xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 
19 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
20 {
21 	if (len == 1)
22 		*ptr = bytes;
23 	else if (len == 2)
24 		*(u16 *)ptr = bytes;
25 	else {
26 		*(u32 *)ptr = bytes;
27 		barrier();
28 	}
29 	return ptr + len;
30 }
31 
32 #define EMIT(bytes, len) \
33 	do { prog = emit_code(prog, bytes, len); } while (0)
34 
35 #define EMIT1(b1)		EMIT(b1, 1)
36 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
37 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
38 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
39 
40 #define EMIT1_off32(b1, off) \
41 	do { EMIT1(b1); EMIT(off, 4); } while (0)
42 #define EMIT2_off32(b1, b2, off) \
43 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
44 #define EMIT3_off32(b1, b2, b3, off) \
45 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
46 #define EMIT4_off32(b1, b2, b3, b4, off) \
47 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
48 
49 static bool is_imm8(int value)
50 {
51 	return value <= 127 && value >= -128;
52 }
53 
54 static bool is_simm32(s64 value)
55 {
56 	return value == (s64)(s32)value;
57 }
58 
59 static bool is_uimm32(u64 value)
60 {
61 	return value == (u64)(u32)value;
62 }
63 
64 /* mov dst, src */
65 #define EMIT_mov(DST, SRC)								 \
66 	do {										 \
67 		if (DST != SRC)								 \
68 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
69 	} while (0)
70 
71 static int bpf_size_to_x86_bytes(int bpf_size)
72 {
73 	if (bpf_size == BPF_W)
74 		return 4;
75 	else if (bpf_size == BPF_H)
76 		return 2;
77 	else if (bpf_size == BPF_B)
78 		return 1;
79 	else if (bpf_size == BPF_DW)
80 		return 4; /* imm32 */
81 	else
82 		return 0;
83 }
84 
85 /*
86  * List of x86 cond jumps opcodes (. + s8)
87  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
88  */
89 #define X86_JB  0x72
90 #define X86_JAE 0x73
91 #define X86_JE  0x74
92 #define X86_JNE 0x75
93 #define X86_JBE 0x76
94 #define X86_JA  0x77
95 #define X86_JL  0x7C
96 #define X86_JGE 0x7D
97 #define X86_JLE 0x7E
98 #define X86_JG  0x7F
99 
100 /* Pick a register outside of BPF range for JIT internal work */
101 #define AUX_REG (MAX_BPF_JIT_REG + 1)
102 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
103 
104 /*
105  * The following table maps BPF registers to x86-64 registers.
106  *
107  * x86-64 register R12 is unused, since if used as base address
108  * register in load/store instructions, it always needs an
109  * extra byte of encoding and is callee saved.
110  *
111  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
112  * trampoline. x86-64 register R10 is used for blinding (if enabled).
113  */
114 static const int reg2hex[] = {
115 	[BPF_REG_0] = 0,  /* RAX */
116 	[BPF_REG_1] = 7,  /* RDI */
117 	[BPF_REG_2] = 6,  /* RSI */
118 	[BPF_REG_3] = 2,  /* RDX */
119 	[BPF_REG_4] = 1,  /* RCX */
120 	[BPF_REG_5] = 0,  /* R8  */
121 	[BPF_REG_6] = 3,  /* RBX callee saved */
122 	[BPF_REG_7] = 5,  /* R13 callee saved */
123 	[BPF_REG_8] = 6,  /* R14 callee saved */
124 	[BPF_REG_9] = 7,  /* R15 callee saved */
125 	[BPF_REG_FP] = 5, /* RBP readonly */
126 	[BPF_REG_AX] = 2, /* R10 temp register */
127 	[AUX_REG] = 3,    /* R11 temp register */
128 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
129 };
130 
131 static const int reg2pt_regs[] = {
132 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
133 	[BPF_REG_1] = offsetof(struct pt_regs, di),
134 	[BPF_REG_2] = offsetof(struct pt_regs, si),
135 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
136 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
137 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
138 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
139 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
140 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
141 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
142 };
143 
144 /*
145  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
146  * which need extra byte of encoding.
147  * rax,rcx,...,rbp have simpler encoding
148  */
149 static bool is_ereg(u32 reg)
150 {
151 	return (1 << reg) & (BIT(BPF_REG_5) |
152 			     BIT(AUX_REG) |
153 			     BIT(BPF_REG_7) |
154 			     BIT(BPF_REG_8) |
155 			     BIT(BPF_REG_9) |
156 			     BIT(X86_REG_R9) |
157 			     BIT(BPF_REG_AX));
158 }
159 
160 /*
161  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
162  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
163  * of encoding. al,cl,dl,bl have simpler encoding.
164  */
165 static bool is_ereg_8l(u32 reg)
166 {
167 	return is_ereg(reg) ||
168 	    (1 << reg) & (BIT(BPF_REG_1) |
169 			  BIT(BPF_REG_2) |
170 			  BIT(BPF_REG_FP));
171 }
172 
173 static bool is_axreg(u32 reg)
174 {
175 	return reg == BPF_REG_0;
176 }
177 
178 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
179 static u8 add_1mod(u8 byte, u32 reg)
180 {
181 	if (is_ereg(reg))
182 		byte |= 1;
183 	return byte;
184 }
185 
186 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
187 {
188 	if (is_ereg(r1))
189 		byte |= 1;
190 	if (is_ereg(r2))
191 		byte |= 4;
192 	return byte;
193 }
194 
195 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
196 static u8 add_1reg(u8 byte, u32 dst_reg)
197 {
198 	return byte + reg2hex[dst_reg];
199 }
200 
201 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
202 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
203 {
204 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
205 }
206 
207 /* Some 1-byte opcodes for binary ALU operations */
208 static u8 simple_alu_opcodes[] = {
209 	[BPF_ADD] = 0x01,
210 	[BPF_SUB] = 0x29,
211 	[BPF_AND] = 0x21,
212 	[BPF_OR] = 0x09,
213 	[BPF_XOR] = 0x31,
214 	[BPF_LSH] = 0xE0,
215 	[BPF_RSH] = 0xE8,
216 	[BPF_ARSH] = 0xF8,
217 };
218 
219 static void jit_fill_hole(void *area, unsigned int size)
220 {
221 	/* Fill whole space with INT3 instructions */
222 	memset(area, 0xcc, size);
223 }
224 
225 struct jit_context {
226 	int cleanup_addr; /* Epilogue code offset */
227 
228 	/*
229 	 * Program specific offsets of labels in the code; these rely on the
230 	 * JIT doing at least 2 passes, recording the position on the first
231 	 * pass, only to generate the correct offset on the second pass.
232 	 */
233 	int tail_call_direct_label;
234 	int tail_call_indirect_label;
235 };
236 
237 /* Maximum number of bytes emitted while JITing one eBPF insn */
238 #define BPF_MAX_INSN_SIZE	128
239 #define BPF_INSN_SAFETY		64
240 
241 /* Number of bytes emit_patch() needs to generate instructions */
242 #define X86_PATCH_SIZE		5
243 /* Number of bytes that will be skipped on tailcall */
244 #define X86_TAIL_CALL_OFFSET	11
245 
246 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
247 {
248 	u8 *prog = *pprog;
249 
250 	if (callee_regs_used[0])
251 		EMIT1(0x53);         /* push rbx */
252 	if (callee_regs_used[1])
253 		EMIT2(0x41, 0x55);   /* push r13 */
254 	if (callee_regs_used[2])
255 		EMIT2(0x41, 0x56);   /* push r14 */
256 	if (callee_regs_used[3])
257 		EMIT2(0x41, 0x57);   /* push r15 */
258 	*pprog = prog;
259 }
260 
261 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
262 {
263 	u8 *prog = *pprog;
264 
265 	if (callee_regs_used[3])
266 		EMIT2(0x41, 0x5F);   /* pop r15 */
267 	if (callee_regs_used[2])
268 		EMIT2(0x41, 0x5E);   /* pop r14 */
269 	if (callee_regs_used[1])
270 		EMIT2(0x41, 0x5D);   /* pop r13 */
271 	if (callee_regs_used[0])
272 		EMIT1(0x5B);         /* pop rbx */
273 	*pprog = prog;
274 }
275 
276 /*
277  * Emit x86-64 prologue code for BPF program.
278  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
279  * while jumping to another program
280  */
281 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
282 			  bool tail_call_reachable, bool is_subprog)
283 {
284 	u8 *prog = *pprog;
285 
286 	/* BPF trampoline can be made to work without these nops,
287 	 * but let's waste 5 bytes for now and optimize later
288 	 */
289 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
290 	prog += X86_PATCH_SIZE;
291 	if (!ebpf_from_cbpf) {
292 		if (tail_call_reachable && !is_subprog)
293 			EMIT2(0x31, 0xC0); /* xor eax, eax */
294 		else
295 			EMIT2(0x66, 0x90); /* nop2 */
296 	}
297 	EMIT1(0x55);             /* push rbp */
298 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
299 	/* sub rsp, rounded_stack_depth */
300 	if (stack_depth)
301 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
302 	if (tail_call_reachable)
303 		EMIT1(0x50);         /* push rax */
304 	*pprog = prog;
305 }
306 
307 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
308 {
309 	u8 *prog = *pprog;
310 	s64 offset;
311 
312 	offset = func - (ip + X86_PATCH_SIZE);
313 	if (!is_simm32(offset)) {
314 		pr_err("Target call %p is out of range\n", func);
315 		return -ERANGE;
316 	}
317 	EMIT1_off32(opcode, offset);
318 	*pprog = prog;
319 	return 0;
320 }
321 
322 static int emit_call(u8 **pprog, void *func, void *ip)
323 {
324 	return emit_patch(pprog, func, ip, 0xE8);
325 }
326 
327 static int emit_jump(u8 **pprog, void *func, void *ip)
328 {
329 	return emit_patch(pprog, func, ip, 0xE9);
330 }
331 
332 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
333 				void *old_addr, void *new_addr,
334 				const bool text_live)
335 {
336 	const u8 *nop_insn = x86_nops[5];
337 	u8 old_insn[X86_PATCH_SIZE];
338 	u8 new_insn[X86_PATCH_SIZE];
339 	u8 *prog;
340 	int ret;
341 
342 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
343 	if (old_addr) {
344 		prog = old_insn;
345 		ret = t == BPF_MOD_CALL ?
