\n",
1644 						       nops);
1645 						return -EFAULT;
1646 					}
1647 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1648 				}
1649 				EMIT2(0xEB, jmp_offset);
1650 			} else if (is_simm32(jmp_offset)) {
1651 				EMIT1_off32(0xE9, jmp_offset);
1652 			} else {
1653 				pr_err("jmp gen bug %llx\n", jmp_offset);
1654 				return -EFAULT;
1655 			}
1656 			break;
1657 
1658 		case BPF_JMP | BPF_EXIT:
1659 			if (seen_exit) {
1660 				jmp_offset = ctx->cleanup_addr - addrs[i];
1661 				goto emit_jmp;
1662 			}
1663 			seen_exit = true;
1664 			/* Update cleanup_addr */
1665 			ctx->cleanup_addr = proglen;
1666 			pop_callee_regs(&prog, callee_regs_used);
1667 			EMIT1(0xC9);         /* leave */
1668 			EMIT1(0xC3);         /* ret */
1669 			break;
1670 
1671 		default:
1672 			/*
1673 			 * By design x86-64 JIT should support all BPF instructions.
1674 			 * This error will be seen if new instruction was added
1675 			 * to the interpreter, but not to the JIT, or if there is
1676 			 * junk in bpf_prog.
1677 			 */
1678 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1679 			return -EINVAL;
1680 		}
1681 
1682 		ilen = prog - temp;
1683 		if (ilen > BPF_MAX_INSN_SIZE) {
1684 			pr_err("bpf_jit: fatal insn size error\n");
1685 			return -EFAULT;
1686 		}
1687 
1688 		if (image) {
1689 			/*
1690 			 * When populating the image, assert that:
1691 			 *
1692 			 *  i) We do not write beyond the allocated space, and
1693 			 * ii) addrs[i] did not change from the prior run, in order
1694 			 *     to validate assumptions made for computing branch
1695 			 *     displacements.
1696 			 */
1697 			if (unlikely(proglen + ilen > oldproglen ||
1698 				     proglen + ilen != addrs[i])) {
1699 				pr_err("bpf_jit: fatal error\n");
1700 				return -EFAULT;
1701 			}
1702 			memcpy(image + proglen, temp, ilen);
1703 		}
1704 		proglen += ilen;
1705 		addrs[i] = proglen;
1706 		prog = temp;
1707 	}
1708 
1709 	if (image && excnt != bpf_prog->aux->num_exentries) {
1710 		pr_err("extable is not populated\n");
1711 		return -EFAULT;
1712 	}
1713 	return proglen;
1714 }
1715 
1716 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1717 		      int stack_size)
1718 {
1719 	int i;
1720 	/* Store function arguments to stack.
1721 	 * For a function that accepts two pointers the sequence will be:
1722 	 * mov QWORD PTR [rbp-0x10],rdi
1723 	 * mov QWORD PTR [rbp-0x8],rsi
1724 	 */
1725 	for (i = 0; i < min(nr_args, 6); i++)
1726 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1727 			 BPF_REG_FP,
1728 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1729 			 -(stack_size - i * 8));
1730 }
1731 
1732 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1733 			 int stack_size)
1734 {
1735 	int i;
1736 
1737 	/* Restore function arguments from stack.
