xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 90156f4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 
19 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
20 {
21 	if (len == 1)
22 		*ptr = bytes;
23 	else if (len == 2)
24 		*(u16 *)ptr = bytes;
25 	else {
26 		*(u32 *)ptr = bytes;
27 		barrier();
28 	}
29 	return ptr + len;
30 }
31 
32 #define EMIT(bytes, len) \
33 	do { prog = emit_code(prog, bytes, len); } while (0)
34 
35 #define EMIT1(b1)		EMIT(b1, 1)
36 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
37 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
38 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
39 
40 #define EMIT1_off32(b1, off) \
41 	do { EMIT1(b1); EMIT(off, 4); } while (0)
42 #define EMIT2_off32(b1, b2, off) \
43 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
44 #define EMIT3_off32(b1, b2, b3, off) \
45 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
46 #define EMIT4_off32(b1, b2, b3, b4, off) \
47 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
48 
49 #ifdef CONFIG_X86_KERNEL_IBT
50 #define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
51 #else
52 #define EMIT_ENDBR()
53 #endif
54 
55 static bool is_imm8(int value)
56 {
57 	return value <= 127 && value >= -128;
58 }
59 
60 static bool is_simm32(s64 value)
61 {
62 	return value == (s64)(s32)value;
63 }
64 
65 static bool is_uimm32(u64 value)
66 {
67 	return value == (u64)(u32)value;
68 }
69 
70 /* mov dst, src */
71 #define EMIT_mov(DST, SRC)								 \
72 	do {										 \
73 		if (DST != SRC)								 \
74 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
75 	} while (0)
76 
77 static int bpf_size_to_x86_bytes(int bpf_size)
78 {
79 	if (bpf_size == BPF_W)
80 		return 4;
81 	else if (bpf_size == BPF_H)
82 		return 2;
83 	else if (bpf_size == BPF_B)
84 		return 1;
85 	else if (bpf_size == BPF_DW)
86 		return 4; /* imm32 */
87 	else
88 		return 0;
89 }
90 
91 /*
92  * List of x86 cond jumps opcodes (. + s8)
93  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
94  */
95 #define X86_JB  0x72
96 #define X86_JAE 0x73
97 #define X86_JE  0x74
98 #define X86_JNE 0x75
99 #define X86_JBE 0x76
100 #define X86_JA  0x77
101 #define X86_JL  0x7C
102 #define X86_JGE 0x7D
103 #define X86_JLE 0x7E
104 #define X86_JG  0x7F
105 
106 /* Pick a register outside of BPF range for JIT internal work */
107 #define AUX_REG (MAX_BPF_JIT_REG + 1)
108 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
109 
110 /*
111  * The following table maps BPF registers to x86-64 registers.
112  *
113  * x86-64 register R12 is unused, since if used as base address
114  * register in load/store instructions, it always needs an
115  * extra byte of encoding and is callee saved.
116  *
117  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
118  * trampoline. x86-64 register R10 is used for blinding (if enabled).
119  */
120 static const int reg2hex[] = {
121 	[BPF_REG_0] = 0,  /* RAX */
122 	[BPF_REG_1] = 7,  /* RDI */
123 	[BPF_REG_2] = 6,  /* RSI */
124 	[BPF_REG_3] = 2,  /* RDX */
125 	[BPF_REG_4] = 1,  /* RCX */
126 	[BPF_REG_5] = 0,  /* R8  */
127 	[BPF_REG_6] = 3,  /* RBX callee saved */
128 	[BPF_REG_7] = 5,  /* R13 callee saved */
129 	[BPF_REG_8] = 6,  /* R14 callee saved */
130 	[BPF_REG_9] = 7,  /* R15 callee saved */
131 	[BPF_REG_FP] = 5, /* RBP readonly */
132 	[BPF_REG_AX] = 2, /* R10 temp register */
133 	[AUX_REG] = 3,    /* R11 temp register */
134 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
135 };
136 
137 static const int reg2pt_regs[] = {
138 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
139 	[BPF_REG_1] = offsetof(struct pt_regs, di),
140 	[BPF_REG_2] = offsetof(struct pt_regs, si),
141 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
142 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
143 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
144 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
145 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
146 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
147 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
148 };
149 
150 /*
151  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
152  * which need extra byte of encoding.
153  * rax,rcx,...,rbp have simpler encoding
154  */
155 static bool is_ereg(u32 reg)
156 {
157 	return (1 << reg) & (BIT(BPF_REG_5) |
158 			     BIT(AUX_REG) |
159 			     BIT(BPF_REG_7) |
160 			     BIT(BPF_REG_8) |
161 			     BIT(BPF_REG_9) |
162 			     BIT(X86_REG_R9) |
163 			     BIT(BPF_REG_AX));
164 }
165 
166 /*
167  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
168  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
169  * of encoding. al,cl,dl,bl have simpler encoding.
170  */
171 static bool is_ereg_8l(u32 reg)
172 {
173 	return is_ereg(reg) ||
174 	    (1 << reg) & (BIT(BPF_REG_1) |
175 			  BIT(BPF_REG_2) |
176 			  BIT(BPF_REG_FP));
177 }
178 
179 static bool is_axreg(u32 reg)
180 {
181 	return reg == BPF_REG_0;
182 }
183 
184 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
185 static u8 add_1mod(u8 byte, u32 reg)
186 {
187 	if (is_ereg(reg))
188 		byte |= 1;
189 	return byte;
190 }
191 
192 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
193 {
194 	if (is_ereg(r1))
195 		byte |= 1;
196 	if (is_ereg(r2))
197 		byte |= 4;
198 	return byte;
199 }
200 
201 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
202 static u8 add_1reg(u8 byte, u32 dst_reg)
203 {
204 	return byte + reg2hex[dst_reg];
205 }
206 
207 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
208 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
209 {
210 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
211 }
212 
213 /* Some 1-byte opcodes for binary ALU operations */
214 static u8 simple_alu_opcodes[] = {
215 	[BPF_ADD] = 0x01,
216 	[BPF_SUB] = 0x29,
217 	[BPF_AND] = 0x21,
218 	[BPF_OR] = 0x09,
219 	[BPF_XOR] = 0x31,
220 	[BPF_LSH] = 0xE0,
221 	[BPF_RSH] = 0xE8,
222 	[BPF_ARSH] = 0xF8,
223 };
224 
225 static void jit_fill_hole(void *area, unsigned int size)
226 {
227 	/* Fill whole space with INT3 instructions */
228 	memset(area, 0xcc, size);
229 }
230 
231 int bpf_arch_text_invalidate(void *dst, size_t len)
232 {
233 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
234 }
235 
236 struct jit_context {
237 	int cleanup_addr; /* Epilogue code offset */
238 
239 	/*
240 	 * Program specific offsets of labels in the code; these rely on the
241 	 * JIT doing at least 2 passes, recording the position on the first
242 	 * pass, only to generate the correct offset on the second pass.
243 	 */
244 	int tail_call_direct_label;
245 	int tail_call_indirect_label;
246 };
247 
248 /* Maximum number of bytes emitted while JITing one eBPF insn */
249 #define BPF_MAX_INSN_SIZE	128
250 #define BPF_INSN_SAFETY		64
251 
252 /* Number of bytes emit_patch() needs to generate instructions */
253 #define X86_PATCH_SIZE		5
254 /* Number of bytes that will be skipped on tailcall */
255 #define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
256 
257 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
258 {
259 	u8 *prog = *pprog;
260 
261 	if (callee_regs_used[0])
262 		EMIT1(0x53);         /* push rbx */
263 	if (callee_regs_used[1])
264 		EMIT2(0x41, 0x55);   /* push r13 */
265 	if (callee_regs_used[2])
266 		EMIT2(0x41, 0x56);   /* push r14 */
267 	if (callee_regs_used[3])
268 		EMIT2(0x41, 0x57);   /* push r15 */
269 	*pprog = prog;
270 }
271 
272 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274 	u8 *prog = *pprog;
275 
276 	if (callee_regs_used[3])
277 		EMIT2(0x41, 0x5F);   /* pop r15 */
278 	if (callee_regs_used[2])
279 		EMIT2(0x41, 0x5E);   /* pop r14 */
280 	if (callee_regs_used[1])
281 		EMIT2(0x41, 0x5D);   /* pop r13 */
282 	if (callee_regs_used[0])
283 		EMIT1(0x5B);         /* pop rbx */
284 	*pprog = prog;
285 }
286 
287 /*
288  * Emit x86-64 prologue code for BPF program.
289  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
290  * while jumping to another program
291  */
292 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
293 			  bool tail_call_reachable, bool is_subprog)
294 {
295 	u8 *prog = *pprog;
296 
297 	/* BPF trampoline can be made to work without these nops,
298 	 * but let's waste 5 bytes for now and optimize later
299 	 */
300 	EMIT_ENDBR();
301 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
302 	prog += X86_PATCH_SIZE;
303 	if (!ebpf_from_cbpf) {
304 		if (tail_call_reachable && !is_subprog)
305 			EMIT2(0x31, 0xC0); /* xor eax, eax */
306 		else
307 			EMIT2(0x66, 0x90); /* nop2 */
308 	}
309 	EMIT1(0x55);             /* push rbp */
310 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
311 
312 	/* X86_TAIL_CALL_OFFSET is here */
313 	EMIT_ENDBR();
314 
315 	/* sub rsp, rounded_stack_depth */
316 	if (stack_depth)
317 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
318 	if (tail_call_reachable)
319 		EMIT1(0x50);         /* push rax */
320 	*pprog = prog;
321 }
322 
323 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
324 {
325 	u8 *prog = *pprog;
326 	s64 offset;
327 
328 	offset = func - (ip + X86_PATCH_SIZE);
329 	if (!is_simm32(offset)) {
330 		pr_err("Target call %p is out of range\n", func);
331 		return -ERANGE;
332 	}
333 	EMIT1_off32(opcode, offset);
334 	*pprog = prog;
335 	return 0;
336 }
337 
338 static int emit_call(u8 **pprog, void *func, void *ip)
339 {
340 	return emit_patch(pprog, func, ip, 0xE8);
341 }
342 
343 static int emit_jump(u8 **pprog, void *func, void *ip)
344 {
345 	return emit_patch(pprog, func, ip, 0xE9);
346 }
347 
348 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
349 				void *old_addr, void *new_addr)
350 {
351 	const u8 *nop_insn = x86_nops[5];
352 	u8 old_insn[X86_PATCH_SIZE];
353 	u8 new_insn[X86_PATCH_SIZE];
354 	u8 *prog;
355 	int ret;
356 
357 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
358 	if (old_addr) {
359 		prog = old_insn;
360 		ret = t == BPF_MOD_CALL ?