346 		      emit_call(&prog, old_addr, ip) :
347 		      emit_jump(&prog, old_addr, ip);
348 		if (ret)
349 			return ret;
350 	}
351 
352 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
353 	if (new_addr) {
354 		prog = new_insn;
355 		ret = t == BPF_MOD_CALL ?
356 		      emit_call(&prog, new_addr, ip) :
357 		      emit_jump(&prog, new_addr, ip);
358 		if (ret)
359 			return ret;
360 	}
361 
362 	ret = -EBUSY;
363 	mutex_lock(&text_mutex);
364 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
365 		goto out;
366 	ret = 1;
367 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
368 		if (text_live)
369 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
370 		else
371 			memcpy(ip, new_insn, X86_PATCH_SIZE);
372 		ret = 0;
373 	}
374 out:
375 	mutex_unlock(&text_mutex);
376 	return ret;
377 }
378 
379 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
380 		       void *old_addr, void *new_addr)
381 {
382 	if (!is_kernel_text((long)ip) &&
383 	    !is_bpf_text_address((long)ip))
384 		/* BPF poking in modules is not supported */
385 		return -EINVAL;
386 
387 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
388 }
389 
390 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
391 
392 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
393 {
394 	u8 *prog = *pprog;
395 
396 #ifdef CONFIG_RETPOLINE
397 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_AMD)) {
398 		EMIT_LFENCE();
399 		EMIT2(0xFF, 0xE0 + reg);
400 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
401 		emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
402 	} else
403 #endif
404 	EMIT2(0xFF, 0xE0 + reg);
405 
406 	*pprog = prog;
407 }
408 
409 /*
410  * Generate the following code:
411  *
412  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
413  *   if (index >= array->map.max_entries)
414  *     goto out;
415  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
416  *     goto out;
417  *   prog = array->ptrs[index];
418  *   if (prog == NULL)
419  *     goto out;
420  *   goto *(prog->bpf_func + prologue_size);
421  * out:
422  */
423 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
424 					u32 stack_depth, u8 *ip,
425 					struct jit_context *ctx)
426 {
427 	int tcc_off = -4 - round_up(stack_depth, 8);
428 	u8 *prog = *pprog, *start = *pprog;
429 	int offset;
430 
431 	/*
432 	 * rdi - pointer to ctx
433 	 * rsi - pointer to bpf_array
434 	 * rdx - index in bpf_array
435 	 */
436 
437 	/*
438 	 * if (index >= array->map.max_entries)
439 	 *	goto out;
440 	 */
441 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
442 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
443 	      offsetof(struct bpf_array, map.max_entries));
444 
445 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
446 	EMIT2(X86_JBE, offset);                   /* jbe out */
447 
448 	/*
449 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
450 	 *	goto out;
451 	 */
452 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
453 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
454 
455 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
456 	EMIT2(X86_JA, offset);                    /* ja out */
457 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
458 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
459 
460 	/* prog = array->ptrs[index]; */
461 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
462 		    offsetof(struct bpf_array, ptrs));
463 
464 	/*
465 	 * if (prog == NULL)
466 	 *	goto out;
467 	 */
468 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
469 
470 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
471 	EMIT2(X86_JE, offset);                    /* je out */
472 
473 	pop_callee_regs(&prog, callee_regs_used);
474 
475 	EMIT1(0x58);                              /* pop rax */
476 	if (stack_depth)
477 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
478 			    round_up(stack_depth, 8));
479 
480 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
481 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
482 	      offsetof(struct bpf_prog, bpf_func));
483 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
484 	      X86_TAIL_CALL_OFFSET);
485 	/*
486 	 * Now we're ready to jump into next BPF program
487 	 * rdi == ctx (1st arg)
488 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
489 	 */
490 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
491 
492 	/* out: */
493 	ctx->tail_call_indirect_label = prog - start;
494 	*pprog = prog;
495 }
496 
497 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
498 				      u8 **pprog, u8 *ip,
499 				      bool *callee_regs_used, u32 stack_depth,
500 				      struct jit_context *ctx)
501 {
502 	int tcc_off = -4 - round_up(stack_depth, 8);
503 	u8 *prog = *pprog, *start = *pprog;
504 	int offset;
505 
506 	/*
507 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
508 	 *	goto out;
509 	 */
510 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
511 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
512 
513 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
514 	EMIT2(X86_JA, offset);                        /* ja out */
515 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
516 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
517 
518 	poke->tailcall_bypass = ip + (prog - start);
519 	poke->adj_off = X86_TAIL_CALL_OFFSET;
520 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
521 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
522 
523 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
524 		  poke->tailcall_bypass);
525 
526 	pop_callee_regs(&prog, callee_regs_used);
527 	EMIT1(0x58);                                  /* pop rax */
528 	if (stack_depth)
529 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
530 
531 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
532 	prog += X86_PATCH_SIZE;
533 
534 	/* out: */
535 	ctx->tail_call_direct_label = prog - start;
536 
537 	*pprog = prog;
538 }
539 
540 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
541 {
542 	struct bpf_jit_poke_descriptor *poke;
543 	struct bpf_array *array;
544 	struct bpf_prog *target;
545 	int i, ret;
546 
547 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
548 		poke = &prog->aux->poke_tab[i];
549 		if (poke->aux && poke->aux != prog->aux)
550 			continue;
551 
552 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
553 
554 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
555 			continue;
556 
557 		array = container_of(poke->tail_call.map, struct bpf_array, map);
558 		mutex_lock(&array->aux->poke_mutex);
559 		target = array->ptrs[poke->tail_call.key];
560 		if (target) {
561 			/* Plain memcpy is used when image is not live yet
562 			 * and still not locked as read-only. Once poke
563 			 * location is active (poke->tailcall_target_stable),
564 			 * any parallel bpf_arch_text_poke() might occur
565 			 * still on the read-write image until we finally
566 			 * locked it as read-only. Both modifications on
567 			 * the given image are under text_mutex to avoid
568 			 * interference.
569 			 */
570 			ret = __bpf_arch_text_poke(poke->tailcall_target,
571 						   BPF_MOD_JUMP, NULL,
572 						   (u8 *)target->bpf_func +
573 						   poke->adj_off, false);
574 			BUG_ON(ret < 0);
575 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
576 						   BPF_MOD_JUMP,
577 						   (u8 *)poke->tailcall_target +
578 						   X86_PATCH_SIZE, NULL, false);
579 			BUG_ON(ret < 0);
580 		}
581 		WRITE_ONCE(poke->tailcall_target_stable, true);
582 		mutex_unlock(&array->aux->poke_mutex);
583 	}
584 }
585 
586 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
587 			   u32 dst_reg, const u32 imm32)
588 {
589 	u8 *prog = *pprog;
590 	u8 b1, b2, b3;
591 
592 	/*
593 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
594 	 * (which zero-extends imm32) to save 2 bytes.
595 	 */
596 	if (sign_propagate && (s32)imm32 < 0) {
597 		/* 'mov %rax, imm32' sign extends imm32 */
598 		b1 = add_1mod(0x48, dst_reg);
599 		b2 = 0xC7;
600 		b3 = 0xC0;
601 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
602 		goto done;
603 	}
604 
605 	/*
606 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
607 	 * to save 3 bytes.
608 	 */
609 	if (imm32 == 0) {
610 		if (is_ereg(dst_reg))
611 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
612 		b2 = 0x31; /* xor */
613 		b3 = 0xC0;
614 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
615 		goto done;
616 	}
617 
618 	/* mov %eax, imm32 */
619 	if (is_ereg(dst_reg))
620 		EMIT1(add_1mod(0x40, dst_reg));
621 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
622 done:
623 	*pprog = prog;
624 }
625 
626 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
627 			   const u32 imm32_hi, const u32 imm32_lo)
628 {
629 	u8 *prog = *pprog;
630 
631 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
632 		/*
633 		 * For emitting plain u32, where sign bit must not be
634 		 * propagated LLVM tends to load imm64 over mov32
635 		 * directly, so save couple of bytes by just doing
636 		 * 'mov %eax, imm32' instead.
637 		 */
638 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
639 	} else {
640 		/* movabsq %rax, imm64 */
641 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
642 		EMIT(imm32_lo, 4);
643 		EMIT(imm32_hi, 4);
644 	}
645 
646 	*pprog = prog;
647 }
648 
649 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
650 {
651 	u8 *prog = *pprog;
652 
653 	if (is64) {
654 		/* mov dst, src */
655 		EMIT_mov(dst_reg, src_reg);
656 	} else {
657 		/* mov32 dst, src */
658 		if (is_ereg(dst_reg) || is_ereg(src_reg))
659 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
660 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
661 	}
662 
663 	*pprog = prog;
664 }
665 
666 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
667 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
668 {
669 	u8 *prog = *pprog;
670 
671 	if (is_imm8(off)) {
672 		/* 1-byte signed displacement.