1738 	 * For a function that accepts two pointers the sequence will be:
1739 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1740 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1741 	 */
1742 	for (i = 0; i < min(nr_args, 6); i++)
1743 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1744 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1745 			 BPF_REG_FP,
1746 			 -(stack_size - i * 8));
1747 }
1748 
1749 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1750 			   struct bpf_prog *p, int stack_size, bool save_ret)
1751 {
1752 	u8 *prog = *pprog;
1753 	u8 *jmp_insn;
1754 
1755 	/* arg1: mov rdi, progs[i] */
1756 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1757 	if (emit_call(&prog,
1758 		      p->aux->sleepable ? __bpf_prog_enter_sleepable :
1759 		      __bpf_prog_enter, prog))
1760 			return -EINVAL;
1761 	/* remember prog start time returned by __bpf_prog_enter */
1762 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1763 
1764 	/* if (__bpf_prog_enter*(prog) == 0)
1765 	 *	goto skip_exec_of_prog;
1766 	 */
1767 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1768 	/* emit 2 nops that will be replaced with JE insn */
1769 	jmp_insn = prog;
1770 	emit_nops(&prog, 2);
1771 
1772 	/* arg1: lea rdi, [rbp - stack_size] */
1773 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1774 	/* arg2: progs[i]->insnsi for interpreter */
1775 	if (!p->jited)
1776 		emit_mov_imm64(&prog, BPF_REG_2,
1777 			       (long) p->insnsi >> 32,
1778 			       (u32) (long) p->insnsi);
1779 	/* call JITed bpf program or interpreter */
1780 	if (emit_call(&prog, p->bpf_func, prog))
1781 		return -EINVAL;
1782 
1783 	/*
1784 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1785 	 * of the previous call which is then passed on the stack to
1786 	 * the next BPF program.
1787 	 *
1788 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
1789 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1790 	 */
1791 	if (save_ret)
1792 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1793 
1794 	/* replace 2 nops with JE insn, since jmp target is known */
1795 	jmp_insn[0] = X86_JE;
1796 	jmp_insn[1] = prog - jmp_insn - 2;
1797 
1798 	/* arg1: mov rdi, progs[i] */
1799 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1800 	/* arg2: mov rsi, rbx <- start time in nsec */
1801 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1802 	if (emit_call(&prog,
1803 		      p->aux->sleepable ? __bpf_prog_exit_sleepable :
1804 		      __bpf_prog_exit, prog))
1805 			return -EINVAL;
1806 
1807 	*pprog = prog;
1808 	return 0;
1809 }
1810 
1811 static void emit_align(u8 **pprog, u32 align)
1812 {
1813 	u8 *target, *prog = *pprog;
1814 
1815 	target = PTR_ALIGN(prog, align);
1816 	if (target != prog)
1817 		emit_nops(&prog, target - prog);
1818 
1819 	*pprog = prog;
1820 }
1821 
1822 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1823 {
1824 	u8 *prog = *pprog;
1825 	s64 offset;
1826 
1827 	offset = func - (ip + 2 + 4);
1828 	if (!is_simm32(offset)) {
1829 		pr_err("Target %p is out of range\n", func);
1830 		return -EINVAL;
1831 	}
1832 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1833 	*pprog = prog;
1834 	return 0;
1835 }
1836 
1837 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1838 		      struct bpf_tramp_progs *tp, int stack_size,
1839 		      bool save_ret)
1840 {
1841 	int i;
1842 	u8 *prog = *pprog;
1843 
1844 	for (i = 0; i < tp->nr_progs; i++) {
1845 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size,
1846 				    save_ret))
1847 			return -EINVAL;
1848 	}
1849 	*pprog = prog;
1850 	return 0;
1851 }
1852 
1853 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1854 			      struct bpf_tramp_progs *tp, int stack_size,
1855 			      u8 **branches)
1856 {
1857 	u8 *prog = *pprog;
1858 	int i;
1859 
1860 	/* The first fmod_ret program will receive a garbage return value.
1861 	 * Set this to 0 to avoid confusing the program.
1862 	 */
1863 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1864 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1865 	for (i = 0; i < tp->nr_progs; i++) {
1866 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1867 			return -EINVAL;
1868 
1869 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1870 		 * if (*(u64 *)(rbp - 8) !=  0)
1871 		 *	goto do_fexit;
1872 		 */
1873 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1874 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1875 
1876 		/* Save the location of the branch and Generate 6 nops
1877 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1878 		 * are replaced with a conditional jump once do_fexit (i.e. the
1879 		 * start of the fexit invocation) is finalized.