361 		      emit_call(&prog, old_addr, ip) :
362 		      emit_jump(&prog, old_addr, ip);
363 		if (ret)
364 			return ret;
365 	}
366 
367 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
368 	if (new_addr) {
369 		prog = new_insn;
370 		ret = t == BPF_MOD_CALL ?
371 		      emit_call(&prog, new_addr, ip) :
372 		      emit_jump(&prog, new_addr, ip);
373 		if (ret)
374 			return ret;
375 	}
376 
377 	ret = -EBUSY;
378 	mutex_lock(&text_mutex);
379 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
380 		goto out;
381 	ret = 1;
382 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
383 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
384 		ret = 0;
385 	}
386 out:
387 	mutex_unlock(&text_mutex);
388 	return ret;
389 }
390 
391 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
392 		       void *old_addr, void *new_addr)
393 {
394 	if (!is_kernel_text((long)ip) &&
395 	    !is_bpf_text_address((long)ip))
396 		/* BPF poking in modules is not supported */
397 		return -EINVAL;
398 
399 	/*
400 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
401 	 * with an ENDBR instruction.
402 	 */
403 	if (is_endbr(*(u32 *)ip))
404 		ip += ENDBR_INSN_SIZE;
405 
406 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
407 }
408 
409 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
410 
411 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
412 {
413 	u8 *prog = *pprog;
414 
415 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
416 		EMIT_LFENCE();
417 		EMIT2(0xFF, 0xE0 + reg);
418 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
419 		OPTIMIZER_HIDE_VAR(reg);
420 		emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
421 	} else {
422 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
423 		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
424 			EMIT1(0xCC);		/* int3 */
425 	}
426 
427 	*pprog = prog;
428 }
429 
430 static void emit_return(u8 **pprog, u8 *ip)
431 {
432 	u8 *prog = *pprog;
433 
434 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
435 		emit_jump(&prog, &__x86_return_thunk, ip);
436 	} else {
437 		EMIT1(0xC3);		/* ret */
438 		if (IS_ENABLED(CONFIG_SLS))
439 			EMIT1(0xCC);	/* int3 */
440 	}
441 
442 	*pprog = prog;
443 }
444 
445 /*
446  * Generate the following code:
447  *
448  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
449  *   if (index >= array->map.max_entries)
450  *     goto out;
451  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
452  *     goto out;
453  *   prog = array->ptrs[index];
454  *   if (prog == NULL)
455  *     goto out;
456  *   goto *(prog->bpf_func + prologue_size);
457  * out:
458  */
459 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
460 					u32 stack_depth, u8 *ip,
461 					struct jit_context *ctx)
462 {
463 	int tcc_off = -4 - round_up(stack_depth, 8);
464 	u8 *prog = *pprog, *start = *pprog;
465 	int offset;
466 
467 	/*
468 	 * rdi - pointer to ctx
469 	 * rsi - pointer to bpf_array
470 	 * rdx - index in bpf_array
471 	 */
472 
473 	/*
474 	 * if (index >= array->map.max_entries)
475 	 *	goto out;
476 	 */
477 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
478 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
479 	      offsetof(struct bpf_array, map.max_entries));
480 
481 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
482 	EMIT2(X86_JBE, offset);                   /* jbe out */
483 
484 	/*
485 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
486 	 *	goto out;
487 	 */
488 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
489 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
490 
491 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
492 	EMIT2(X86_JAE, offset);                   /* jae out */
493 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
494 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
495 
496 	/* prog = array->ptrs[index]; */
497 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
498 		    offsetof(struct bpf_array, ptrs));
499 
500 	/*
501 	 * if (prog == NULL)
502 	 *	goto out;
503 	 */
504 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
505 
506 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
507 	EMIT2(X86_JE, offset);                    /* je out */
508 
509 	pop_callee_regs(&prog, callee_regs_used);
510 
511 	EMIT1(0x58);                              /* pop rax */
512 	if (stack_depth)
513 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
514 			    round_up(stack_depth, 8));
515 
516 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
517 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
518 	      offsetof(struct bpf_prog, bpf_func));
519 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
520 	      X86_TAIL_CALL_OFFSET);
521 	/*
522 	 * Now we're ready to jump into next BPF program
523 	 * rdi == ctx (1st arg)
524 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
525 	 */
526 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
527 
528 	/* out: */
529 	ctx->tail_call_indirect_label = prog - start;
530 	*pprog = prog;
531 }
532 
533 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
534 				      u8 **pprog, u8 *ip,
535 				      bool *callee_regs_used, u32 stack_depth,
536 				      struct jit_context *ctx)
537 {
538 	int tcc_off = -4 - round_up(stack_depth, 8);
539 	u8 *prog = *pprog, *start = *pprog;
540 	int offset;
541 
542 	/*
543 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
544 	 *	goto out;
545 	 */
546 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
547 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
548 
549 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
550 	EMIT2(X86_JAE, offset);                       /* jae out */
551 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
552 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
553 
554 	poke->tailcall_bypass = ip + (prog - start);
555 	poke->adj_off = X86_TAIL_CALL_OFFSET;
556 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
557 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
558 
559 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
560 		  poke->tailcall_bypass);
561 
562 	pop_callee_regs(&prog, callee_regs_used);
563 	EMIT1(0x58);                                  /* pop rax */
564 	if (stack_depth)
565 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
566 
567 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
568 	prog += X86_PATCH_SIZE;
569 
570 	/* out: */
571 	ctx->tail_call_direct_label = prog - start;
572 
573 	*pprog = prog;
574 }
575 
576 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
577 {
578 	struct bpf_jit_poke_descriptor *poke;
579 	struct bpf_array *array;
580 	struct bpf_prog *target;
581 	int i, ret;
582 
583 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
584 		poke = &prog->aux->poke_tab[i];
585 		if (poke->aux && poke->aux != prog->aux)
586 			continue;
587 
588 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
589 
590 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
591 			continue;
592 
593 		array = container_of(poke->tail_call.map, struct bpf_array, map);
594 		mutex_lock(&array->aux->poke_mutex);
595 		target = array->ptrs[poke->tail_call.key];
596 		if (target) {
597 			ret = __bpf_arch_text_poke(poke->tailcall_target,
598 						   BPF_MOD_JUMP, NULL,
599 						   (u8 *)target->bpf_func +
600 						   poke->adj_off);
601 			BUG_ON(ret < 0);
602 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
603 						   BPF_MOD_JUMP,
604 						   (u8 *)poke->tailcall_target +
605 						   X86_PATCH_SIZE, NULL);
606 			BUG_ON(ret < 0);
607 		}
608 		WRITE_ONCE(poke->tailcall_target_stable, true);
609 		mutex_unlock(&array->aux->poke_mutex);
610 	}
611 }
612 
613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
614 			   u32 dst_reg, const u32 imm32)
615 {
616 	u8 *prog = *pprog;
617 	u8 b1, b2, b3;
618 
619 	/*
620 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
621 	 * (which zero-extends imm32) to save 2 bytes.
622 	 */
623 	if (sign_propagate && (s32)imm32 < 0) {
624 		/* 'mov %rax, imm32' sign extends imm32 */
625 		b1 = add_1mod(0x48, dst_reg);
626 		b2 = 0xC7;
627 		b3 = 0xC0;
628 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
629 		goto done;
630 	}
631 
632 	/*
633 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
634 	 * to save 3 bytes.
635 	 */
636 	if (imm32 == 0) {
637 		if (is_ereg(dst_reg))
638 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
639 		b2 = 0x31; /* xor */
640 		b3 = 0xC0;
641 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
642 		goto done;
643 	}
644 
645 	/* mov %eax, imm32 */
646 	if (is_ereg(dst_reg))
647 		EMIT1(add_1mod(0x40, dst_reg));
648 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
649 done:
650 	*pprog = prog;
651 }
652 
653 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
654 			   const u32 imm32_hi, const u32 imm32_lo)
655 {
656 	u8 *prog = *pprog;
657 
658 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
659 		/*
660 		 * For emitting plain u32, where sign bit must not be
661 		 * propagated LLVM tends to load imm64 over mov32
662 		 * directly, so save couple of bytes by just doing
663 		 * 'mov %eax, imm32' instead.
664 		 */
665 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
666 	} else {
667 		/* movabsq rax, imm64 */
668 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
669 		EMIT(imm32_lo, 4);
670 		EMIT(imm32_hi, 4);
671 	}
672 
673 	*pprog = prog;
674 }
675 
676 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
677 {
678 	u8 *prog = *pprog;
679 
680 	if (is64) {
681 		/* mov dst, src */
682 		EMIT_mov(dst_reg, src_reg);
683 	} else {
684 		/* mov32 dst, src */
685 		if (is_ereg(dst_reg) || is_ereg(src_reg))
686 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
687 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
688 	}
689 
690 	*pprog = prog;
691 }
692 
693 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
694 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
695 {
696 	u8 *prog = *pprog;
697 
698 	if (is_imm8(off)) {
699 		/* 1-byte signed displacement.