673 		 *
674 		 * If off == 0 we could skip this and save one extra byte, but
675 		 * special case of x86 R13 which always needs an offset is not
676 		 * worth the hassle
677 		 */
678 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
679 	} else {
680 		/* 4-byte signed displacement */
681 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
682 	}
683 	*pprog = prog;
684 }
685 
686 /*
687  * Emit a REX byte if it will be necessary to address these registers
688  */
689 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
690 {
691 	u8 *prog = *pprog;
692 
693 	if (is64)
694 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
695 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
696 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
697 	*pprog = prog;
698 }
699 
700 /*
701  * Similar version of maybe_emit_mod() for a single register
702  */
703 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
704 {
705 	u8 *prog = *pprog;
706 
707 	if (is64)
708 		EMIT1(add_1mod(0x48, reg));
709 	else if (is_ereg(reg))
710 		EMIT1(add_1mod(0x40, reg));
711 	*pprog = prog;
712 }
713 
714 /* LDX: dst_reg = *(u8*)(src_reg + off) */
715 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
716 {
717 	u8 *prog = *pprog;
718 
719 	switch (size) {
720 	case BPF_B:
721 		/* Emit 'movzx rax, byte ptr [rax + off]' */
722 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
723 		break;
724 	case BPF_H:
725 		/* Emit 'movzx rax, word ptr [rax + off]' */
726 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
727 		break;
728 	case BPF_W:
729 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
730 		if (is_ereg(dst_reg) || is_ereg(src_reg))
731 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
732 		else
733 			EMIT1(0x8B);
734 		break;
735 	case BPF_DW:
736 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
737 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
738 		break;
739 	}
740 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
741 	*pprog = prog;
742 }
743 
744 /* STX: *(u8*)(dst_reg + off) = src_reg */
745 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
746 {
747 	u8 *prog = *pprog;
748 
749 	switch (size) {
750 	case BPF_B:
751 		/* Emit 'mov byte ptr [rax + off], al' */
752 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
753 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
754 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
755 		else
756 			EMIT1(0x88);
757 		break;
758 	case BPF_H:
759 		if (is_ereg(dst_reg) || is_ereg(src_reg))
760 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
761 		else
762 			EMIT2(0x66, 0x89);
763 		break;
764 	case BPF_W:
765 		if (is_ereg(dst_reg) || is_ereg(src_reg))
766 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
767 		else
768 			EMIT1(0x89);
769 		break;
770 	case BPF_DW:
771 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
772 		break;
773 	}
774 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
775 	*pprog = prog;
776 }
777 
778 static int emit_atomic(u8 **pprog, u8 atomic_op,
779 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
780 {
781 	u8 *prog = *pprog;
782 
783 	EMIT1(0xF0); /* lock prefix */
784 
785 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
786 
787 	/* emit opcode */
788 	switch (atomic_op) {
789 	case BPF_ADD:
790 	case BPF_SUB:
791 	case BPF_AND:
792 	case BPF_OR:
793 	case BPF_XOR:
794 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
795 		EMIT1(simple_alu_opcodes[atomic_op]);
796 		break;
797 	case BPF_ADD | BPF_FETCH:
798 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
799 		EMIT2(0x0F, 0xC1);
800 		break;
801 	case BPF_XCHG:
802 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
803 		EMIT1(0x87);
804 		break;
805 	case BPF_CMPXCHG:
806 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
807 		EMIT2(0x0F, 0xB1);
808 		break;
809 	default:
810 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
811 		return -EFAULT;
812 	}
813 
814 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
815 
816 	*pprog = prog;
817 	return 0;
818 }
819 
820 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
821 {
822 	u32 reg = x->fixup >> 8;
823 
824 	/* jump over faulting load and clear dest register */
825 	*(unsigned long *)((void *)regs + reg) = 0;
826 	regs->ip += x->fixup & 0xff;
827 	return true;
828 }
829 
830 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
831 			     bool *regs_used, bool *tail_call_seen)
832 {
833 	int i;
834 
835 	for (i = 1; i <= insn_cnt; i++, insn++) {
836 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
837 			*tail_call_seen = true;
838 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
839 			regs_used[0] = true;
840 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
841 			regs_used[1] = true;
842 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
843 			regs_used[2] = true;
844 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
845 			regs_used[3] = true;
846 	}
847 }
848 
849 static void emit_nops(u8 **pprog, int len)
850 {
851 	u8 *prog = *pprog;
852 	int i, noplen;
853 
854 	while (len > 0) {
855 		noplen = len;
856 
857 		if (noplen > ASM_NOP_MAX)
858 			noplen = ASM_NOP_MAX;
859 
860 		for (i = 0; i < noplen; i++)
861 			EMIT1(x86_nops[noplen][i]);
862 		len -= noplen;
863 	}
864 
865 	*pprog = prog;
866 }
867 
868 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
869 
870 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
871 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
872 {
873 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
874 	struct bpf_insn *insn = bpf_prog->insnsi;
875 	bool callee_regs_used[4] = {};
876 	int insn_cnt = bpf_prog->len;
877 	bool tail_call_seen = false;
878 	bool seen_exit = false;
879 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
880 	int i, excnt = 0;
881 	int ilen, proglen = 0;
882 	u8 *prog = temp;
883 	int err;
884 
885 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
886 			 &tail_call_seen);
887 
888 	/* tail call's presence in current prog implies it is reachable */
889 	tail_call_reachable |= tail_call_seen;
890 
891 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
892 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
893 		      bpf_prog->aux->func_idx != 0);
894 	push_callee_regs(&prog, callee_regs_used);
895 
896 	ilen = prog - temp;
897 	if (image)
898 		memcpy(image + proglen, temp, ilen);
899 	proglen += ilen;
900 	addrs[0] = proglen;
901 	prog = temp;
902 
903 	for (i = 1; i <= insn_cnt; i++, insn++) {
904 		const s32 imm32 = insn->imm;
905 		u32 dst_reg = insn->dst_reg;
906 		u32 src_reg = insn->src_reg;
907 		u8 b2 = 0, b3 = 0;
908 		u8 *start_of_ldx;
909 		s64 jmp_offset;
910 		u8 jmp_cond;
911 		u8 *func;
912 		int nops;
913 
914 		switch (insn->code) {
915 			/* ALU */
916 		case BPF_ALU | BPF_ADD | BPF_X:
917 		case BPF_ALU | BPF_SUB | BPF_X:
918 		case BPF_ALU | BPF_AND | BPF_X:
919 		case BPF_ALU | BPF_OR | BPF_X:
920 		case BPF_ALU | BPF_XOR | BPF_X:
921 		case BPF_ALU64 | BPF_ADD | BPF_X:
922 		case BPF_ALU64 | BPF_SUB | BPF_X:
923 		case BPF_ALU64 | BPF_AND | BPF_X:
924 		case BPF_ALU64 | BPF_OR | BPF_X:
925 		case BPF_ALU64 | BPF_XOR | BPF_X:
926 			maybe_emit_mod(&prog, dst_reg, src_reg,
927 				       BPF_CLASS(insn->code) == BPF_ALU64);
928 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
929 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
930 			break;
931 
932 		case BPF_ALU64 | BPF_MOV | BPF_X:
933 		case BPF_ALU | BPF_MOV | BPF_X:
934 			emit_mov_reg(&prog,
935 				     BPF_CLASS(insn->code) == BPF_ALU64,
936 				     dst_reg, src_reg);
937 			break;
938 
939 			/* neg dst */
940 		case BPF_ALU | BPF_NEG:
941 		case BPF_ALU64 | BPF_NEG:
942 			maybe_emit_1mod(&prog, dst_reg,
943 					BPF_CLASS(insn->code) == BPF_ALU64);
944 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
945 			break;
946 
947 		case BPF_ALU | BPF_ADD | BPF_K:
948 		case BPF_ALU | BPF_SUB | BPF_K:
949 		case BPF_ALU | BPF_AND | BPF_K:
950 		case BPF_ALU | BPF_OR | BPF_K:
951 		case BPF_ALU | BPF_XOR | BPF_K:
952 		case BPF_ALU64 | BPF_ADD | BPF_K:
953 		case BPF_ALU64 | BPF_SUB | BPF_K:
954 		case BPF_ALU64 | BPF_AND | BPF_K:
955 		case BPF_ALU64 | BPF_OR | BPF_K:
956 		case BPF_ALU64 | BPF_XOR | BPF_K:
957 			maybe_emit_1mod(&prog, dst_reg,
958 					BPF_CLASS(insn->code) == BPF_ALU64);
959 
960 			/*
961 			 * b3 holds 'normal' opcode, b2 short form only valid
962 			 * in case dst is eax/rax.