1880 		 */
1881 		branches[i] = prog;
1882 		emit_nops(&prog, 4 + 2);
1883 	}
1884 
1885 	*pprog = prog;
1886 	return 0;
1887 }
1888 
1889 static bool is_valid_bpf_tramp_flags(unsigned int flags)
1890 {
1891 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1892 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1893 		return false;
1894 
1895 	/*
1896 	 * BPF_TRAMP_F_RET_FENTRY_RET is only used by bpf_struct_ops,
1897 	 * and it must be used alone.
1898 	 */
1899 	if ((flags & BPF_TRAMP_F_RET_FENTRY_RET) &&
1900 	    (flags & ~BPF_TRAMP_F_RET_FENTRY_RET))
1901 		return false;
1902 
1903 	return true;
1904 }
1905 
1906 /* Example:
1907  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1908  * its 'struct btf_func_model' will be nr_args=2
1909  * The assembly code when eth_type_trans is executing after trampoline:
1910  *
1911  * push rbp
1912  * mov rbp, rsp
1913  * sub rsp, 16                     // space for skb and dev
1914  * push rbx                        // temp regs to pass start time
1915  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1916  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1917  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1918  * mov rbx, rax                    // remember start time in bpf stats are enabled
1919  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1920  * call addr_of_jited_FENTRY_prog
1921  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1922  * mov rsi, rbx                    // prog start time
1923  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1924  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1925  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1926  * pop rbx
1927  * leave
1928  * ret
1929  *
1930  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1931  * replaced with 'call generated_bpf_trampoline'. When it returns
1932  * eth_type_trans will continue executing with original skb and dev pointers.
1933  *
1934  * The assembly code when eth_type_trans is called from trampoline:
1935  *
1936  * push rbp
1937  * mov rbp, rsp
1938  * sub rsp, 24                     // space for skb, dev, return value
1939  * push rbx                        // temp regs to pass start time
1940  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1941  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1942  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1943  * mov rbx, rax                    // remember start time if bpf stats are enabled
1944  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1945  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1946  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1947  * mov rsi, rbx                    // prog start time
1948  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1949  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1950  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1951  * call eth_type_trans+5           // execute body of eth_type_trans
1952  * mov qword ptr [rbp - 8], rax    // save return value
1953  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1954  * mov rbx, rax                    // remember start time in bpf stats are enabled
1955  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1956  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1957  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1958  * mov rsi, rbx                    // prog start time
1959  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1960  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1961  * pop rbx
1962  * leave
1963  * add rsp, 8                      // skip eth_type_trans's frame
1964  * ret                             // return to its caller
1965  */
1966 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1967 				const struct btf_func_model *m, u32 flags,
1968 				struct bpf_tramp_progs *tprogs,
1969 				void *orig_call)
1970 {
1971 	int ret, i, nr_args = m->nr_args;
1972 	int stack_size = nr_args * 8;
1973 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1974 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1975 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1976 	u8 **branches = NULL;
1977 	u8 *prog;
1978 	bool save_ret;
1979 
1980 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1981 	if (nr_args > 6)
1982 		return -ENOTSUPP;
1983 
1984 	if (!is_valid_bpf_tramp_flags(flags))
1985 		return -EINVAL;
1986 
1987 	/* room for return value of orig_call or fentry prog */
1988 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1989 	if (save_ret)
1990 		stack_size += 8;
1991 
1992 	if (flags & BPF_TRAMP_F_IP_ARG)
1993 		stack_size += 8; /* room for IP address argument */
1994 
1995 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1996 		/* skip patched call instruction and point orig_call to actual
1997 		 * body of the kernel function.
1998 		 */
1999 		orig_call += X86_PATCH_SIZE;
2000 
2001 	prog = image;
2002 
2003 	EMIT1(0x55);		 /* push rbp */
2004 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2005 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2006 	EMIT1(0x53);		 /* push rbx */
2007 
2008 	if (flags & BPF_TRAMP_F_IP_ARG) {
2009 		/* Store IP address of the traced function:
2010 		 * mov rax, QWORD PTR [rbp + 8]
2011 		 * sub rax, X86_PATCH_SIZE
2012 		 * mov QWORD PTR [rbp - stack_size], rax
2013 		 */
2014 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2015 		EMIT4(0x48, 0x83, 0xe8, X86_PATCH_SIZE);
2016 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -stack_size);
2017 
2018 		/* Continue with stack_size for regs storage, stack will
2019 		 * be correctly restored with 'leave' instruction.