700 		 *
701 		 * If off == 0 we could skip this and save one extra byte, but
702 		 * special case of x86 R13 which always needs an offset is not
703 		 * worth the hassle
704 		 */
705 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
706 	} else {
707 		/* 4-byte signed displacement */
708 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
709 	}
710 	*pprog = prog;
711 }
712 
713 /*
714  * Emit a REX byte if it will be necessary to address these registers
715  */
716 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
717 {
718 	u8 *prog = *pprog;
719 
720 	if (is64)
721 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
722 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
723 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
724 	*pprog = prog;
725 }
726 
727 /*
728  * Similar version of maybe_emit_mod() for a single register
729  */
730 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
731 {
732 	u8 *prog = *pprog;
733 
734 	if (is64)
735 		EMIT1(add_1mod(0x48, reg));
736 	else if (is_ereg(reg))
737 		EMIT1(add_1mod(0x40, reg));
738 	*pprog = prog;
739 }
740 
741 /* LDX: dst_reg = *(u8*)(src_reg + off) */
742 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
743 {
744 	u8 *prog = *pprog;
745 
746 	switch (size) {
747 	case BPF_B:
748 		/* Emit 'movzx rax, byte ptr [rax + off]' */
749 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
750 		break;
751 	case BPF_H:
752 		/* Emit 'movzx rax, word ptr [rax + off]' */
753 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
754 		break;
755 	case BPF_W:
756 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
757 		if (is_ereg(dst_reg) || is_ereg(src_reg))
758 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
759 		else
760 			EMIT1(0x8B);
761 		break;
762 	case BPF_DW:
763 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
764 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
765 		break;
766 	}
767 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
768 	*pprog = prog;
769 }
770 
771 /* STX: *(u8*)(dst_reg + off) = src_reg */
772 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
773 {
774 	u8 *prog = *pprog;
775 
776 	switch (size) {
777 	case BPF_B:
778 		/* Emit 'mov byte ptr [rax + off], al' */
779 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
780 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
781 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
782 		else
783 			EMIT1(0x88);
784 		break;
785 	case BPF_H:
786 		if (is_ereg(dst_reg) || is_ereg(src_reg))
787 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
788 		else
789 			EMIT2(0x66, 0x89);
790 		break;
791 	case BPF_W:
792 		if (is_ereg(dst_reg) || is_ereg(src_reg))
793 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
794 		else
795 			EMIT1(0x89);
796 		break;
797 	case BPF_DW:
798 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
799 		break;
800 	}
801 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
802 	*pprog = prog;
803 }
804 
805 static int emit_atomic(u8 **pprog, u8 atomic_op,
806 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
807 {
808 	u8 *prog = *pprog;
809 
810 	EMIT1(0xF0); /* lock prefix */
811 
812 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
813 
814 	/* emit opcode */
815 	switch (atomic_op) {
816 	case BPF_ADD:
817 	case BPF_AND:
818 	case BPF_OR:
819 	case BPF_XOR:
820 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
821 		EMIT1(simple_alu_opcodes[atomic_op]);
822 		break;
823 	case BPF_ADD | BPF_FETCH:
824 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
825 		EMIT2(0x0F, 0xC1);
826 		break;
827 	case BPF_XCHG:
828 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
829 		EMIT1(0x87);
830 		break;
831 	case BPF_CMPXCHG:
832 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
833 		EMIT2(0x0F, 0xB1);
834 		break;
835 	default:
836 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
837 		return -EFAULT;
838 	}
839 
840 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
841 
842 	*pprog = prog;
843 	return 0;
844 }
845 
846 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
847 {
848 	u32 reg = x->fixup >> 8;
849 
850 	/* jump over faulting load and clear dest register */
851 	*(unsigned long *)((void *)regs + reg) = 0;
852 	regs->ip += x->fixup & 0xff;
853 	return true;
854 }
855 
856 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
857 			     bool *regs_used, bool *tail_call_seen)
858 {
859 	int i;
860 
861 	for (i = 1; i <= insn_cnt; i++, insn++) {
862 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
863 			*tail_call_seen = true;
864 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
865 			regs_used[0] = true;
866 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
867 			regs_used[1] = true;
868 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
869 			regs_used[2] = true;
870 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
871 			regs_used[3] = true;
872 	}
873 }
874 
875 static void emit_nops(u8 **pprog, int len)
876 {
877 	u8 *prog = *pprog;
878 	int i, noplen;
879 
880 	while (len > 0) {
881 		noplen = len;
882 
883 		if (noplen > ASM_NOP_MAX)
884 			noplen = ASM_NOP_MAX;
885 
886 		for (i = 0; i < noplen; i++)
887 			EMIT1(x86_nops[noplen][i]);
888 		len -= noplen;
889 	}
890 
891 	*pprog = prog;
892 }
893 
894 /* emit the 3-byte VEX prefix
895  *
896  * r: same as rex.r, extra bit for ModRM reg field
897  * x: same as rex.x, extra bit for SIB index field
898  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
899  * m: opcode map select, encoding escape bytes e.g. 0x0f38
900  * w: same as rex.w (32 bit or 64 bit) or opcode specific
901  * src_reg2: additional source reg (encoded as BPF reg)
902  * l: vector length (128 bit or 256 bit) or reserved
903  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
904  */
905 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
906 		      bool w, u8 src_reg2, bool l, u8 pp)
907 {
908 	u8 *prog = *pprog;
909 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
910 	u8 b1, b2;
911 	u8 vvvv = reg2hex[src_reg2];
912 
913 	/* reg2hex gives only the lower 3 bit of vvvv */
914 	if (is_ereg(src_reg2))
915 		vvvv |= 1 << 3;
916 
917 	/*
918 	 * 2nd byte of 3-byte VEX prefix
919 	 * ~ means bit inverted encoding
920 	 *
921 	 *    7                           0
922 	 *  +---+---+---+---+---+---+---+---+
923 	 *  |~R |~X |~B |         m         |
924 	 *  +---+---+---+---+---+---+---+---+
925 	 */
926 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
927 	/*
928 	 * 3rd byte of 3-byte VEX prefix
929 	 *
930 	 *    7                           0
931 	 *  +---+---+---+---+---+---+---+---+
932 	 *  | W |     ~vvvv     | L |   pp  |
933 	 *  +---+---+---+---+---+---+---+---+
934 	 */
935 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
936 
937 	EMIT3(b0, b1, b2);
938 	*pprog = prog;
939 }
940 
941 /* emit BMI2 shift instruction */
942 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
943 {
944 	u8 *prog = *pprog;
945 	bool r = is_ereg(dst_reg);
946 	u8 m = 2; /* escape code 0f38 */
947 
948 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
949 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
950 	*pprog = prog;
951 }
952 
953 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
954 
955 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
956 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
957 {
958 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
959 	struct bpf_insn *insn = bpf_prog->insnsi;
960 	bool callee_regs_used[4] = {};
961 	int insn_cnt = bpf_prog->len;
962 	bool tail_call_seen = false;
963 	bool seen_exit = false;
964 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
965 	int i, excnt = 0;
966 	int ilen, proglen = 0;
967 	u8 *prog = temp;
968 	int err;
969 
970 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
971 			 &tail_call_seen);
972 
973 	/* tail call's presence in current prog implies it is reachable */
974 	tail_call_reachable |= tail_call_seen;
975 
976 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
977 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
978 		      bpf_prog->aux->func_idx != 0);
979 	push_callee_regs(&prog, callee_regs_used);
980 
981 	ilen = prog - temp;
982 	if (rw_image)
983 		memcpy(rw_image + proglen, temp, ilen);
984 	proglen += ilen;
985 	addrs[0] = proglen;
986 	prog = temp;
987 
988 	for (i = 1; i <= insn_cnt; i++, insn++) {
989 		const s32 imm32 = insn->imm;
990 		u32 dst_reg = insn->dst_reg;
991 		u32 src_reg = insn->src_reg;
992 		u8 b2 = 0, b3 = 0;
993 		u8 *start_of_ldx;
994 		s64 jmp_offset;
995 		s16 insn_off;
996 		u8 jmp_cond;
997 		u8 *func;
998 		int nops;
999 
1000 		switch (insn->code) {
1001 			/* ALU */
1002 		case BPF_ALU | BPF_ADD | BPF_X:
1003 		case BPF_ALU | BPF_SUB | BPF_X:
1004 		case BPF_ALU | BPF_AND | BPF_X:
1005 		case BPF_ALU | BPF_OR | BPF_X:
1006 		case BPF_ALU | BPF_XOR | BPF_X:
1007 		case BPF_ALU64 | BPF_ADD | BPF_X:
1008 		case BPF_ALU64 | BPF_SUB | BPF_X:
1009 		case BPF_ALU64 | BPF_AND | BPF_X:
1010 		case BPF_ALU64 | BPF_OR | BPF_X:
1011 		case BPF_ALU64 | BPF_XOR | BPF_X:
1012 			maybe_emit_mod(&prog, dst_reg, src_reg,
1013 				       BPF_CLASS(insn->code) == BPF_ALU64);
1014 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1015 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1016 			break;
1017 
1018 		case BPF_ALU64 | BPF_MOV | BPF_X:
1019 		case BPF_ALU | BPF_MOV | BPF_X:
1020 			emit_mov_reg(&prog,
1021 				     BPF_CLASS(insn->code) == BPF_ALU64,
1022 				     dst_reg, src_reg);
1023 			break;
1024 
1025 			/* neg dst */
1026 		case BPF_ALU | BPF_NEG:
1027 		case BPF_ALU64 | BPF_NEG:
1028 			maybe_emit_1mod(&prog, dst_reg,
1029 					BPF_CLASS(insn->code) == BPF_ALU64);
1030 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1031 			break;
1032 
1033 		case BPF_ALU | BPF_ADD | BPF_K:
1034 		case BPF_ALU | BPF_SUB | BPF_K:
1035 		case BPF_ALU | BPF_AND | BPF_K:
1036 		case BPF_ALU | BPF_OR | BPF_K:
1037 		case BPF_ALU | BPF_XOR | BPF_K:
1038 		case BPF_ALU64 | BPF_ADD | BPF_K:
1039 		case BPF_ALU64 | BPF_SUB | BPF_K:
1040 		case BPF_ALU64 | BPF_AND | BPF_K:
1041 		case BPF_ALU64 | BPF_OR | BPF_K:
1042 		case BPF_ALU64 | BPF_XOR | BPF_K:
1043 			maybe_emit_1mod(&prog, dst_reg,
1044 					BPF_CLASS(insn->code) == BPF_ALU64);
1045 
1046 			/*
1047 			 * b3 holds 'normal' opcode, b2 short form only valid
1048 			 * in case dst is eax/rax.