963 			 */
964 			switch (BPF_OP(insn->code)) {
965 			case BPF_ADD:
966 				b3 = 0xC0;
967 				b2 = 0x05;
968 				break;
969 			case BPF_SUB:
970 				b3 = 0xE8;
971 				b2 = 0x2D;
972 				break;
973 			case BPF_AND:
974 				b3 = 0xE0;
975 				b2 = 0x25;
976 				break;
977 			case BPF_OR:
978 				b3 = 0xC8;
979 				b2 = 0x0D;
980 				break;
981 			case BPF_XOR:
982 				b3 = 0xF0;
983 				b2 = 0x35;
984 				break;
985 			}
986 
987 			if (is_imm8(imm32))
988 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
989 			else if (is_axreg(dst_reg))
990 				EMIT1_off32(b2, imm32);
991 			else
992 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
993 			break;
994 
995 		case BPF_ALU64 | BPF_MOV | BPF_K:
996 		case BPF_ALU | BPF_MOV | BPF_K:
997 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
998 				       dst_reg, imm32);
999 			break;
1000 
1001 		case BPF_LD | BPF_IMM | BPF_DW:
1002 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1003 			insn++;
1004 			i++;
1005 			break;
1006 
1007 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1008 		case BPF_ALU | BPF_MOD | BPF_X:
1009 		case BPF_ALU | BPF_DIV | BPF_X:
1010 		case BPF_ALU | BPF_MOD | BPF_K:
1011 		case BPF_ALU | BPF_DIV | BPF_K:
1012 		case BPF_ALU64 | BPF_MOD | BPF_X:
1013 		case BPF_ALU64 | BPF_DIV | BPF_X:
1014 		case BPF_ALU64 | BPF_MOD | BPF_K:
1015 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1016 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1017 
1018 			if (dst_reg != BPF_REG_0)
1019 				EMIT1(0x50); /* push rax */
1020 			if (dst_reg != BPF_REG_3)
1021 				EMIT1(0x52); /* push rdx */
1022 
1023 			if (BPF_SRC(insn->code) == BPF_X) {
1024 				if (src_reg == BPF_REG_0 ||
1025 				    src_reg == BPF_REG_3) {
1026 					/* mov r11, src_reg */
1027 					EMIT_mov(AUX_REG, src_reg);
1028 					src_reg = AUX_REG;
1029 				}
1030 			} else {
1031 				/* mov r11, imm32 */
1032 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1033 				src_reg = AUX_REG;
1034 			}
1035 
1036 			if (dst_reg != BPF_REG_0)
1037 				/* mov rax, dst_reg */
1038 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1039 
1040 			/*
1041 			 * xor edx, edx
1042 			 * equivalent to 'xor rdx, rdx', but one byte less
1043 			 */
1044 			EMIT2(0x31, 0xd2);
1045 
1046 			/* div src_reg */
1047 			maybe_emit_1mod(&prog, src_reg, is64);
1048 			EMIT2(0xF7, add_1reg(0xF0, src_reg));
1049 
1050 			if (BPF_OP(insn->code) == BPF_MOD &&
1051 			    dst_reg != BPF_REG_3)
1052 				/* mov dst_reg, rdx */
1053 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1054 			else if (BPF_OP(insn->code) == BPF_DIV &&
1055 				 dst_reg != BPF_REG_0)
1056 				/* mov dst_reg, rax */
1057 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1058 
1059 			if (dst_reg != BPF_REG_3)
1060 				EMIT1(0x5A); /* pop rdx */
1061 			if (dst_reg != BPF_REG_0)
1062 				EMIT1(0x58); /* pop rax */
1063 			break;
1064 		}
1065 
1066 		case BPF_ALU | BPF_MUL | BPF_K:
1067 		case BPF_ALU64 | BPF_MUL | BPF_K:
1068 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1069 				       BPF_CLASS(insn->code) == BPF_ALU64);
1070 
1071 			if (is_imm8(imm32))
1072 				/* imul dst_reg, dst_reg, imm8 */
1073 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1074 				      imm32);
1075 			else
1076 				/* imul dst_reg, dst_reg, imm32 */
1077 				EMIT2_off32(0x69,
1078 					    add_2reg(0xC0, dst_reg, dst_reg),
1079 					    imm32);
1080 			break;
1081 
1082 		case BPF_ALU | BPF_MUL | BPF_X:
1083 		case BPF_ALU64 | BPF_MUL | BPF_X:
1084 			maybe_emit_mod(&prog, src_reg, dst_reg,
1085 				       BPF_CLASS(insn->code) == BPF_ALU64);
1086 
1087 			/* imul dst_reg, src_reg */
1088 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1089 			break;
1090 
1091 			/* Shifts */
1092 		case BPF_ALU | BPF_LSH | BPF_K:
1093 		case BPF_ALU | BPF_RSH | BPF_K:
1094 		case BPF_ALU | BPF_ARSH | BPF_K:
1095 		case BPF_ALU64 | BPF_LSH | BPF_K:
1096 		case BPF_ALU64 | BPF_RSH | BPF_K:
1097 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1098 			maybe_emit_1mod(&prog, dst_reg,
1099 					BPF_CLASS(insn->code) == BPF_ALU64);
1100 
1101 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1102 			if (imm32 == 1)
1103 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1104 			else
1105 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1106 			break;
1107 
1108 		case BPF_ALU | BPF_LSH | BPF_X:
1109 		case BPF_ALU | BPF_RSH | BPF_X:
1110 		case BPF_ALU | BPF_ARSH | BPF_X:
1111 		case BPF_ALU64 | BPF_LSH | BPF_X:
1112 		case BPF_ALU64 | BPF_RSH | BPF_X:
1113 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1114 
1115 			/* Check for bad case when dst_reg == rcx */
1116 			if (dst_reg == BPF_REG_4) {
1117 				/* mov r11, dst_reg */
1118 				EMIT_mov(AUX_REG, dst_reg);
1119 				dst_reg = AUX_REG;
1120 			}
1121 
1122 			if (src_reg != BPF_REG_4) { /* common case */
1123 				EMIT1(0x51); /* push rcx */
1124 
1125 				/* mov rcx, src_reg */
1126 				EMIT_mov(BPF_REG_4, src_reg);
1127 			}
1128 
1129 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1130 			maybe_emit_1mod(&prog, dst_reg,
1131 					BPF_CLASS(insn->code) == BPF_ALU64);
1132 
1133 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1134 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1135 
1136 			if (src_reg != BPF_REG_4)
1137 				EMIT1(0x59); /* pop rcx */
1138 
1139 			if (insn->dst_reg == BPF_REG_4)
1140 				/* mov dst_reg, r11 */
1141 				EMIT_mov(insn->dst_reg, AUX_REG);
1142 			break;
1143 
1144 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1145 			switch (imm32) {
1146 			case 16:
1147 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1148 				EMIT1(0x66);
1149 				if (is_ereg(dst_reg))
1150 					EMIT1(0x41);
1151 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1152 
1153 				/* Emit 'movzwl eax, ax' */
1154 				if (is_ereg(dst_reg))
1155 					EMIT3(0x45, 0x0F, 0xB7);
1156 				else
1157 					EMIT2(0x0F, 0xB7);
1158 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1159 				break;
1160 			case 32:
1161 				/* Emit 'bswap eax' to swap lower 4 bytes */
1162 				if (is_ereg(dst_reg))
1163 					EMIT2(0x41, 0x0F);
1164 				else
1165 					EMIT1(0x0F);
1166 				EMIT1(add_1reg(0xC8, dst_reg));
1167 				break;
1168 			case 64:
1169 				/* Emit 'bswap rax' to swap 8 bytes */
1170 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1171 				      add_1reg(0xC8, dst_reg));
1172 				break;
1173 			}
1174 			break;
1175 
1176 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1177 			switch (imm32) {
1178 			case 16:
1179 				/*
1180 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1181 				 * into 64 bit
1182 				 */
1183 				if (is_ereg(dst_reg))
1184 					EMIT3(0x45, 0x0F, 0xB7);
1185 				else
1186 					EMIT2(0x0F, 0xB7);
1187 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1188 				break;
1189 			case 32:
1190 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1191 				if (is_ereg(dst_reg))
1192 					EMIT1(0x45);
1193 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1194 				break;
1195 			case 64:
1196 				/* nop */
1197 				break;
1198 			}
1199 			break;
1200 
1201 			/* speculation barrier */
1202 		case BPF_ST | BPF_NOSPEC:
1203 			if (boot_cpu_has(X86_FEATURE_XMM2))
1204 				EMIT_LFENCE();
1205 			break;
1206 
1207 			/* ST: *(u8*)(dst_reg + off) = imm */
1208 		case BPF_ST | BPF_MEM | BPF_B:
1209 			if (is_ereg(dst_reg))
1210 				EMIT2(0x41, 0xC6);
1211 			else
1212 				EMIT1(0xC6);
1213 			goto st;
1214 		case BPF_ST | BPF_MEM | BPF_H:
1215 			if (is_ereg(dst_reg))
1216 				EMIT3(0x66, 0x41, 0xC7);
1217 			else
1218 				EMIT2(0x66, 0xC7);
1219 			goto st;
1220 		case BPF_ST | BPF_MEM | BPF_W:
1221 			if (is_ereg(dst_reg))
1222 				EMIT2(0x41, 0xC7);
1223 			else
1224 				EMIT1(0xC7);
1225 			goto st;
1226 		case BPF_ST | BPF_MEM | BPF_DW:
1227 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1228 
1229 st:			if (is_imm8(insn->off))
1230 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1231 			else
1232 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1233 
1234 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1235 			break;
1236 
1237 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1238 		case BPF_STX | BPF_MEM | BPF_B:
1239 		case BPF_STX | BPF_MEM | BPF_H:
1240 		case BPF_STX | BPF_MEM | BPF_W:
1241 		case BPF_STX | BPF_MEM | BPF_DW:
1242 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1243 			break;
1244 
1245 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1246 		case BPF_LDX | BPF_MEM | BPF_B:
1247 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1248 		case BPF_LDX | BPF_MEM | BPF_H:
1249 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1250 		case BPF_LDX | BPF_MEM | BPF_W:
1251 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1252 		case BPF_LDX | BPF_MEM | BPF_DW:
1253 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1254 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1255 				/* test src_reg, src_reg */
1256 				maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */
1257 				EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg));
1258 				/* jne start_of_ldx */
1259 				EMIT2(X86_JNE, 0);
1260 				/* xor dst_reg, dst_reg */
1261 				emit_mov_imm32(&prog, false, dst_reg, 0);
1262 				/* jmp byte_after_ldx */
1263 				EMIT2(0xEB, 0);
1264 
1265 				/* populate jmp_offset for JNE above */
1266 				temp[4] = prog - temp - 5 /* sizeof(test + jne) */;
1267 				start_of_ldx = prog;
1268 			}
1269 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1270 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1271 				struct exception_table_entry *ex;
1272 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1273 				s64 delta;
1274 
1275 				/* populate jmp_offset for JMP above */
1276 				start_of_ldx[-1] = prog - start_of_ldx;
1277 
1278 				if (!bpf_prog->aux->extable)
1279 					break;
1280 
1281 				if (excnt >= bpf_prog->aux->num_exentries) {
1282 					pr_err("ex gen bug\n");
1283 					return -EFAULT;
1284 				}
1285 				ex = &bpf_prog->aux->extable[excnt++];
1286 
1287 				delta = _insn - (u8 *)&ex->insn;
1288 				if (!is_simm32(delta)) {
1289 					pr_err("extable->insn doesn't fit into 32-bit\n");
1290 					return -EFAULT;
1291 				}
1292 				ex->insn = delta;
1293 
1294 				ex->type = EX_TYPE_BPF;
1295 
1296 				if (dst_reg > BPF_REG_9) {
1297 					pr_err("verifier error\n");
1298 					return -EFAULT;
1299 				}
1300 				/*
1301 				 * Compute size of x86 insn and its target dest x86 register.