2020 		 */
2021 		stack_size -= 8;
2022 	}
2023 
2024 	save_regs(m, &prog, nr_args, stack_size);
2025 
2026 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2027 		/* arg1: mov rdi, im */
2028 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2029 		if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2030 			ret = -EINVAL;
2031 			goto cleanup;
2032 		}
2033 	}
2034 
2035 	if (fentry->nr_progs)
2036 		if (invoke_bpf(m, &prog, fentry, stack_size,
2037 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2038 			return -EINVAL;
2039 
2040 	if (fmod_ret->nr_progs) {
2041 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
2042 				   GFP_KERNEL);
2043 		if (!branches)
2044 			return -ENOMEM;
2045 
2046 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
2047 				       branches)) {
2048 			ret = -EINVAL;
2049 			goto cleanup;
2050 		}
2051 	}
2052 
2053 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2054 		restore_regs(m, &prog, nr_args, stack_size);
2055 
2056 		/* call original function */
2057 		if (emit_call(&prog, orig_call, prog)) {
2058 			ret = -EINVAL;
2059 			goto cleanup;
2060 		}
2061 		/* remember return value in a stack for bpf prog to access */
2062 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2063 		im->ip_after_call = prog;
2064 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2065 		prog += X86_PATCH_SIZE;
2066 	}
2067 
2068 	if (fmod_ret->nr_progs) {
2069 		/* From Intel 64 and IA-32 Architectures Optimization
2070 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2071 		 * Coding Rule 11: All branch targets should be 16-byte
2072 		 * aligned.
2073 		 */
2074 		emit_align(&prog, 16);
2075 		/* Update the branches saved in invoke_bpf_mod_ret with the
2076 		 * aligned address of do_fexit.
2077 		 */
2078 		for (i = 0; i < fmod_ret->nr_progs; i++)
2079 			emit_cond_near_jump(&branches[i], prog, branches[i],
2080 					    X86_JNE);
2081 	}
2082 
2083 	if (fexit->nr_progs)
2084 		if (invoke_bpf(m, &prog, fexit, stack_size, false)) {
2085 			ret = -EINVAL;
2086 			goto cleanup;
2087 		}
2088 
2089 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2090 		restore_regs(m, &prog, nr_args, stack_size);
2091 
2092 	/* This needs to be done regardless. If there were fmod_ret programs,
2093 	 * the return value is only updated on the stack and still needs to be
2094 	 * restored to R0.
2095 	 */
2096 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2097 		im->ip_epilogue = prog;
2098 		/* arg1: mov rdi, im */
2099 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2100 		if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2101 			ret = -EINVAL;
2102 			goto cleanup;
2103 		}
2104 	}
2105 	/* restore return value of orig_call or fentry prog back into RAX */
2106 	if (save_ret)
2107 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2108 
2109 	EMIT1(0x5B); /* pop rbx */
2110 	EMIT1(0xC9); /* leave */
2111 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2112 		/* skip our return address and return to parent */
2113 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2114 	EMIT1(0xC3); /* ret */
2115 	/* Make sure the trampoline generation logic doesn't overflow */
2116 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2117 		ret = -EFAULT;
2118 		goto cleanup;
2119 	}
2120 	ret = prog - (u8 *)image;
2121 
2122 cleanup:
2123 	kfree(branches);
2124 	return ret;
2125 }
2126 
2127 static int emit_fallback_jump(u8 **pprog)
2128 {
2129 	u8 *prog = *pprog;
2130 	int err = 0;
2131 
2132 #ifdef CONFIG_RETPOLINE
2133 	/* Note that this assumes the the compiler uses external
2134 	 * thunks for indirect calls. Both clang and GCC use the same
2135 	 * naming convention for external thunks.