1049 			 */
1050 			switch (BPF_OP(insn->code)) {
1051 			case BPF_ADD:
1052 				b3 = 0xC0;
1053 				b2 = 0x05;
1054 				break;
1055 			case BPF_SUB:
1056 				b3 = 0xE8;
1057 				b2 = 0x2D;
1058 				break;
1059 			case BPF_AND:
1060 				b3 = 0xE0;
1061 				b2 = 0x25;
1062 				break;
1063 			case BPF_OR:
1064 				b3 = 0xC8;
1065 				b2 = 0x0D;
1066 				break;
1067 			case BPF_XOR:
1068 				b3 = 0xF0;
1069 				b2 = 0x35;
1070 				break;
1071 			}
1072 
1073 			if (is_imm8(imm32))
1074 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1075 			else if (is_axreg(dst_reg))
1076 				EMIT1_off32(b2, imm32);
1077 			else
1078 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1079 			break;
1080 
1081 		case BPF_ALU64 | BPF_MOV | BPF_K:
1082 		case BPF_ALU | BPF_MOV | BPF_K:
1083 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1084 				       dst_reg, imm32);
1085 			break;
1086 
1087 		case BPF_LD | BPF_IMM | BPF_DW:
1088 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1089 			insn++;
1090 			i++;
1091 			break;
1092 
1093 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1094 		case BPF_ALU | BPF_MOD | BPF_X:
1095 		case BPF_ALU | BPF_DIV | BPF_X:
1096 		case BPF_ALU | BPF_MOD | BPF_K:
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU64 | BPF_MOD | BPF_X:
1099 		case BPF_ALU64 | BPF_DIV | BPF_X:
1100 		case BPF_ALU64 | BPF_MOD | BPF_K:
1101 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1102 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1103 
1104 			if (dst_reg != BPF_REG_0)
1105 				EMIT1(0x50); /* push rax */
1106 			if (dst_reg != BPF_REG_3)
1107 				EMIT1(0x52); /* push rdx */
1108 
1109 			if (BPF_SRC(insn->code) == BPF_X) {
1110 				if (src_reg == BPF_REG_0 ||
1111 				    src_reg == BPF_REG_3) {
1112 					/* mov r11, src_reg */
1113 					EMIT_mov(AUX_REG, src_reg);
1114 					src_reg = AUX_REG;
1115 				}
1116 			} else {
1117 				/* mov r11, imm32 */
1118 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1119 				src_reg = AUX_REG;
1120 			}
1121 
1122 			if (dst_reg != BPF_REG_0)
1123 				/* mov rax, dst_reg */
1124 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1125 
1126 			/*
1127 			 * xor edx, edx
1128 			 * equivalent to 'xor rdx, rdx', but one byte less
1129 			 */
1130 			EMIT2(0x31, 0xd2);
1131 
1132 			/* div src_reg */
1133 			maybe_emit_1mod(&prog, src_reg, is64);
1134 			EMIT2(0xF7, add_1reg(0xF0, src_reg));
1135 
1136 			if (BPF_OP(insn->code) == BPF_MOD &&
1137 			    dst_reg != BPF_REG_3)
1138 				/* mov dst_reg, rdx */
1139 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1140 			else if (BPF_OP(insn->code) == BPF_DIV &&
1141 				 dst_reg != BPF_REG_0)
1142 				/* mov dst_reg, rax */
1143 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1144 
1145 			if (dst_reg != BPF_REG_3)
1146 				EMIT1(0x5A); /* pop rdx */
1147 			if (dst_reg != BPF_REG_0)
1148 				EMIT1(0x58); /* pop rax */
1149 			break;
1150 		}
1151 
1152 		case BPF_ALU | BPF_MUL | BPF_K:
1153 		case BPF_ALU64 | BPF_MUL | BPF_K:
1154 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1155 				       BPF_CLASS(insn->code) == BPF_ALU64);
1156 
1157 			if (is_imm8(imm32))
1158 				/* imul dst_reg, dst_reg, imm8 */
1159 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1160 				      imm32);
1161 			else
1162 				/* imul dst_reg, dst_reg, imm32 */
1163 				EMIT2_off32(0x69,
1164 					    add_2reg(0xC0, dst_reg, dst_reg),
1165 					    imm32);
1166 			break;
1167 
1168 		case BPF_ALU | BPF_MUL | BPF_X:
1169 		case BPF_ALU64 | BPF_MUL | BPF_X:
1170 			maybe_emit_mod(&prog, src_reg, dst_reg,
1171 				       BPF_CLASS(insn->code) == BPF_ALU64);
1172 
1173 			/* imul dst_reg, src_reg */
1174 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1175 			break;
1176 
1177 			/* Shifts */
1178 		case BPF_ALU | BPF_LSH | BPF_K:
1179 		case BPF_ALU | BPF_RSH | BPF_K:
1180 		case BPF_ALU | BPF_ARSH | BPF_K:
1181 		case BPF_ALU64 | BPF_LSH | BPF_K:
1182 		case BPF_ALU64 | BPF_RSH | BPF_K:
1183 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1184 			maybe_emit_1mod(&prog, dst_reg,
1185 					BPF_CLASS(insn->code) == BPF_ALU64);
1186 
1187 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1188 			if (imm32 == 1)
1189 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1190 			else
1191 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1192 			break;
1193 
1194 		case BPF_ALU | BPF_LSH | BPF_X:
1195 		case BPF_ALU | BPF_RSH | BPF_X:
1196 		case BPF_ALU | BPF_ARSH | BPF_X:
1197 		case BPF_ALU64 | BPF_LSH | BPF_X:
1198 		case BPF_ALU64 | BPF_RSH | BPF_X:
1199 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1200 			/* BMI2 shifts aren't better when shift count is already in rcx */
1201 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1202 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1203 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1204 				u8 op;
1205 
1206 				switch (BPF_OP(insn->code)) {
1207 				case BPF_LSH:
1208 					op = 1; /* prefix 0x66 */
1209 					break;
1210 				case BPF_RSH:
1211 					op = 3; /* prefix 0xf2 */
1212 					break;
1213 				case BPF_ARSH:
1214 					op = 2; /* prefix 0xf3 */
1215 					break;
1216 				}
1217 
1218 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1219 
1220 				break;
1221 			}
1222 
1223 			if (src_reg != BPF_REG_4) { /* common case */
1224 				/* Check for bad case when dst_reg == rcx */
1225 				if (dst_reg == BPF_REG_4) {
1226 					/* mov r11, dst_reg */
1227 					EMIT_mov(AUX_REG, dst_reg);
1228 					dst_reg = AUX_REG;
1229 				} else {
1230 					EMIT1(0x51); /* push rcx */
1231 				}
1232 				/* mov rcx, src_reg */
1233 				EMIT_mov(BPF_REG_4, src_reg);
1234 			}
1235 
1236 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1237 			maybe_emit_1mod(&prog, dst_reg,
1238 					BPF_CLASS(insn->code) == BPF_ALU64);
1239 
1240 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1241 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1242 
1243 			if (src_reg != BPF_REG_4) {
1244 				if (insn->dst_reg == BPF_REG_4)
1245 					/* mov dst_reg, r11 */
1246 					EMIT_mov(insn->dst_reg, AUX_REG);
1247 				else
1248 					EMIT1(0x59); /* pop rcx */
1249 			}
1250 
1251 			break;
1252 
1253 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1254 			switch (imm32) {
1255 			case 16:
1256 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1257 				EMIT1(0x66);
1258 				if (is_ereg(dst_reg))
1259 					EMIT1(0x41);
1260 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1261 
1262 				/* Emit 'movzwl eax, ax' */
1263 				if (is_ereg(dst_reg))
1264 					EMIT3(0x45, 0x0F, 0xB7);
1265 				else
1266 					EMIT2(0x0F, 0xB7);
1267 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1268 				break;
1269 			case 32:
1270 				/* Emit 'bswap eax' to swap lower 4 bytes */
1271 				if (is_ereg(dst_reg))
1272 					EMIT2(0x41, 0x0F);
1273 				else
1274 					EMIT1(0x0F);
1275 				EMIT1(add_1reg(0xC8, dst_reg));
1276 				break;
1277 			case 64:
1278 				/* Emit 'bswap rax' to swap 8 bytes */
1279 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1280 				      add_1reg(0xC8, dst_reg));
1281 				break;
1282 			}
1283 			break;
1284 
1285 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1286 			switch (imm32) {
1287 			case 16:
1288 				/*
1289 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1290 				 * into 64 bit
1291 				 */
1292 				if (is_ereg(dst_reg))
1293 					EMIT3(0x45, 0x0F, 0xB7);
1294 				else
1295 					EMIT2(0x0F, 0xB7);
1296 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1297 				break;
1298 			case 32:
1299 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1300 				if (is_ereg(dst_reg))
1301 					EMIT1(0x45);
1302 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1303 				break;
1304 			case 64:
1305 				/* nop */
1306 				break;
1307 			}
1308 			break;
1309 
1310 			/* speculation barrier */
1311 		case BPF_ST | BPF_NOSPEC:
1312 			EMIT_LFENCE();
1313 			break;
1314 
1315 			/* ST: *(u8*)(dst_reg + off) = imm */
1316 		case BPF_ST | BPF_MEM | BPF_B:
1317 			if (is_ereg(dst_reg))
1318 				EMIT2(0x41, 0xC6);
1319 			else
1320 				EMIT1(0xC6);
1321 			goto st;
1322 		case BPF_ST | BPF_MEM | BPF_H:
1323 			if (is_ereg(dst_reg))
1324 				EMIT3(0x66, 0x41, 0xC7);
1325 			else
1326 				EMIT2(0x66, 0xC7);
1327 			goto st;
1328 		case BPF_ST | BPF_MEM | BPF_W:
1329 			if (is_ereg(dst_reg))
1330 				EMIT2(0x41, 0xC7);
1331 			else
1332 				EMIT1(0xC7);
1333 			goto st;
1334 		case BPF_ST | BPF_MEM | BPF_DW:
1335 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1336 
1337 st:			if (is_imm8(insn->off))
1338 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1339 			else
1340 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1341 
1342 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1343 			break;
1344 
1345 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1346 		case BPF_STX | BPF_MEM | BPF_B:
1347 		case BPF_STX | BPF_MEM | BPF_H:
1348 		case BPF_STX | BPF_MEM | BPF_W:
1349 		case BPF_STX | BPF_MEM | BPF_DW:
1350 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1351 			break;
1352 
1353 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1354 		case BPF_LDX | BPF_MEM | BPF_B:
1355 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1356 		case BPF_LDX | BPF_MEM | BPF_H:
1357 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1358 		case BPF_LDX | BPF_MEM | BPF_W:
1359 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1360 		case BPF_LDX | BPF_MEM | BPF_DW:
1361 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1362 			insn_off = insn->off;
1363 
1364 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1365 				/* Conservatively check that src_reg + insn->off is a kernel address:
1366 				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1367 				 * src_reg is used as scratch for src_reg += insn->off and restored
1368 				 * after emit_ldx if necessary
1369 				 */
1370 
1371 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1372 				u8 *end_of_jmp;
1373 
1374 				/* At end of these emitted checks, insn->off will have been added
1375 				 * to src_reg, so no need to do relative load with insn->off offset
1376 				 */
1377 				insn_off = 0;
1378 
1379 				/* movabsq r11, limit */
1380 				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1381 				EMIT((u32)limit, 4);
1382 				EMIT(limit >> 32, 4);
1383 
1384 				if (insn->off) {
1385 					/* add src_reg, insn->off */
1386 					maybe_emit_1mod(&prog, src_reg, true);
1387 					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1388 				}
1389 
1390 				/* cmp src_reg, r11 */
1391 				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1392 				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1393 
1394 				/* if unsigned '>=', goto load */
1395 				EMIT2(X86_JAE, 0);
1396 				end_of_jmp = prog;
1397 
1398 				/* xor dst_reg, dst_reg */
1399 				emit_mov_imm32(&prog, false, dst_reg, 0);
1400 				/* jmp byte_after_ldx */
1401 				EMIT2(0xEB, 0);
1402 
1403 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1404 				start_of_ldx = prog;
1405 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1406 			}
1407 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1408 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1409 				struct exception_table_entry *ex;
1410 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1411 				s64 delta;
1412 
1413 				/* populate jmp_offset for JMP above */
1414 				start_of_ldx[-1] = prog - start_of_ldx;
1415 
1416 				if (insn->off && src_reg != dst_reg) {
1417 					/* sub src_reg, insn->off
1418 					 * Restore src_reg after "add src_reg, insn->off" in prev
1419 					 * if statement. But if src_reg == dst_reg, emit_ldx
1420 					 * above already clobbered src_reg, so no need to restore.