1302 				 * ex_handler_bpf() will use lower 8 bits to adjust
1303 				 * pt_regs->ip to jump over this x86 instruction
1304 				 * and upper bits to figure out which pt_regs to zero out.
1305 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1306 				 * of 4 bytes will be ignored and rbx will be zero inited.
1307 				 */
1308 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1309 			}
1310 			break;
1311 
1312 		case BPF_STX | BPF_ATOMIC | BPF_W:
1313 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1314 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1315 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1316 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1317 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1318 				u32 real_src_reg = src_reg;
1319 				u32 real_dst_reg = dst_reg;
1320 				u8 *branch_target;
1321 
1322 				/*
1323 				 * Can't be implemented with a single x86 insn.
1324 				 * Need to do a CMPXCHG loop.
1325 				 */
1326 
1327 				/* Will need RAX as a CMPXCHG operand so save R0 */
1328 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1329 				if (src_reg == BPF_REG_0)
1330 					real_src_reg = BPF_REG_AX;
1331 				if (dst_reg == BPF_REG_0)
1332 					real_dst_reg = BPF_REG_AX;
1333 
1334 				branch_target = prog;
1335 				/* Load old value */
1336 				emit_ldx(&prog, BPF_SIZE(insn->code),
1337 					 BPF_REG_0, real_dst_reg, insn->off);
1338 				/*
1339 				 * Perform the (commutative) operation locally,
1340 				 * put the result in the AUX_REG.
1341 				 */
1342 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1343 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1344 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1345 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1346 				/* Attempt to swap in new value */
1347 				err = emit_atomic(&prog, BPF_CMPXCHG,
1348 						  real_dst_reg, AUX_REG,
1349 						  insn->off,
1350 						  BPF_SIZE(insn->code));
1351 				if (WARN_ON(err))
1352 					return err;
1353 				/*
1354 				 * ZF tells us whether we won the race. If it's
1355 				 * cleared we need to try again.
1356 				 */
1357 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1358 				/* Return the pre-modification value */
1359 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1360 				/* Restore R0 after clobbering RAX */
1361 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1362 				break;
1363 			}
1364 
1365 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1366 					  insn->off, BPF_SIZE(insn->code));
1367 			if (err)
1368 				return err;
1369 			break;
1370 
1371 			/* call */
1372 		case BPF_JMP | BPF_CALL:
1373 			func = (u8 *) __bpf_call_base + imm32;
1374 			if (tail_call_reachable) {
1375 				EMIT3_off32(0x48, 0x8B, 0x85,
1376 					    -(bpf_prog->aux->stack_depth + 8));
1377 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1378 					return -EINVAL;
1379 			} else {
1380 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1381 					return -EINVAL;
1382 			}
1383 			break;
1384 
1385 		case BPF_JMP | BPF_TAIL_CALL:
1386 			if (imm32)
1387 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1388 							  &prog, image + addrs[i - 1],
1389 							  callee_regs_used,
1390 							  bpf_prog->aux->stack_depth,
1391 							  ctx);
1392 			else
1393 				emit_bpf_tail_call_indirect(&prog,
1394 							    callee_regs_used,
1395 							    bpf_prog->aux->stack_depth,
1396 							    image + addrs[i - 1],
1397 							    ctx);
1398 			break;
1399 
1400 			/* cond jump */
1401 		case BPF_JMP | BPF_JEQ | BPF_X:
1402 		case BPF_JMP | BPF_JNE | BPF_X:
1403 		case BPF_JMP | BPF_JGT | BPF_X:
1404 		case BPF_JMP | BPF_JLT | BPF_X:
1405 		case BPF_JMP | BPF_JGE | BPF_X:
1406 		case BPF_JMP | BPF_JLE | BPF_X:
1407 		case BPF_JMP | BPF_JSGT | BPF_X:
1408 		case BPF_JMP | BPF_JSLT | BPF_X:
1409 		case BPF_JMP | BPF_JSGE | BPF_X:
1410 		case BPF_JMP | BPF_JSLE | BPF_X:
1411 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1412 		case BPF_JMP32 | BPF_JNE | BPF_X:
1413 		case BPF_JMP32 | BPF_JGT | BPF_X:
1414 		case BPF_JMP32 | BPF_JLT | BPF_X:
1415 		case BPF_JMP32 | BPF_JGE | BPF_X:
1416 		case BPF_JMP32 | BPF_JLE | BPF_X:
1417 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1418 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1419 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1420 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1421 			/* cmp dst_reg, src_reg */
1422 			maybe_emit_mod(&prog, dst_reg, src_reg,
1423 				       BPF_CLASS(insn->code) == BPF_JMP);
1424 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1425 			goto emit_cond_jmp;
1426 
1427 		case BPF_JMP | BPF_JSET | BPF_X:
1428 		case BPF_JMP32 | BPF_JSET | BPF_X:
1429 			/* test dst_reg, src_reg */
1430 			maybe_emit_mod(&prog, dst_reg, src_reg,
1431 				       BPF_CLASS(insn->code) == BPF_JMP);
1432 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1433 			goto emit_cond_jmp;
1434 
1435 		case BPF_JMP | BPF_JSET | BPF_K:
1436 		case BPF_JMP32 | BPF_JSET | BPF_K:
1437 			/* test dst_reg, imm32 */
1438 			maybe_emit_1mod(&prog, dst_reg,
1439 					BPF_CLASS(insn->code) == BPF_JMP);
1440 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1441 			goto emit_cond_jmp;
1442 
1443 		case BPF_JMP | BPF_JEQ | BPF_K:
1444 		case BPF_JMP | BPF_JNE | BPF_K:
1445 		case BPF_JMP | BPF_JGT | BPF_K:
1446 		case BPF_JMP | BPF_JLT | BPF_K:
1447 		case BPF_JMP | BPF_JGE | BPF_K:
1448 		case BPF_JMP | BPF_JLE | BPF_K:
1449 		case BPF_JMP | BPF_JSGT | BPF_K:
1450 		case BPF_JMP | BPF_JSLT | BPF_K:
1451 		case BPF_JMP | BPF_JSGE | BPF_K:
1452 		case BPF_JMP | BPF_JSLE | BPF_K:
1453 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1454 		case BPF_JMP32 | BPF_JNE | BPF_K:
1455 		case BPF_JMP32 | BPF_JGT | BPF_K:
1456 		case BPF_JMP32 | BPF_JLT | BPF_K:
1457 		case BPF_JMP32 | BPF_JGE | BPF_K:
1458 		case BPF_JMP32 | BPF_JLE | BPF_K:
1459 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1460 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1461 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1462 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1463 			/* test dst_reg, dst_reg to save one extra byte */
1464 			if (imm32 == 0) {
1465 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1466 					       BPF_CLASS(insn->code) == BPF_JMP);
1467 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1468 				goto emit_cond_jmp;
1469 			}
1470 
1471 			/* cmp dst_reg, imm8/32 */
1472 			maybe_emit_1mod(&prog, dst_reg,
1473 					BPF_CLASS(insn->code) == BPF_JMP);
1474 
1475 			if (is_imm8(imm32))
1476 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1477 			else
1478 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1479 
1480 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1481 			switch (BPF_OP(insn->code)) {
1482 			case BPF_JEQ:
1483 				jmp_cond = X86_JE;
1484 				break;
1485 			case BPF_JSET:
1486 			case BPF_JNE:
1487 				jmp_cond = X86_JNE;
1488 				break;
1489 			case BPF_JGT:
1490 				/* GT is unsigned '>', JA in x86 */
1491 				jmp_cond = X86_JA;
1492 				break;
1493 			case BPF_JLT:
1494 				/* LT is unsigned '<', JB in x86 */
1495 				jmp_cond = X86_JB;
1496 				break;
1497 			case BPF_JGE:
1498 				/* GE is unsigned '>=', JAE in x86 */
1499 				jmp_cond = X86_JAE;
1500 				break;
1501 			case BPF_JLE:
1502 				/* LE is unsigned '<=', JBE in x86 */
1503 				jmp_cond = X86_JBE;
1504 				break;
1505 			case BPF_JSGT:
1506 				/* Signed '>', GT in x86 */
1507 				jmp_cond = X86_JG;
1508 				break;
1509 			case BPF_JSLT:
1510 				/* Signed '<', LT in x86 */
1511 				jmp_cond = X86_JL;
1512 				break;
1513 			case BPF_JSGE:
1514 				/* Signed '>=', GE in x86 */
1515 				jmp_cond = X86_JGE;
1516 				break;
1517 			case BPF_JSLE:
1518 				/* Signed '<=', LE in x86 */
1519 				jmp_cond = X86_JLE;
1520 				break;
1521 			default: /* to silence GCC warning */
1522 				return -EFAULT;
1523 			}
1524 			jmp_offset = addrs[i + insn->off] - addrs[i];
1525 			if (is_imm8(jmp_offset)) {
1526 				if (jmp_padding) {
1527 					/* To keep the jmp_offset valid, the extra bytes are
1528 					 * padded before the jump insn, so we subtract the
1529 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1530 					 *
1531 					 * If the previous pass already emits an imm8
1532 					 * jmp_cond, then this BPF insn won't shrink, so
1533 					 * "nops" is 0.