2136 	 */
2137 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
2138 #else
2139 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
2140 #endif
2141 	*pprog = prog;
2142 	return err;
2143 }
2144 
2145 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2146 {
2147 	u8 *jg_reloc, *prog = *pprog;
2148 	int pivot, err, jg_bytes = 1;
2149 	s64 jg_offset;
2150 
2151 	if (a == b) {
2152 		/* Leaf node of recursion, i.e. not a range of indices
2153 		 * anymore.
2154 		 */
2155 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2156 		if (!is_simm32(progs[a]))
2157 			return -1;
2158 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2159 			    progs[a]);
2160 		err = emit_cond_near_jump(&prog,	/* je func */
2161 					  (void *)progs[a], prog,
2162 					  X86_JE);
2163 		if (err)
2164 			return err;
2165 
2166 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
2167 		if (err)
2168 			return err;
2169 
2170 		*pprog = prog;
2171 		return 0;
2172 	}
2173 
2174 	/* Not a leaf node, so we pivot, and recursively descend into
2175 	 * the lower and upper ranges.
2176 	 */
2177 	pivot = (b - a) / 2;
2178 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2179 	if (!is_simm32(progs[a + pivot]))
2180 		return -1;
2181 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2182 
2183 	if (pivot > 2) {				/* jg upper_part */
2184 		/* Require near jump. */
2185 		jg_bytes = 4;
2186 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2187 	} else {
2188 		EMIT2(X86_JG, 0);
2189 	}
2190 	jg_reloc = prog;
2191 
2192 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2193 				  progs);
2194 	if (err)
2195 		return err;
2196 
2197 	/* From Intel 64 and IA-32 Architectures Optimization
2198 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2199 	 * Coding Rule 11: All branch targets should be 16-byte
2200 	 * aligned.
2201 	 */
2202 	emit_align(&prog, 16);
2203 	jg_offset = prog - jg_reloc;
2204 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2205 
2206 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2207 				  b, progs);
2208 	if (err)
2209 		return err;
2210 
2211 	*pprog = prog;
2212 	return 0;
2213 }
2214 
2215 static int cmp_ips(const void *a, const void *b)
2216 {
2217 	const s64 *ipa = a;
2218 	const s64 *ipb = b;
2219 
2220 	if (*ipa > *ipb)
2221 		return 1;
2222 	if (*ipa < *ipb)
2223 		return -1;
2224 	return 0;
2225 }
2226 
2227 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2228 {
2229 	u8 *prog = image;
2230 
2231 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2232 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2233 }
2234 
2235 struct x64_jit_data {
2236 	struct bpf_binary_header *header;
2237 	int *addrs;
2238 	u8 *image;
2239 	int proglen;
2240 	struct jit_context ctx;
2241 };
2242 
2243 #define MAX_PASSES 20
2244 #define PADDING_PASSES (MAX_PASSES - 5)
2245 
2246 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2247 {
2248 	struct bpf_binary_header *header = NULL;
2249 	struct bpf_prog *tmp, *orig_prog = prog;
2250 	struct x64_jit_data *jit_data;
2251 	int proglen, oldproglen = 0;
2252 	struct jit_context ctx = {};
2253 	bool tmp_blinded = false;
2254 	bool extra_pass = false;
2255 	bool padding = false;
2256 	u8 *image = NULL;
2257 	int *addrs;
2258 	int pass;
2259 	int i;
2260 
2261 	if (!prog->jit_requested)
2262 		return orig_prog;
2263 
2264 	tmp = bpf_jit_blind_constants(prog);
2265 	/*
2266 	 * If blinding was requested and we failed during blinding,
2267 	 * we must fall back to the interpreter.