1421 					 * If add src_reg, insn->off was unnecessary, no need to
1422 					 * restore either.
1423 					 */
1424 					maybe_emit_1mod(&prog, src_reg, true);
1425 					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1426 				}
1427 
1428 				if (!bpf_prog->aux->extable)
1429 					break;
1430 
1431 				if (excnt >= bpf_prog->aux->num_exentries) {
1432 					pr_err("ex gen bug\n");
1433 					return -EFAULT;
1434 				}
1435 				ex = &bpf_prog->aux->extable[excnt++];
1436 
1437 				delta = _insn - (u8 *)&ex->insn;
1438 				if (!is_simm32(delta)) {
1439 					pr_err("extable->insn doesn't fit into 32-bit\n");
1440 					return -EFAULT;
1441 				}
1442 				/* switch ex to rw buffer for writes */
1443 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1444 
1445 				ex->insn = delta;
1446 
1447 				ex->data = EX_TYPE_BPF;
1448 
1449 				if (dst_reg > BPF_REG_9) {
1450 					pr_err("verifier error\n");
1451 					return -EFAULT;
1452 				}
1453 				/*
1454 				 * Compute size of x86 insn and its target dest x86 register.
1455 				 * ex_handler_bpf() will use lower 8 bits to adjust
1456 				 * pt_regs->ip to jump over this x86 instruction
1457 				 * and upper bits to figure out which pt_regs to zero out.
1458 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1459 				 * of 4 bytes will be ignored and rbx will be zero inited.
1460 				 */
1461 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1462 			}
1463 			break;
1464 
1465 		case BPF_STX | BPF_ATOMIC | BPF_W:
1466 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1467 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1468 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1469 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1470 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1471 				u32 real_src_reg = src_reg;
1472 				u32 real_dst_reg = dst_reg;
1473 				u8 *branch_target;
1474 
1475 				/*
1476 				 * Can't be implemented with a single x86 insn.
1477 				 * Need to do a CMPXCHG loop.
1478 				 */
1479 
1480 				/* Will need RAX as a CMPXCHG operand so save R0 */
1481 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1482 				if (src_reg == BPF_REG_0)
1483 					real_src_reg = BPF_REG_AX;
1484 				if (dst_reg == BPF_REG_0)
1485 					real_dst_reg = BPF_REG_AX;
1486 
1487 				branch_target = prog;
1488 				/* Load old value */
1489 				emit_ldx(&prog, BPF_SIZE(insn->code),
1490 					 BPF_REG_0, real_dst_reg, insn->off);
1491 				/*
1492 				 * Perform the (commutative) operation locally,
1493 				 * put the result in the AUX_REG.
1494 				 */
1495 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1496 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1497 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1498 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1499 				/* Attempt to swap in new value */
1500 				err = emit_atomic(&prog, BPF_CMPXCHG,
1501 						  real_dst_reg, AUX_REG,
1502 						  insn->off,
1503 						  BPF_SIZE(insn->code));
1504 				if (WARN_ON(err))
1505 					return err;
1506 				/*
1507 				 * ZF tells us whether we won the race. If it's
1508 				 * cleared we need to try again.
1509 				 */
1510 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1511 				/* Return the pre-modification value */
1512 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1513 				/* Restore R0 after clobbering RAX */
1514 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1515 				break;
1516 			}
1517 
1518 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1519 					  insn->off, BPF_SIZE(insn->code));
1520 			if (err)
1521 				return err;
1522 			break;
1523 
1524 			/* call */
1525 		case BPF_JMP | BPF_CALL:
1526 			func = (u8 *) __bpf_call_base + imm32;
1527 			if (tail_call_reachable) {
1528 				/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1529 				EMIT3_off32(0x48, 0x8B, 0x85,
1530 					    -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1531 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1532 					return -EINVAL;
1533 			} else {
1534 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1535 					return -EINVAL;
1536 			}
1537 			break;
1538 
1539 		case BPF_JMP | BPF_TAIL_CALL:
1540 			if (imm32)
1541 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1542 							  &prog, image + addrs[i - 1],
1543 							  callee_regs_used,
1544 							  bpf_prog->aux->stack_depth,
1545 							  ctx);
1546 			else
1547 				emit_bpf_tail_call_indirect(&prog,
1548 							    callee_regs_used,
1549 							    bpf_prog->aux->stack_depth,
1550 							    image + addrs[i - 1],
1551 							    ctx);
1552 			break;
1553 
1554 			/* cond jump */
1555 		case BPF_JMP | BPF_JEQ | BPF_X:
1556 		case BPF_JMP | BPF_JNE | BPF_X:
1557 		case BPF_JMP | BPF_JGT | BPF_X:
1558 		case BPF_JMP | BPF_JLT | BPF_X:
1559 		case BPF_JMP | BPF_JGE | BPF_X:
1560 		case BPF_JMP | BPF_JLE | BPF_X:
1561 		case BPF_JMP | BPF_JSGT | BPF_X:
1562 		case BPF_JMP | BPF_JSLT | BPF_X:
1563 		case BPF_JMP | BPF_JSGE | BPF_X:
1564 		case BPF_JMP | BPF_JSLE | BPF_X:
1565 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1566 		case BPF_JMP32 | BPF_JNE | BPF_X:
1567 		case BPF_JMP32 | BPF_JGT | BPF_X:
1568 		case BPF_JMP32 | BPF_JLT | BPF_X:
1569 		case BPF_JMP32 | BPF_JGE | BPF_X:
1570 		case BPF_JMP32 | BPF_JLE | BPF_X:
1571 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1572 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1573 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1574 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1575 			/* cmp dst_reg, src_reg */
1576 			maybe_emit_mod(&prog, dst_reg, src_reg,
1577 				       BPF_CLASS(insn->code) == BPF_JMP);
1578 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1579 			goto emit_cond_jmp;
1580 
1581 		case BPF_JMP | BPF_JSET | BPF_X:
1582 		case BPF_JMP32 | BPF_JSET | BPF_X:
1583 			/* test dst_reg, src_reg */
1584 			maybe_emit_mod(&prog, dst_reg, src_reg,
1585 				       BPF_CLASS(insn->code) == BPF_JMP);
1586 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1587 			goto emit_cond_jmp;
1588 
1589 		case BPF_JMP | BPF_JSET | BPF_K:
1590 		case BPF_JMP32 | BPF_JSET | BPF_K:
1591 			/* test dst_reg, imm32 */
1592 			maybe_emit_1mod(&prog, dst_reg,
1593 					BPF_CLASS(insn->code) == BPF_JMP);
1594 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1595 			goto emit_cond_jmp;
1596 
1597 		case BPF_JMP | BPF_JEQ | BPF_K:
1598 		case BPF_JMP | BPF_JNE | BPF_K:
1599 		case BPF_JMP | BPF_JGT | BPF_K:
1600 		case BPF_JMP | BPF_JLT | BPF_K:
1601 		case BPF_JMP | BPF_JGE | BPF_K:
1602 		case BPF_JMP | BPF_JLE | BPF_K:
1603 		case BPF_JMP | BPF_JSGT | BPF_K:
1604 		case BPF_JMP | BPF_JSLT | BPF_K:
1605 		case BPF_JMP | BPF_JSGE | BPF_K:
1606 		case BPF_JMP | BPF_JSLE | BPF_K:
1607 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1608 		case BPF_JMP32 | BPF_JNE | BPF_K:
1609 		case BPF_JMP32 | BPF_JGT | BPF_K:
1610 		case BPF_JMP32 | BPF_JLT | BPF_K:
1611 		case BPF_JMP32 | BPF_JGE | BPF_K:
1612 		case BPF_JMP32 | BPF_JLE | BPF_K:
1613 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1614 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1615 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1616 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1617 			/* test dst_reg, dst_reg to save one extra byte */
1618 			if (imm32 == 0) {
1619 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1620 					       BPF_CLASS(insn->code) == BPF_JMP);
1621 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1622 				goto emit_cond_jmp;
1623 			}
1624 
1625 			/* cmp dst_reg, imm8/32 */
1626 			maybe_emit_1mod(&prog, dst_reg,
1627 					BPF_CLASS(insn->code) == BPF_JMP);
1628 
1629 			if (is_imm8(imm32))
1630 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1631 			else
1632 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1633 
1634 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1635 			switch (BPF_OP(insn->code)) {
1636 			case BPF_JEQ:
1637 				jmp_cond = X86_JE;
1638 				break;
1639 			case BPF_JSET:
1640 			case BPF_JNE:
1641 				jmp_cond = X86_JNE;
1642 				break;
1643 			case BPF_JGT:
1644 				/* GT is unsigned '>', JA in x86 */
1645 				jmp_cond = X86_JA;
1646 				break;
1647 			case BPF_JLT:
1648 				/* LT is unsigned '<', JB in x86 */
1649 				jmp_cond = X86_JB;
1650 				break;
1651 			case BPF_JGE:
1652 				/* GE is unsigned '>=', JAE in x86 */
1653 				jmp_cond = X86_JAE;
1654 				break;
1655 			case BPF_JLE:
1656 				/* LE is unsigned '<=', JBE in x86 */
1657 				jmp_cond = X86_JBE;
1658 				break;
1659 			case BPF_JSGT:
1660 				/* Signed '>', GT in x86 */
1661 				jmp_cond = X86_JG;
1662 				break;
1663 			case BPF_JSLT:
1664 				/* Signed '<', LT in x86 */
1665 				jmp_cond = X86_JL;
1666 				break;
1667 			case BPF_JSGE:
1668 				/* Signed '>=', GE in x86 */
1669 				jmp_cond = X86_JGE;
1670 				break;
1671 			case BPF_JSLE:
1672 				/* Signed '<=', LE in x86 */
1673 				jmp_cond = X86_JLE;
1674 				break;
1675 			default: /* to silence GCC warning */
1676 				return -EFAULT;
1677 			}
1678 			jmp_offset = addrs[i + insn->off] - addrs[i];
1679 			if (is_imm8(jmp_offset)) {
1680 				if (jmp_padding) {
1681 					/* To keep the jmp_offset valid, the extra bytes are
1682 					 * padded before the jump insn, so we subtract the
1683 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1684 					 *
1685 					 * If the previous pass already emits an imm8
1686 					 * jmp_cond, then this BPF insn won't shrink, so
1687 					 * "nops" is 0.