1534 					 *
1535 					 * On the other hand, if the previous pass emits an
1536 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1537 					 * keep the image from shrinking further.
1538 					 *
1539 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1540 					 *     is 2 bytes, so the size difference is 4 bytes.
1541 					 */
1542 					nops = INSN_SZ_DIFF - 2;
1543 					if (nops != 0 && nops != 4) {
1544 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1545 						       nops);
1546 						return -EFAULT;
1547 					}
1548 					emit_nops(&prog, nops);
1549 				}
1550 				EMIT2(jmp_cond, jmp_offset);
1551 			} else if (is_simm32(jmp_offset)) {
1552 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1553 			} else {
1554 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1555 				return -EFAULT;
1556 			}
1557 
1558 			break;
1559 
1560 		case BPF_JMP | BPF_JA:
1561 			if (insn->off == -1)
1562 				/* -1 jmp instructions will always jump
1563 				 * backwards two bytes. Explicitly handling
1564 				 * this case avoids wasting too many passes
1565 				 * when there are long sequences of replaced
1566 				 * dead code.
1567 				 */
1568 				jmp_offset = -2;
1569 			else
1570 				jmp_offset = addrs[i + insn->off] - addrs[i];
1571 
1572 			if (!jmp_offset) {
1573 				/*
1574 				 * If jmp_padding is enabled, the extra nops will
1575 				 * be inserted. Otherwise, optimize out nop jumps.
1576 				 */
1577 				if (jmp_padding) {
1578 					/* There are 3 possible conditions.
1579 					 * (1) This BPF_JA is already optimized out in
1580 					 *     the previous run, so there is no need
1581 					 *     to pad any extra byte (0 byte).
1582 					 * (2) The previous pass emits an imm8 jmp,
1583 					 *     so we pad 2 bytes to match the previous
1584 					 *     insn size.
1585 					 * (3) Similarly, the previous pass emits an
1586 					 *     imm32 jmp, and 5 bytes is padded.
1587 					 */
1588 					nops = INSN_SZ_DIFF;
1589 					if (nops != 0 && nops != 2 && nops != 5) {
1590 						pr_err("unexpected nop jump padding: %d bytes\n",
1591 						       nops);
1592 						return -EFAULT;
1593 					}
1594 					emit_nops(&prog, nops);
1595 				}
1596 				break;
1597 			}
1598 emit_jmp:
1599 			if (is_imm8(jmp_offset)) {
1600 				if (jmp_padding) {
1601 					/* To avoid breaking jmp_offset, the extra bytes
1602 					 * are padded before the actual jmp insn, so
1603 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1604 					 *
1605 					 * If the previous pass already emits an imm8
1606 					 * jmp, there is nothing to pad (0 byte).
1607 					 *
1608 					 * If it emits an imm32 jmp (5 bytes) previously
1609 					 * and now an imm8 jmp (2 bytes), then we pad
1610 					 * (5 - 2 = 3) bytes to stop the image from
1611 					 * shrinking further.
1612 					 */
1613 					nops = INSN_SZ_DIFF - 2;
1614 					if (nops != 0 && nops != 3) {
1615 						pr_err("unexpected jump padding: %d bytes\n",
1616 						       nops);
1617 						return -EFAULT;
1618 					}
1619 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1620 				}
1621 				EMIT2(0xEB, jmp_offset);
1622 			} else if (is_simm32(jmp_offset)) {
1623 				EMIT1_off32(0xE9, jmp_offset);
1624 			} else {
1625 				pr_err("jmp gen bug %llx\n", jmp_offset);
1626 				return -EFAULT;
1627 			}
1628 			break;
1629 
1630 		case BPF_JMP | BPF_EXIT:
1631 			if (seen_exit) {
1632 				jmp_offset = ctx->cleanup_addr - addrs[i];
1633 				goto emit_jmp;
1634 			}
1635 			seen_exit = true;
1636 			/* Update cleanup_addr */
1637 			ctx->cleanup_addr = proglen;
1638 			pop_callee_regs(&prog, callee_regs_used);
1639 			EMIT1(0xC9);         /* leave */
1640 			EMIT1(0xC3);         /* ret */
1641 			break;
1642 
1643 		default:
1644 			/*
1645 			 * By design x86-64 JIT should support all BPF instructions.
1646 			 * This error will be seen if new instruction was added
1647 			 * to the interpreter, but not to the JIT, or if there is
1648 			 * junk in bpf_prog.
1649 			 */
1650 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1651 			return -EINVAL;
1652 		}
1653 
1654 		ilen = prog - temp;
1655 		if (ilen > BPF_MAX_INSN_SIZE) {
1656 			pr_err("bpf_jit: fatal insn size error\n");
1657 			return -EFAULT;
1658 		}
1659 
1660 		if (image) {
1661 			/*
1662 			 * When populating the image, assert that:
1663 			 *
1664 			 *  i) We do not write beyond the allocated space, and
1665 			 * ii) addrs[i] did not change from the prior run, in order
1666 			 *     to validate assumptions made for computing branch
1667 			 *     displacements.
1668 			 */
1669 			if (unlikely(proglen + ilen > oldproglen ||
1670 				     proglen + ilen != addrs[i])) {
1671 				pr_err("bpf_jit: fatal error\n");
1672 				return -EFAULT;
1673 			}
1674 			memcpy(image + proglen, temp, ilen);
1675 		}
1676 		proglen += ilen;
1677 		addrs[i] = proglen;
1678 		prog = temp;
1679 	}
1680 
1681 	if (image && excnt != bpf_prog->aux->num_exentries) {
1682 		pr_err("extable is not populated\n");
1683 		return -EFAULT;
1684 	}
1685 	return proglen;
1686 }
1687 
1688 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1689 		      int stack_size)
1690 {
1691 	int i;
1692 	/* Store function arguments to stack.
1693 	 * For a function that accepts two pointers the sequence will be:
1694 	 * mov QWORD PTR [rbp-0x10],rdi
1695 	 * mov QWORD PTR [rbp-0x8],rsi
1696 	 */
1697 	for (i = 0; i < min(nr_args, 6); i++)
1698 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1699 			 BPF_REG_FP,
1700 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1701 			 -(stack_size - i * 8));
1702 }
1703 
1704 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1705 			 int stack_size)
1706 {
1707 	int i;
1708 
1709 	/* Restore function arguments from stack.
1710 	 * For a function that accepts two pointers the sequence will be:
1711 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1712 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1713 	 */
1714 	for (i = 0; i < min(nr_args, 6); i++)
1715 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1716 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1717 			 BPF_REG_FP,
1718 			 -(stack_size - i * 8));
1719 }
1720 
1721 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1722 			   struct bpf_prog *p, int stack_size, bool save_ret)
1723 {
1724 	u8 *prog = *pprog;
1725 	u8 *jmp_insn;
1726 
1727 	/* arg1: mov rdi, progs[i] */
1728 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1729 	if (emit_call(&prog,
1730 		      p->aux->sleepable ? __bpf_prog_enter_sleepable :
1731 		      __bpf_prog_enter, prog))
1732 			return -EINVAL;
1733 	/* remember prog start time returned by __bpf_prog_enter */
1734 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1735 
1736 	/* if (__bpf_prog_enter*(prog) == 0)
1737 	 *	goto skip_exec_of_prog;
1738 	 */
1739 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1740 	/* emit 2 nops that will be replaced with JE insn */
1741 	jmp_insn = prog;
1742 	emit_nops(&prog, 2);
1743 
1744 	/* arg1: lea rdi, [rbp - stack_size] */
1745 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1746 	/* arg2: progs[i]->insnsi for interpreter */
1747 	if (!p->jited)
1748 		emit_mov_imm64(&prog, BPF_REG_2,
1749 			       (long) p->insnsi >> 32,
1750 			       (u32) (long) p->insnsi);
1751 	/* call JITed bpf program or interpreter */
1752 	if (emit_call(&prog, p->bpf_func, prog))
1753 		return -EINVAL;
1754 
1755 	/*
1756 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1757 	 * of the previous call which is then passed on the stack to
1758 	 * the next BPF program.