2268 	 */
2269 	if (IS_ERR(tmp))
2270 		return orig_prog;
2271 	if (tmp != prog) {
2272 		tmp_blinded = true;
2273 		prog = tmp;
2274 	}
2275 
2276 	jit_data = prog->aux->jit_data;
2277 	if (!jit_data) {
2278 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2279 		if (!jit_data) {
2280 			prog = orig_prog;
2281 			goto out;
2282 		}
2283 		prog->aux->jit_data = jit_data;
2284 	}
2285 	addrs = jit_data->addrs;
2286 	if (addrs) {
2287 		ctx = jit_data->ctx;
2288 		oldproglen = jit_data->proglen;
2289 		image = jit_data->image;
2290 		header = jit_data->header;
2291 		extra_pass = true;
2292 		padding = true;
2293 		goto skip_init_addrs;
2294 	}
2295 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2296 	if (!addrs) {
2297 		prog = orig_prog;
2298 		goto out_addrs;
2299 	}
2300 
2301 	/*
2302 	 * Before first pass, make a rough estimation of addrs[]
2303 	 * each BPF instruction is translated to less than 64 bytes
2304 	 */
2305 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2306 		proglen += 64;
2307 		addrs[i] = proglen;
2308 	}
2309 	ctx.cleanup_addr = proglen;
2310 skip_init_addrs:
2311 
2312 	/*
2313 	 * JITed image shrinks with every pass and the loop iterates
2314 	 * until the image stops shrinking. Very large BPF programs
2315 	 * may converge on the last pass. In such case do one more
2316 	 * pass to emit the final image.
2317 	 */
2318 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2319 		if (!padding && pass >= PADDING_PASSES)
2320 			padding = true;
2321 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
2322 		if (proglen <= 0) {
2323 out_image:
2324 			image = NULL;
2325 			if (header)
2326 				bpf_jit_binary_free(header);
2327 			prog = orig_prog;
2328 			goto out_addrs;
2329 		}
2330 		if (image) {
2331 			if (proglen != oldproglen) {
2332 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2333 				       proglen, oldproglen);
2334 				goto out_image;
2335 			}
2336 			break;
2337 		}
2338 		if (proglen == oldproglen) {
2339 			/*
2340 			 * The number of entries in extable is the number of BPF_LDX
2341 			 * insns that access kernel memory via "pointer to BTF type".
2342 			 * The verifier changed their opcode from LDX|MEM|size
2343 			 * to LDX|PROBE_MEM|size to make JITing easier.
2344 			 */
2345 			u32 align = __alignof__(struct exception_table_entry);
2346 			u32 extable_size = prog->aux->num_exentries *
2347 				sizeof(struct exception_table_entry);
2348 
2349 			/* allocate module memory for x86 insns and extable */
2350 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2351 						      &image, align, jit_fill_hole);
2352 			if (!header) {
2353 				prog = orig_prog;
2354 				goto out_addrs;
2355 			}
2356 			prog->aux->extable = (void *) image + roundup(proglen, align);
2357 		}
2358 		oldproglen = proglen;
2359 		cond_resched();
2360 	}
2361 
2362 	if (bpf_jit_enable > 1)
2363 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2364 
2365 	if (image) {
2366 		if (!prog->is_func || extra_pass) {
2367 			bpf_tail_call_direct_fixup(prog);
2368 			bpf_jit_binary_lock_ro(header);
2369 		} else {
2370 			jit_data->addrs = addrs;
2371 			jit_data->ctx = ctx;
2372 			jit_data->proglen = proglen;
2373 			jit_data->image = image;
2374 			jit_data->header = header;
2375 		}
2376 		prog->bpf_func = (void *)image;
2377 		prog->jited = 1;
2378 		prog->jited_len = proglen;
2379 	} else {
2380 		prog = orig_prog;
2381 	}
2382 
2383 	if (!image || !prog->is_func || extra_pass) {
2384 		if (image)
2385 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2386 out_addrs:
2387 		kvfree(addrs);
2388 		kfree(jit_data);
2389 		prog->aux->jit_data = NULL;
2390 	}
2391 out:
2392 	if (tmp_blinded)
2393 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2394 					   tmp : orig_prog);
2395 	return prog;
2396 }
2397 
2398 bool bpf_jit_supports_kfunc_call(void)
2399 {
2400 	return true;
2401 }
2402