1688 					 *
1689 					 * On the other hand, if the previous pass emits an
1690 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1691 					 * keep the image from shrinking further.
1692 					 *
1693 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1694 					 *     is 2 bytes, so the size difference is 4 bytes.
1695 					 */
1696 					nops = INSN_SZ_DIFF - 2;
1697 					if (nops != 0 && nops != 4) {
1698 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1699 						       nops);
1700 						return -EFAULT;
1701 					}
1702 					emit_nops(&prog, nops);
1703 				}
1704 				EMIT2(jmp_cond, jmp_offset);
1705 			} else if (is_simm32(jmp_offset)) {
1706 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1707 			} else {
1708 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1709 				return -EFAULT;
1710 			}
1711 
1712 			break;
1713 
1714 		case BPF_JMP | BPF_JA:
1715 			if (insn->off == -1)
1716 				/* -1 jmp instructions will always jump
1717 				 * backwards two bytes. Explicitly handling
1718 				 * this case avoids wasting too many passes
1719 				 * when there are long sequences of replaced
1720 				 * dead code.
1721 				 */
1722 				jmp_offset = -2;
1723 			else
1724 				jmp_offset = addrs[i + insn->off] - addrs[i];
1725 
1726 			if (!jmp_offset) {
1727 				/*
1728 				 * If jmp_padding is enabled, the extra nops will
1729 				 * be inserted. Otherwise, optimize out nop jumps.
1730 				 */
1731 				if (jmp_padding) {
1732 					/* There are 3 possible conditions.
1733 					 * (1) This BPF_JA is already optimized out in
1734 					 *     the previous run, so there is no need
1735 					 *     to pad any extra byte (0 byte).
1736 					 * (2) The previous pass emits an imm8 jmp,
1737 					 *     so we pad 2 bytes to match the previous
1738 					 *     insn size.
1739 					 * (3) Similarly, the previous pass emits an
1740 					 *     imm32 jmp, and 5 bytes is padded.
1741 					 */
1742 					nops = INSN_SZ_DIFF;
1743 					if (nops != 0 && nops != 2 && nops != 5) {
1744 						pr_err("unexpected nop jump padding: %d bytes\n",
1745 						       nops);
1746 						return -EFAULT;
1747 					}
1748 					emit_nops(&prog, nops);
1749 				}
1750 				break;
1751 			}
1752 emit_jmp:
1753 			if (is_imm8(jmp_offset)) {
1754 				if (jmp_padding) {
1755 					/* To avoid breaking jmp_offset, the extra bytes
1756 					 * are padded before the actual jmp insn, so
1757 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1758 					 *
1759 					 * If the previous pass already emits an imm8
1760 					 * jmp, there is nothing to pad (0 byte).
1761 					 *
1762 					 * If it emits an imm32 jmp (5 bytes) previously
1763 					 * and now an imm8 jmp (2 bytes), then we pad
1764 					 * (5 - 2 = 3) bytes to stop the image from
1765 					 * shrinking further.
1766 					 */
1767 					nops = INSN_SZ_DIFF - 2;
1768 					if (nops != 0 && nops != 3) {
1769 						pr_err("unexpected jump padding: %d bytes\n",
1770 						       nops);
1771 						return -EFAULT;
1772 					}
1773 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1774 				}
1775 				EMIT2(0xEB, jmp_offset);
1776 			} else if (is_simm32(jmp_offset)) {
1777 				EMIT1_off32(0xE9, jmp_offset);
1778 			} else {
1779 				pr_err("jmp gen bug %llx\n", jmp_offset);
1780 				return -EFAULT;
1781 			}
1782 			break;
1783 
1784 		case BPF_JMP | BPF_EXIT:
1785 			if (seen_exit) {
1786 				jmp_offset = ctx->cleanup_addr - addrs[i];
1787 				goto emit_jmp;
1788 			}
1789 			seen_exit = true;
1790 			/* Update cleanup_addr */
1791 			ctx->cleanup_addr = proglen;
1792 			pop_callee_regs(&prog, callee_regs_used);
1793 			EMIT1(0xC9);         /* leave */
1794 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1795 			break;
1796 
1797 		default:
1798 			/*
1799 			 * By design x86-64 JIT should support all BPF instructions.
1800 			 * This error will be seen if new instruction was added
1801 			 * to the interpreter, but not to the JIT, or if there is
1802 			 * junk in bpf_prog.
1803 			 */
1804 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1805 			return -EINVAL;
1806 		}
1807 
1808 		ilen = prog - temp;
1809 		if (ilen > BPF_MAX_INSN_SIZE) {
1810 			pr_err("bpf_jit: fatal insn size error\n");
1811 			return -EFAULT;
1812 		}
1813 
1814 		if (image) {
1815 			/*
1816 			 * When populating the image, assert that:
1817 			 *
1818 			 *  i) We do not write beyond the allocated space, and
1819 			 * ii) addrs[i] did not change from the prior run, in order
1820 			 *     to validate assumptions made for computing branch
1821 			 *     displacements.
1822 			 */
1823 			if (unlikely(proglen + ilen > oldproglen ||
1824 				     proglen + ilen != addrs[i])) {
1825 				pr_err("bpf_jit: fatal error\n");
1826 				return -EFAULT;
1827 			}
1828 			memcpy(rw_image + proglen, temp, ilen);
1829 		}
1830 		proglen += ilen;
1831 		addrs[i] = proglen;
1832 		prog = temp;
1833 	}
1834 
1835 	if (image && excnt != bpf_prog->aux->num_exentries) {
1836 		pr_err("extable is not populated\n");
1837 		return -EFAULT;
1838 	}
1839 	return proglen;
1840 }
1841 
1842 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1843 		      int stack_size)
1844 {
1845 	int i, j, arg_size, nr_regs;
1846 	/* Store function arguments to stack.
1847 	 * For a function that accepts two pointers the sequence will be:
1848 	 * mov QWORD PTR [rbp-0x10],rdi
1849 	 * mov QWORD PTR [rbp-0x8],rsi
1850 	 */
1851 	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1852 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1853 			nr_regs = (m->arg_size[i] + 7) / 8;
1854 			arg_size = 8;
1855 		} else {
1856 			nr_regs = 1;
1857 			arg_size = m->arg_size[i];
1858 		}
1859 
1860 		while (nr_regs) {
1861 			emit_stx(prog, bytes_to_bpf_size(arg_size),
1862 				 BPF_REG_FP,
1863 				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1864 				 -(stack_size - j * 8));
1865 			nr_regs--;
1866 			j++;
1867 		}
1868 	}
1869 }
1870 
1871 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1872 			 int stack_size)
1873 {
1874 	int i, j, arg_size, nr_regs;
1875 
1876 	/* Restore function arguments from stack.
1877 	 * For a function that accepts two pointers the sequence will be:
1878 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1879 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1880 	 */
1881 	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1882 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1883 			nr_regs = (m->arg_size[i] + 7) / 8;
1884 			arg_size = 8;
1885 		} else {
1886 			nr_regs = 1;
1887 			arg_size = m->arg_size[i];
1888 		}
1889 
1890 		while (nr_regs) {
1891 			emit_ldx(prog, bytes_to_bpf_size(arg_size),
1892 				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1893 				 BPF_REG_FP,
1894 				 -(stack_size - j * 8));
1895 			nr_regs--;
1896 			j++;
1897 		}
1898 	}
1899 }
1900 
1901 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1902 			   struct bpf_tramp_link *l, int stack_size,
1903 			   int run_ctx_off, bool save_ret)
1904 {
1905 	u8 *prog = *pprog;
1906 	u8 *jmp_insn;
1907 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1908 	struct bpf_prog *p = l->link.prog;
1909 	u64 cookie = l->cookie;
1910 
1911 	/* mov rdi, cookie */
1912 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1913 
1914 	/* Prepare struct bpf_tramp_run_ctx.
1915 	 *
1916 	 * bpf_tramp_run_ctx is already preserved by
1917 	 * arch_prepare_bpf_trampoline().
1918 	 *
1919 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1920 	 */
1921 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1922 
1923 	/* arg1: mov rdi, progs[i] */
1924 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1925 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
1926 	EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1927 
1928 	if (emit_call(&prog, bpf_trampoline_enter(p), prog))
1929 		return -EINVAL;
1930 	/* remember prog start time returned by __bpf_prog_enter */
1931 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1932 
1933 	/* if (__bpf_prog_enter*(prog) == 0)
1934 	 *	goto skip_exec_of_prog;
1935 	 */
1936 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1937 	/* emit 2 nops that will be replaced with JE insn */
1938 	jmp_insn = prog;
1939 	emit_nops(&prog, 2);
1940 
1941 	/* arg1: lea rdi, [rbp - stack_size] */
1942 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1943 	/* arg2: progs[i]->insnsi for interpreter */
1944 	if (!p->jited)
1945 		emit_mov_imm64(&prog, BPF_REG_2,
1946 			       (long) p->insnsi >> 32,
1947 			       (u32) (long) p->insnsi);
1948 	/* call JITed bpf program or interpreter */
1949 	if (emit_call(&prog, p->bpf_func, prog))
1950 		return -EINVAL;
1951 
1952 	/*
1953 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1954 	 * of the previous call which is then passed on the stack to
1955 	 * the next BPF program.