1759 	 *
1760 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
1761 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1762 	 */
1763 	if (save_ret)
1764 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1765 
1766 	/* replace 2 nops with JE insn, since jmp target is known */
1767 	jmp_insn[0] = X86_JE;
1768 	jmp_insn[1] = prog - jmp_insn - 2;
1769 
1770 	/* arg1: mov rdi, progs[i] */
1771 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1772 	/* arg2: mov rsi, rbx <- start time in nsec */
1773 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1774 	if (emit_call(&prog,
1775 		      p->aux->sleepable ? __bpf_prog_exit_sleepable :
1776 		      __bpf_prog_exit, prog))
1777 			return -EINVAL;
1778 
1779 	*pprog = prog;
1780 	return 0;
1781 }
1782 
1783 static void emit_align(u8 **pprog, u32 align)
1784 {
1785 	u8 *target, *prog = *pprog;
1786 
1787 	target = PTR_ALIGN(prog, align);
1788 	if (target != prog)
1789 		emit_nops(&prog, target - prog);
1790 
1791 	*pprog = prog;
1792 }
1793 
1794 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1795 {
1796 	u8 *prog = *pprog;
1797 	s64 offset;
1798 
1799 	offset = func - (ip + 2 + 4);
1800 	if (!is_simm32(offset)) {
1801 		pr_err("Target %p is out of range\n", func);
1802 		return -EINVAL;
1803 	}
1804 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1805 	*pprog = prog;
1806 	return 0;
1807 }
1808 
1809 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1810 		      struct bpf_tramp_progs *tp, int stack_size,
1811 		      bool save_ret)
1812 {
1813 	int i;
1814 	u8 *prog = *pprog;
1815 
1816 	for (i = 0; i < tp->nr_progs; i++) {
1817 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size,
1818 				    save_ret))
1819 			return -EINVAL;
1820 	}
1821 	*pprog = prog;
1822 	return 0;
1823 }
1824 
1825 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1826 			      struct bpf_tramp_progs *tp, int stack_size,
1827 			      u8 **branches)
1828 {
1829 	u8 *prog = *pprog;
1830 	int i;
1831 
1832 	/* The first fmod_ret program will receive a garbage return value.
1833 	 * Set this to 0 to avoid confusing the program.
1834 	 */
1835 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1836 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1837 	for (i = 0; i < tp->nr_progs; i++) {
1838 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1839 			return -EINVAL;
1840 
1841 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1842 		 * if (*(u64 *)(rbp - 8) !=  0)
1843 		 *	goto do_fexit;
1844 		 */
1845 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1846 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1847 
1848 		/* Save the location of the branch and Generate 6 nops
1849 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1850 		 * are replaced with a conditional jump once do_fexit (i.e. the
1851 		 * start of the fexit invocation) is finalized.
1852 		 */
1853 		branches[i] = prog;
1854 		emit_nops(&prog, 4 + 2);
1855 	}
1856 
1857 	*pprog = prog;
1858 	return 0;
1859 }
1860 
1861 static bool is_valid_bpf_tramp_flags(unsigned int flags)
1862 {
1863 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1864 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1865 		return false;
1866 
1867 	/*
1868 	 * BPF_TRAMP_F_RET_FENTRY_RET is only used by bpf_struct_ops,
1869 	 * and it must be used alone.
1870 	 */
1871 	if ((flags & BPF_TRAMP_F_RET_FENTRY_RET) &&
1872 	    (flags & ~BPF_TRAMP_F_RET_FENTRY_RET))
1873 		return false;
1874 
1875 	return true;
1876 }
1877 
1878 /* Example:
1879  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1880  * its 'struct btf_func_model' will be nr_args=2
1881  * The assembly code when eth_type_trans is executing after trampoline:
1882  *
1883  * push rbp
1884  * mov rbp, rsp
1885  * sub rsp, 16                     // space for skb and dev
1886  * push rbx                        // temp regs to pass start time
1887  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1888  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1889  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1890  * mov rbx, rax                    // remember start time in bpf stats are enabled
1891  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1892  * call addr_of_jited_FENTRY_prog
1893  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1894  * mov rsi, rbx                    // prog start time
1895  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1896  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1897  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1898  * pop rbx
1899  * leave
1900  * ret
1901  *
1902  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1903  * replaced with 'call generated_bpf_trampoline'. When it returns
1904  * eth_type_trans will continue executing with original skb and dev pointers.
1905  *
1906  * The assembly code when eth_type_trans is called from trampoline:
1907  *
1908  * push rbp
1909  * mov rbp, rsp
1910  * sub rsp, 24                     // space for skb, dev, return value
1911  * push rbx                        // temp regs to pass start time
1912  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1913  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1914  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1915  * mov rbx, rax                    // remember start time if bpf stats are enabled
1916  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1917  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1918  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1919  * mov rsi, rbx                    // prog start time
1920  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1921  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1922  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1923  * call eth_type_trans+5           // execute body of eth_type_trans
1924  * mov qword ptr [rbp - 8], rax    // save return value
1925  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1926  * mov rbx, rax                    // remember start time in bpf stats are enabled
1927  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1928  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1929  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1930  * mov rsi, rbx                    // prog start time
1931  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1932  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1933  * pop rbx
1934  * leave
1935  * add rsp, 8                      // skip eth_type_trans's frame
1936  * ret                             // return to its caller
1937  */
1938 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1939 				const struct btf_func_model *m, u32 flags,
1940 				struct bpf_tramp_progs *tprogs,
1941 				void *orig_call)
1942 {
1943 	int ret, i, nr_args = m->nr_args;
1944 	int stack_size = nr_args * 8;
1945 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1946 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1947 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1948 	u8 **branches = NULL;
1949 	u8 *prog;
1950 	bool save_ret;
1951 
1952 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1953 	if (nr_args > 6)
1954 		return -ENOTSUPP;
1955 
1956 	if (!is_valid_bpf_tramp_flags(flags))
1957 		return -EINVAL;
1958 
1959 	/* room for return value of orig_call or fentry prog */
1960 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1961 	if (save_ret)
1962 		stack_size += 8;
1963 
1964 	if (flags & BPF_TRAMP_F_IP_ARG)
1965 		stack_size += 8; /* room for IP address argument */
1966 
1967 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1968 		/* skip patched call instruction and point orig_call to actual
1969 		 * body of the kernel function.
1970 		 */
1971 		orig_call += X86_PATCH_SIZE;
1972 
1973 	prog = image;
1974 
1975 	EMIT1(0x55);		 /* push rbp */
1976 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1977 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1978 	EMIT1(0x53);		 /* push rbx */
1979 
1980 	if (flags & BPF_TRAMP_F_IP_ARG) {
1981 		/* Store IP address of the traced function:
1982 		 * mov rax, QWORD PTR [rbp + 8]
1983 		 * sub rax, X86_PATCH_SIZE
1984 		 * mov QWORD PTR [rbp - stack_size], rax
1985 		 */
1986 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
1987 		EMIT4(0x48, 0x83, 0xe8, X86_PATCH_SIZE);
1988 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -stack_size);
1989 
1990 		/* Continue with stack_size for regs storage, stack will
1991 		 * be correctly restored with 'leave' instruction.
1992 		 */
1993 		stack_size -= 8;
1994 	}
1995 
1996 	save_regs(m, &prog, nr_args, stack_size);
1997 
1998 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1999 		/* arg1: mov rdi, im */
2000 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2001 		if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2002 			ret = -EINVAL;
2003 			goto cleanup;
2004 		}
2005 	}
2006 
2007 	if (fentry->nr_progs)
2008 		if (invoke_bpf(m, &prog, fentry, stack_size,
2009 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2010 			return -EINVAL;
2011 
2012 	if (fmod_ret->nr_progs) {
2013 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
2014 				   GFP_KERNEL);
2015 		if (!branches)
2016 			return -ENOMEM;
2017 
2018 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
2019 				       branches)) {
2020 			ret = -EINVAL;
2021 			goto cleanup;
2022 		}
2023 	}
2024 
2025 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2026 		restore_regs(m, &prog, nr_args, stack_size);
2027 
2028 		/* call original function */
2029 		if (emit_call(&prog, orig_call, prog)) {
2030 			ret = -EINVAL;
2031 			goto cleanup;
2032 		}
2033 		/* remember return value in a stack for bpf prog to access */
2034 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2035 		im->ip_after_call = prog;
2036 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2037 		prog += X86_PATCH_SIZE;
2038 	}
2039 
2040 	if (fmod_ret->nr_progs) {
2041 		/* From Intel 64 and IA-32 Architectures Optimization
2042 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2043 		 * Coding Rule 11: All branch targets should be 16-byte
2044 		 * aligned.
2045 		 */
2046 		emit_align(&prog, 16);
2047 		/* Update the branches saved in invoke_bpf_mod_ret with the
2048 		 * aligned address of do_fexit.