1956 	 *
1957 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
1958 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1959 	 */
1960 	if (save_ret)
1961 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1962 
1963 	/* replace 2 nops with JE insn, since jmp target is known */
1964 	jmp_insn[0] = X86_JE;
1965 	jmp_insn[1] = prog - jmp_insn - 2;
1966 
1967 	/* arg1: mov rdi, progs[i] */
1968 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1969 	/* arg2: mov rsi, rbx <- start time in nsec */
1970 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1971 	/* arg3: lea rdx, [rbp - run_ctx_off] */
1972 	EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1973 	if (emit_call(&prog, bpf_trampoline_exit(p), prog))
1974 		return -EINVAL;
1975 
1976 	*pprog = prog;
1977 	return 0;
1978 }
1979 
1980 static void emit_align(u8 **pprog, u32 align)
1981 {
1982 	u8 *target, *prog = *pprog;
1983 
1984 	target = PTR_ALIGN(prog, align);
1985 	if (target != prog)
1986 		emit_nops(&prog, target - prog);
1987 
1988 	*pprog = prog;
1989 }
1990 
1991 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1992 {
1993 	u8 *prog = *pprog;
1994 	s64 offset;
1995 
1996 	offset = func - (ip + 2 + 4);
1997 	if (!is_simm32(offset)) {
1998 		pr_err("Target %p is out of range\n", func);
1999 		return -EINVAL;
2000 	}
2001 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2002 	*pprog = prog;
2003 	return 0;
2004 }
2005 
2006 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2007 		      struct bpf_tramp_links *tl, int stack_size,
2008 		      int run_ctx_off, bool save_ret)
2009 {
2010 	int i;
2011 	u8 *prog = *pprog;
2012 
2013 	for (i = 0; i < tl->nr_links; i++) {
2014 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2015 				    run_ctx_off, save_ret))
2016 			return -EINVAL;
2017 	}
2018 	*pprog = prog;
2019 	return 0;
2020 }
2021 
2022 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2023 			      struct bpf_tramp_links *tl, int stack_size,
2024 			      int run_ctx_off, u8 **branches)
2025 {
2026 	u8 *prog = *pprog;
2027 	int i;
2028 
2029 	/* The first fmod_ret program will receive a garbage return value.
2030 	 * Set this to 0 to avoid confusing the program.
2031 	 */
2032 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2033 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2034 	for (i = 0; i < tl->nr_links; i++) {
2035 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2036 			return -EINVAL;
2037 
2038 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2039 		 * if (*(u64 *)(rbp - 8) !=  0)
2040 		 *	goto do_fexit;
2041 		 */
2042 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2043 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2044 
2045 		/* Save the location of the branch and Generate 6 nops
2046 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2047 		 * are replaced with a conditional jump once do_fexit (i.e. the
2048 		 * start of the fexit invocation) is finalized.
2049 		 */
2050 		branches[i] = prog;
2051 		emit_nops(&prog, 4 + 2);
2052 	}
2053 
2054 	*pprog = prog;
2055 	return 0;
2056 }
2057 
2058 /* Example:
2059  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2060  * its 'struct btf_func_model' will be nr_args=2
2061  * The assembly code when eth_type_trans is executing after trampoline:
2062  *
2063  * push rbp
2064  * mov rbp, rsp
2065  * sub rsp, 16                     // space for skb and dev
2066  * push rbx                        // temp regs to pass start time
2067  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2068  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2069  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2070  * mov rbx, rax                    // remember start time in bpf stats are enabled
2071  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2072  * call addr_of_jited_FENTRY_prog
2073  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2074  * mov rsi, rbx                    // prog start time
2075  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2076  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2077  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2078  * pop rbx
2079  * leave
2080  * ret
2081  *
2082  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2083  * replaced with 'call generated_bpf_trampoline'. When it returns
2084  * eth_type_trans will continue executing with original skb and dev pointers.
2085  *
2086  * The assembly code when eth_type_trans is called from trampoline:
2087  *
2088  * push rbp
2089  * mov rbp, rsp
2090  * sub rsp, 24                     // space for skb, dev, return value
2091  * push rbx                        // temp regs to pass start time
2092  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2093  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2094  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2095  * mov rbx, rax                    // remember start time if bpf stats are enabled
2096  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2097  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2098  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2099  * mov rsi, rbx                    // prog start time
2100  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2101  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2102  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2103  * call eth_type_trans+5           // execute body of eth_type_trans
2104  * mov qword ptr [rbp - 8], rax    // save return value
2105  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2106  * mov rbx, rax                    // remember start time in bpf stats are enabled
2107  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2108  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2109  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2110  * mov rsi, rbx                    // prog start time
2111  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2112  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2113  * pop rbx
2114  * leave
2115  * add rsp, 8                      // skip eth_type_trans's frame
2116  * ret                             // return to its caller
2117  */
2118 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2119 				const struct btf_func_model *m, u32 flags,
2120 				struct bpf_tramp_links *tlinks,
2121 				void *func_addr)
2122 {
2123 	int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2124 	int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2125 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2126 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2127 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2128 	void *orig_call = func_addr;
2129 	u8 **branches = NULL;
2130 	u8 *prog;
2131 	bool save_ret;
2132 
2133 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2134 	if (nr_args > 6)
2135 		return -ENOTSUPP;
2136 
2137 	for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2138 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2139 			extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2140 	}
2141 	if (nr_args + extra_nregs > 6)
2142 		return -ENOTSUPP;
2143 	stack_size += extra_nregs * 8;
2144 
2145 	/* Generated trampoline stack layout:
2146 	 *
2147 	 * RBP + 8         [ return address  ]
2148 	 * RBP + 0         [ RBP             ]
2149 	 *
2150 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2151 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2152 	 *
2153 	 *                 [ reg_argN        ]  always
2154 	 *                 [ ...             ]
2155 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2156 	 *
2157 	 * RBP - args_off  [ arg regs count  ]  always
2158 	 *
2159 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2160 	 *
2161 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2162 	 */
2163 
2164 	/* room for return value of orig_call or fentry prog */
2165 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2166 	if (save_ret)
2167 		stack_size += 8;
2168 
2169 	regs_off = stack_size;
2170 
2171 	/* args count  */
2172 	stack_size += 8;
2173 	args_off = stack_size;
2174 
2175 	if (flags & BPF_TRAMP_F_IP_ARG)
2176 		stack_size += 8; /* room for IP address argument */
2177 
2178 	ip_off = stack_size;
2179 
2180 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2181 	run_ctx_off = stack_size;
2182 
2183 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2184 		/* skip patched call instruction and point orig_call to actual
2185 		 * body of the kernel function.
2186 		 */
2187 		if (is_endbr(*(u32 *)orig_call))
2188 			orig_call += ENDBR_INSN_SIZE;
2189 		orig_call += X86_PATCH_SIZE;
2190 	}
2191 
2192 	prog = image;
2193 
2194 	EMIT_ENDBR();
2195 	EMIT1(0x55);		 /* push rbp */
2196 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2197 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2198 	EMIT1(0x53);		 /* push rbx */
2199 
2200 	/* Store number of argument registers of the traced function:
2201 	 *   mov rax, nr_args + extra_nregs
2202 	 *   mov QWORD PTR [rbp - args_off], rax
2203 	 */
2204 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2205 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2206 
2207 	if (flags & BPF_TRAMP_F_IP_ARG) {
2208 		/* Store IP address of the traced function:
2209 		 * movabsq rax, func_addr
2210 		 * mov QWORD PTR [rbp - ip_off], rax
2211 		 */
2212 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2213 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2214 	}
2215 
2216 	save_regs(m, &prog, nr_args, regs_off);
2217 
2218 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2219 		/* arg1: mov rdi, im */
2220 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2221 		if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2222 			ret = -EINVAL;
2223 			goto cleanup;
2224 		}
2225 	}
2226 
2227 	if (fentry->nr_links)
2228 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2229 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2230 			return -EINVAL;
2231 
2232 	if (fmod_ret->nr_links) {
2233 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2234 				   GFP_KERNEL);
2235 		if (!branches)
2236 			return -ENOMEM;
2237 
2238 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2239 				       run_ctx_off, branches)) {
2240 			ret = -EINVAL;
2241 			goto cleanup;
2242 		}
2243 	}
2244 
2245 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2246 		restore_regs(m, &prog, nr_args, regs_off);
2247 
2248 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2249 			emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2250 			EMIT2(0xff, 0xd0); /* call *rax */
2251 		} else {
2252 			/* call original function */
2253 			if (emit_call(&prog, orig_call, prog)) {
2254 				ret = -EINVAL;
2255 				goto cleanup;
2256 			}
2257 		}
2258 		/* remember return value in a stack for bpf prog to access */
2259 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2260 		im->ip_after_call = prog;
2261 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2262 		prog += X86_PATCH_SIZE;
2263 	}
2264 
2265 	if (fmod_ret->nr_links) {
2266 		/* From Intel 64 and IA-32 Architectures Optimization
2267 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2268 		 * Coding Rule 11: All branch targets should be 16-byte
2269 		 * aligned.
2270 		 */
2271 		emit_align(&prog, 16);
2272 		/* Update the branches saved in invoke_bpf_mod_ret with the
2273 		 * aligned address of do_fexit.
2274 		 */
2275 		for (i = 0; i < fmod_ret->nr_links; i++)
2276 			emit_cond_near_jump(&branches[i], prog, branches[i],
2277 					    X86_JNE);
2278 	}
2279 
2280 	if (fexit->nr_links)
2281 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2282 			ret = -EINVAL;
2283 			goto cleanup;
2284 		}
2285 
2286 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2287 		restore_regs(m, &prog, nr_args, regs_off);
2288 
2289 	/* This needs to be done regardless. If there were fmod_ret programs,
2290 	 * the return value is only updated on the stack and still needs to be
2291 	 * restored to R0.