2049 		 */
2050 		for (i = 0; i < fmod_ret->nr_progs; i++)
2051 			emit_cond_near_jump(&branches[i], prog, branches[i],
2052 					    X86_JNE);
2053 	}
2054 
2055 	if (fexit->nr_progs)
2056 		if (invoke_bpf(m, &prog, fexit, stack_size, false)) {
2057 			ret = -EINVAL;
2058 			goto cleanup;
2059 		}
2060 
2061 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2062 		restore_regs(m, &prog, nr_args, stack_size);
2063 
2064 	/* This needs to be done regardless. If there were fmod_ret programs,
2065 	 * the return value is only updated on the stack and still needs to be
2066 	 * restored to R0.
2067 	 */
2068 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2069 		im->ip_epilogue = prog;
2070 		/* arg1: mov rdi, im */
2071 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2072 		if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2073 			ret = -EINVAL;
2074 			goto cleanup;
2075 		}
2076 	}
2077 	/* restore return value of orig_call or fentry prog back into RAX */
2078 	if (save_ret)
2079 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2080 
2081 	EMIT1(0x5B); /* pop rbx */
2082 	EMIT1(0xC9); /* leave */
2083 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2084 		/* skip our return address and return to parent */
2085 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2086 	EMIT1(0xC3); /* ret */
2087 	/* Make sure the trampoline generation logic doesn't overflow */
2088 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2089 		ret = -EFAULT;
2090 		goto cleanup;
2091 	}
2092 	ret = prog - (u8 *)image;
2093 
2094 cleanup:
2095 	kfree(branches);
2096 	return ret;
2097 }
2098 
2099 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2100 {
2101 	u8 *jg_reloc, *prog = *pprog;
2102 	int pivot, err, jg_bytes = 1;
2103 	s64 jg_offset;
2104 
2105 	if (a == b) {
2106 		/* Leaf node of recursion, i.e. not a range of indices
2107 		 * anymore.
2108 		 */
2109 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2110 		if (!is_simm32(progs[a]))
2111 			return -1;
2112 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2113 			    progs[a]);
2114 		err = emit_cond_near_jump(&prog,	/* je func */
2115 					  (void *)progs[a], prog,
2116 					  X86_JE);
2117 		if (err)
2118 			return err;
2119 
2120 		emit_indirect_jump(&prog, 2 /* rdx */, prog);
2121 
2122 		*pprog = prog;
2123 		return 0;
2124 	}
2125 
2126 	/* Not a leaf node, so we pivot, and recursively descend into
2127 	 * the lower and upper ranges.
2128 	 */
2129 	pivot = (b - a) / 2;
2130 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2131 	if (!is_simm32(progs[a + pivot]))
2132 		return -1;
2133 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2134 
2135 	if (pivot > 2) {				/* jg upper_part */
2136 		/* Require near jump. */
2137 		jg_bytes = 4;
2138 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2139 	} else {
2140 		EMIT2(X86_JG, 0);
2141 	}
2142 	jg_reloc = prog;
2143 
2144 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2145 				  progs);
2146 	if (err)
2147 		return err;
2148 
2149 	/* From Intel 64 and IA-32 Architectures Optimization
2150 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2151 	 * Coding Rule 11: All branch targets should be 16-byte
2152 	 * aligned.
2153 	 */
2154 	emit_align(&prog, 16);
2155 	jg_offset = prog - jg_reloc;
2156 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2157 
2158 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2159 				  b, progs);
2160 	if (err)
2161 		return err;
2162 
2163 	*pprog = prog;
2164 	return 0;
2165 }
2166 
2167 static int cmp_ips(const void *a, const void *b)
2168 {
2169 	const s64 *ipa = a;
2170 	const s64 *ipb = b;
2171 
2172 	if (*ipa > *ipb)
2173 		return 1;
2174 	if (*ipa < *ipb)
2175 		return -1;
2176 	return 0;
2177 }
2178 
2179 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2180 {
2181 	u8 *prog = image;
2182 
2183 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2184 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2185 }
2186 
2187 struct x64_jit_data {
2188 	struct bpf_binary_header *header;
2189 	int *addrs;
2190 	u8 *image;
2191 	int proglen;
2192 	struct jit_context ctx;
2193 };
2194 
2195 #define MAX_PASSES 20
2196 #define PADDING_PASSES (MAX_PASSES - 5)
2197 
2198 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2199 {
2200 	struct bpf_binary_header *header = NULL;
2201 	struct bpf_prog *tmp, *orig_prog = prog;
2202 	struct x64_jit_data *jit_data;
2203 	int proglen, oldproglen = 0;
2204 	struct jit_context ctx = {};
2205 	bool tmp_blinded = false;
2206 	bool extra_pass = false;
2207 	bool padding = false;
2208 	u8 *image = NULL;
2209 	int *addrs;
2210 	int pass;
2211 	int i;
2212 
2213 	if (!prog->jit_requested)
2214 		return orig_prog;
2215 
2216 	tmp = bpf_jit_blind_constants(prog);
2217 	/*
2218 	 * If blinding was requested and we failed during blinding,
2219 	 * we must fall back to the interpreter.
2220 	 */
2221 	if (IS_ERR(tmp))
2222 		return orig_prog;
2223 	if (tmp != prog) {
2224 		tmp_blinded = true;
2225 		prog = tmp;
2226 	}
2227 
2228 	jit_data = prog->aux->jit_data;
2229 	if (!jit_data) {
2230 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2231 		if (!jit_data) {
2232 			prog = orig_prog;
2233 			goto out;
2234 		}
2235 		prog->aux->jit_data = jit_data;
2236 	}
2237 	addrs = jit_data->addrs;
2238 	if (addrs) {
2239 		ctx = jit_data->ctx;
2240 		oldproglen = jit_data->proglen;
2241 		image = jit_data->image;
2242 		header = jit_data->header;
2243 		extra_pass = true;
2244 		padding = true;
2245 		goto skip_init_addrs;
2246 	}
2247 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2248 	if (!addrs) {
2249 		prog = orig_prog;
2250 		goto out_addrs;
2251 	}
2252 
2253 	/*
2254 	 * Before first pass, make a rough estimation of addrs[]
2255 	 * each BPF instruction is translated to less than 64 bytes
2256 	 */
2257 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2258 		proglen += 64;
2259 		addrs[i] = proglen;
2260 	}
2261 	ctx.cleanup_addr = proglen;
2262 skip_init_addrs:
2263 
2264 	/*
2265 	 * JITed image shrinks with every pass and the loop iterates
2266 	 * until the image stops shrinking. Very large BPF programs
2267 	 * may converge on the last pass. In such case do one more
2268 	 * pass to emit the final image.
2269 	 */
2270 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2271 		if (!padding && pass >= PADDING_PASSES)
2272 			padding = true;
2273 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
2274 		if (proglen <= 0) {
2275 out_image:
2276 			image = NULL;
2277 			if (header)
2278 				bpf_jit_binary_free(header);
2279 			prog = orig_prog;
2280 			goto out_addrs;
2281 		}
2282 		if (image) {
2283 			if (proglen != oldproglen) {
2284 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2285 				       proglen, oldproglen);
2286 				goto out_image;
2287 			}
2288 			break;
2289 		}
2290 		if (proglen == oldproglen) {
2291 			/*
2292 			 * The number of entries in extable is the number of BPF_LDX
2293 			 * insns that access kernel memory via "pointer to BTF type".
2294 			 * The verifier changed their opcode from LDX|MEM|size
2295 			 * to LDX|PROBE_MEM|size to make JITing easier.
2296 			 */
2297 			u32 align = __alignof__(struct exception_table_entry);
2298 			u32 extable_size = prog->aux->num_exentries *
2299 				sizeof(struct exception_table_entry);
2300 
2301 			/* allocate module memory for x86 insns and extable */
2302 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2303 						      &image, align, jit_fill_hole);
2304 			if (!header) {
2305 				prog = orig_prog;
2306 				goto out_addrs;
2307 			}
2308 			prog->aux->extable = (void *) image + roundup(proglen, align);
2309 		}
2310 		oldproglen = proglen;
2311 		cond_resched();
2312 	}
2313 
2314 	if (bpf_jit_enable > 1)
2315 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2316 
2317 	if (image) {
2318 		if (!prog->is_func || extra_pass) {
2319 			bpf_tail_call_direct_fixup(prog);
2320 			bpf_jit_binary_lock_ro(header);
2321 		} else {
2322 			jit_data->addrs = addrs;
2323 			jit_data->ctx = ctx;
2324 			jit_data->proglen = proglen;
2325 			jit_data->image = image;
2326 			jit_data->header = header;
2327 		}
2328 		prog->bpf_func = (void *)image;
2329 		prog->jited = 1;
2330 		prog->jited_len = proglen;
2331 	} else {
2332 		prog = orig_prog;
2333 	}
2334 
2335 	if (!image || !prog->is_func || extra_pass) {
2336 		if (image)
2337 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2338 out_addrs:
2339 		kvfree(addrs);
2340 		kfree(jit_data);
2341 		prog->aux->jit_data = NULL;
2342 	}
2343 out:
2344 	if (tmp_blinded)
2345 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2346 					   tmp : orig_prog);
2347 	return prog;
2348 }
2349 
2350 bool bpf_jit_supports_kfunc_call(void)
2351 {
2352 	return true;
2353 }
2354