2292 	 */
2293 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2294 		im->ip_epilogue = prog;
2295 		/* arg1: mov rdi, im */
2296 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2297 		if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2298 			ret = -EINVAL;
2299 			goto cleanup;
2300 		}
2301 	}
2302 	/* restore return value of orig_call or fentry prog back into RAX */
2303 	if (save_ret)
2304 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2305 
2306 	EMIT1(0x5B); /* pop rbx */
2307 	EMIT1(0xC9); /* leave */
2308 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2309 		/* skip our return address and return to parent */
2310 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2311 	emit_return(&prog, prog);
2312 	/* Make sure the trampoline generation logic doesn't overflow */
2313 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2314 		ret = -EFAULT;
2315 		goto cleanup;
2316 	}
2317 	ret = prog - (u8 *)image;
2318 
2319 cleanup:
2320 	kfree(branches);
2321 	return ret;
2322 }
2323 
2324 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2325 {
2326 	u8 *jg_reloc, *prog = *pprog;
2327 	int pivot, err, jg_bytes = 1;
2328 	s64 jg_offset;
2329 
2330 	if (a == b) {
2331 		/* Leaf node of recursion, i.e. not a range of indices
2332 		 * anymore.
2333 		 */
2334 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2335 		if (!is_simm32(progs[a]))
2336 			return -1;
2337 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2338 			    progs[a]);
2339 		err = emit_cond_near_jump(&prog,	/* je func */
2340 					  (void *)progs[a], image + (prog - buf),
2341 					  X86_JE);
2342 		if (err)
2343 			return err;
2344 
2345 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2346 
2347 		*pprog = prog;
2348 		return 0;
2349 	}
2350 
2351 	/* Not a leaf node, so we pivot, and recursively descend into
2352 	 * the lower and upper ranges.
2353 	 */
2354 	pivot = (b - a) / 2;
2355 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2356 	if (!is_simm32(progs[a + pivot]))
2357 		return -1;
2358 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2359 
2360 	if (pivot > 2) {				/* jg upper_part */
2361 		/* Require near jump. */
2362 		jg_bytes = 4;
2363 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2364 	} else {
2365 		EMIT2(X86_JG, 0);
2366 	}
2367 	jg_reloc = prog;
2368 
2369 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2370 				  progs, image, buf);
2371 	if (err)
2372 		return err;
2373 
2374 	/* From Intel 64 and IA-32 Architectures Optimization
2375 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2376 	 * Coding Rule 11: All branch targets should be 16-byte
2377 	 * aligned.
2378 	 */
2379 	emit_align(&prog, 16);
2380 	jg_offset = prog - jg_reloc;
2381 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2382 
2383 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2384 				  b, progs, image, buf);
2385 	if (err)
2386 		return err;
2387 
2388 	*pprog = prog;
2389 	return 0;
2390 }
2391 
2392 static int cmp_ips(const void *a, const void *b)
2393 {
2394 	const s64 *ipa = a;
2395 	const s64 *ipb = b;
2396 
2397 	if (*ipa > *ipb)
2398 		return 1;
2399 	if (*ipa < *ipb)
2400 		return -1;
2401 	return 0;
2402 }
2403 
2404 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2405 {
2406 	u8 *prog = buf;
2407 
2408 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2409 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2410 }
2411 
2412 struct x64_jit_data {
2413 	struct bpf_binary_header *rw_header;
2414 	struct bpf_binary_header *header;
2415 	int *addrs;
2416 	u8 *image;
2417 	int proglen;
2418 	struct jit_context ctx;
2419 };
2420 
2421 #define MAX_PASSES 20
2422 #define PADDING_PASSES (MAX_PASSES - 5)
2423 
2424 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2425 {
2426 	struct bpf_binary_header *rw_header = NULL;
2427 	struct bpf_binary_header *header = NULL;
2428 	struct bpf_prog *tmp, *orig_prog = prog;
2429 	struct x64_jit_data *jit_data;
2430 	int proglen, oldproglen = 0;
2431 	struct jit_context ctx = {};
2432 	bool tmp_blinded = false;
2433 	bool extra_pass = false;
2434 	bool padding = false;
2435 	u8 *rw_image = NULL;
2436 	u8 *image = NULL;
2437 	int *addrs;
2438 	int pass;
2439 	int i;
2440 
2441 	if (!prog->jit_requested)
2442 		return orig_prog;
2443 
2444 	tmp = bpf_jit_blind_constants(prog);
2445 	/*
2446 	 * If blinding was requested and we failed during blinding,
2447 	 * we must fall back to the interpreter.
2448 	 */
2449 	if (IS_ERR(tmp))
2450 		return orig_prog;
2451 	if (tmp != prog) {
2452 		tmp_blinded = true;
2453 		prog = tmp;
2454 	}
2455 
2456 	jit_data = prog->aux->jit_data;
2457 	if (!jit_data) {
2458 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2459 		if (!jit_data) {
2460 			prog = orig_prog;
2461 			goto out;
2462 		}
2463 		prog->aux->jit_data = jit_data;
2464 	}
2465 	addrs = jit_data->addrs;
2466 	if (addrs) {
2467 		ctx = jit_data->ctx;
2468 		oldproglen = jit_data->proglen;
2469 		image = jit_data->image;
2470 		header = jit_data->header;
2471 		rw_header = jit_data->rw_header;
2472 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2473 		extra_pass = true;
2474 		padding = true;
2475 		goto skip_init_addrs;
2476 	}
2477 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2478 	if (!addrs) {
2479 		prog = orig_prog;
2480 		goto out_addrs;
2481 	}
2482 
2483 	/*
2484 	 * Before first pass, make a rough estimation of addrs[]
2485 	 * each BPF instruction is translated to less than 64 bytes
2486 	 */
2487 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2488 		proglen += 64;
2489 		addrs[i] = proglen;
2490 	}
2491 	ctx.cleanup_addr = proglen;
2492 skip_init_addrs:
2493 
2494 	/*
2495 	 * JITed image shrinks with every pass and the loop iterates
2496 	 * until the image stops shrinking. Very large BPF programs
2497 	 * may converge on the last pass. In such case do one more
2498 	 * pass to emit the final image.
2499 	 */
2500 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2501 		if (!padding && pass >= PADDING_PASSES)
2502 			padding = true;
2503 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2504 		if (proglen <= 0) {
2505 out_image:
2506 			image = NULL;
2507 			if (header) {
2508 				bpf_arch_text_copy(&header->size, &rw_header->size,
2509 						   sizeof(rw_header->size));
2510 				bpf_jit_binary_pack_free(header, rw_header);
2511 			}
2512 			/* Fall back to interpreter mode */
2513 			prog = orig_prog;
2514 			if (extra_pass) {
2515 				prog->bpf_func = NULL;
2516 				prog->jited = 0;
2517 				prog->jited_len = 0;
2518 			}
2519 			goto out_addrs;
2520 		}
2521 		if (image) {
2522 			if (proglen != oldproglen) {
2523 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2524 				       proglen, oldproglen);
2525 				goto out_image;
2526 			}
2527 			break;
2528 		}
2529 		if (proglen == oldproglen) {
2530 			/*
2531 			 * The number of entries in extable is the number of BPF_LDX
2532 			 * insns that access kernel memory via "pointer to BTF type".
2533 			 * The verifier changed their opcode from LDX|MEM|size
2534 			 * to LDX|PROBE_MEM|size to make JITing easier.
2535 			 */
2536 			u32 align = __alignof__(struct exception_table_entry);
2537 			u32 extable_size = prog->aux->num_exentries *
2538 				sizeof(struct exception_table_entry);
2539 
2540 			/* allocate module memory for x86 insns and extable */
2541 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2542 							   &image, align, &rw_header, &rw_image,
2543 							   jit_fill_hole);
2544 			if (!header) {
2545 				prog = orig_prog;
2546 				goto out_addrs;
2547 			}
2548 			prog->aux->extable = (void *) image + roundup(proglen, align);
2549 		}
2550 		oldproglen = proglen;
2551 		cond_resched();
2552 	}
2553 
2554 	if (bpf_jit_enable > 1)
2555 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2556 
2557 	if (image) {
2558 		if (!prog->is_func || extra_pass) {
2559 			/*
2560 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2561 			 *   1) header is not pointing to proper module memory;
2562 			 *   2) the arch doesn't support bpf_arch_text_copy().
2563 			 *
2564 			 * Both cases are serious bugs and justify WARN_ON.
2565 			 */
2566 			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2567 				/* header has been freed */
2568 				header = NULL;
2569 				goto out_image;
2570 			}
2571 
2572 			bpf_tail_call_direct_fixup(prog);
2573 		} else {
2574 			jit_data->addrs = addrs;
2575 			jit_data->ctx = ctx;
2576 			jit_data->proglen = proglen;
2577 			jit_data->image = image;
2578 			jit_data->header = header;
2579 			jit_data->rw_header = rw_header;
2580 		}
2581 		prog->bpf_func = (void *)image;
2582 		prog->jited = 1;
2583 		prog->jited_len = proglen;
2584 	} else {
2585 		prog = orig_prog;
2586 	}
2587 
2588 	if (!image || !prog->is_func || extra_pass) {
2589 		if (image)
2590 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2591 out_addrs:
2592 		kvfree(addrs);
2593 		kfree(jit_data);
2594 		prog->aux->jit_data = NULL;
2595 	}
2596 out:
2597 	if (tmp_blinded)
2598 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2599 					   tmp : orig_prog);
2600 	return prog;
2601 }
2602 
2603 bool bpf_jit_supports_kfunc_call(void)
2604 {
2605 	return true;
2606 }
2607 
2608 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2609 {
2610 	if (text_poke_copy(dst, src, len) == NULL)
2611 		return ERR_PTR(-EINVAL);
2612 	return dst;
2613 }
2614 
2615 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2616 bool bpf_jit_supports_subprog_tailcalls(void)
2617 {
2618 	return true;
2619 }
2620 
2621 void bpf_jit_free(struct bpf_prog *prog)
2622 {
2623 	if (prog->jited) {
2624 		struct x64_jit_data *jit_data = prog->aux->jit_data;
2625 		struct bpf_binary_header *hdr;
2626 
2627 		/*
2628 		 * If we fail the final pass of JIT (from jit_subprogs),
2629 		 * the program may not be finalized yet. Call finalize here
2630 		 * before freeing it.
2631 		 */
2632 		if (jit_data) {
2633 			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2634 						     jit_data->rw_header);
2635 			kvfree(jit_data->addrs);
2636 			kfree(jit_data);
2637 		}
2638 		hdr = bpf_jit_binary_pack_hdr(prog);
2639 		bpf_jit_binary_pack_free(hdr, NULL);
2640 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2641 	}
2642 
2643 	bpf_prog_unlock_free(prog);
2644 }
2645