xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168 	return is_ereg(reg) ||
169 	    (1 << reg) & (BIT(BPF_REG_1) |
170 			  BIT(BPF_REG_2) |
171 			  BIT(BPF_REG_FP));
172 }
173 
174 static bool is_axreg(u32 reg)
175 {
176 	return reg == BPF_REG_0;
177 }
178 
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182 	if (is_ereg(reg))
183 		byte |= 1;
184 	return byte;
185 }
186 
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189 	if (is_ereg(r1))
190 		byte |= 1;
191 	if (is_ereg(r2))
192 		byte |= 4;
193 	return byte;
194 }
195 
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199 	return byte + reg2hex[dst_reg];
200 }
201 
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207 
208 static void jit_fill_hole(void *area, unsigned int size)
209 {
210 	/* Fill whole space with INT3 instructions */
211 	memset(area, 0xcc, size);
212 }
213 
214 struct jit_context {
215 	int cleanup_addr; /* Epilogue code offset */
216 };
217 
218 /* Maximum number of bytes emitted while JITing one eBPF insn */
219 #define BPF_MAX_INSN_SIZE	128
220 #define BPF_INSN_SAFETY		64
221 
222 /* Number of bytes emit_patch() needs to generate instructions */
223 #define X86_PATCH_SIZE		5
224 
225 #define PROLOGUE_SIZE		25
226 
227 /*
228  * Emit x86-64 prologue code for BPF program and check its size.
229  * bpf_tail_call helper will skip it while jumping into another program
230  */
231 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
232 {
233 	u8 *prog = *pprog;
234 	int cnt = X86_PATCH_SIZE;
235 
236 	/* BPF trampoline can be made to work without these nops,
237 	 * but let's waste 5 bytes for now and optimize later
238 	 */
239 	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
240 	prog += cnt;
241 	EMIT1(0x55);             /* push rbp */
242 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
243 	/* sub rsp, rounded_stack_depth */
244 	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
245 	EMIT1(0x53);             /* push rbx */
246 	EMIT2(0x41, 0x55);       /* push r13 */
247 	EMIT2(0x41, 0x56);       /* push r14 */
248 	EMIT2(0x41, 0x57);       /* push r15 */
249 	if (!ebpf_from_cbpf) {
250 		/* zero init tail_call_cnt */
251 		EMIT2(0x6a, 0x00);
252 		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
253 	}
254 	*pprog = prog;
255 }
256 
257 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
258 {
259 	u8 *prog = *pprog;
260 	int cnt = 0;
261 	s64 offset;
262 
263 	offset = func - (ip + X86_PATCH_SIZE);
264 	if (!is_simm32(offset)) {
265 		pr_err("Target call %p is out of range\n", func);
266 		return -ERANGE;
267 	}
268 	EMIT1_off32(opcode, offset);
269 	*pprog = prog;
270 	return 0;
271 }
272 
273 static int emit_call(u8 **pprog, void *func, void *ip)
274 {
275 	return emit_patch(pprog, func, ip, 0xE8);
276 }
277 
278 static int emit_jump(u8 **pprog, void *func, void *ip)
279 {
280 	return emit_patch(pprog, func, ip, 0xE9);
281 }
282 
283 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
284 				void *old_addr, void *new_addr,
285 				const bool text_live)
286 {
287 	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
288 	u8 old_insn[X86_PATCH_SIZE];
289 	u8 new_insn[X86_PATCH_SIZE];
290 	u8 *prog;
291 	int ret;
292 
293 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
294 	if (old_addr) {
295 		prog = old_insn;
296 		ret = t == BPF_MOD_CALL ?
297 		      emit_call(&prog, old_addr, ip) :
298 		      emit_jump(&prog, old_addr, ip);
299 		if (ret)
300 			return ret;
301 	}
302 
303 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
304 	if (new_addr) {
305 		prog = new_insn;
306 		ret = t == BPF_MOD_CALL ?
307 		      emit_call(&prog, new_addr, ip) :
308 		      emit_jump(&prog, new_addr, ip);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	ret = -EBUSY;
314 	mutex_lock(&text_mutex);
315 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
316 		goto out;
317 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
318 		if (text_live)
319 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
320 		else
321 			memcpy(ip, new_insn, X86_PATCH_SIZE);
322 	}
323 	ret = 0;
324 out:
325 	mutex_unlock(&text_mutex);
326 	return ret;
327 }
328 
329 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
330 		       void *old_addr, void *new_addr)
331 {
332 	if (!is_kernel_text((long)ip) &&
333 	    !is_bpf_text_address((long)ip))
334 		/* BPF poking in modules is not supported */
335 		return -EINVAL;
336 
337 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
338 }
339 
340 /*
341  * Generate the following code:
342  *
343  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
344  *   if (index >= array->map.max_entries)
345  *     goto out;
346  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
347  *     goto out;
348  *   prog = array->ptrs[index];
349  *   if (prog == NULL)
350  *     goto out;
351  *   goto *(prog->bpf_func + prologue_size);
352  * out:
353  */
354 static void emit_bpf_tail_call_indirect(u8 **pprog)
355 {
356 	u8 *prog = *pprog;
357 	int label1, label2, label3;
358 	int cnt = 0;
359 
360 	/*
361 	 * rdi - pointer to ctx
362 	 * rsi - pointer to bpf_array
363 	 * rdx - index in bpf_array
364 	 */
365 
366 	/*
367 	 * if (index >= array->map.max_entries)
368 	 *	goto out;
369 	 */
370 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
371 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
372 	      offsetof(struct bpf_array, map.max_entries));
373 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
374 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
375 	label1 = cnt;
376 
377 	/*
378 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
379 	 *	goto out;
380 	 */
381 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
382 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
383 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
384 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
385 	label2 = cnt;
386 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
387 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
388 
389 	/* prog = array->ptrs[index]; */
390 	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
391 		    offsetof(struct bpf_array, ptrs));
392 
393 	/*
394 	 * if (prog == NULL)
395 	 *	goto out;
396 	 */
397 	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
398 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
399 	EMIT2(X86_JE, OFFSET3);                   /* je out */
400 	label3 = cnt;
401 
402 	/* goto *(prog->bpf_func + prologue_size); */
403 	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
404 	      offsetof(struct bpf_prog, bpf_func));
405 	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
406 
407 	/*
408 	 * Wow we're ready to jump into next BPF program
409 	 * rdi == ctx (1st arg)
410 	 * rax == prog->bpf_func + prologue_size
411 	 */
412 	RETPOLINE_RAX_BPF_JIT();
413 
414 	/* out: */
415 	BUILD_BUG_ON(cnt - label1 != OFFSET1);
416 	BUILD_BUG_ON(cnt - label2 != OFFSET2);
417 	BUILD_BUG_ON(cnt - label3 != OFFSET3);
418 	*pprog = prog;
419 }
420 
421 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
422 				      u8 **pprog, int addr, u8 *image)
423 {
424 	u8 *prog = *pprog;
425 	int cnt = 0;
426 
427 	/*
428 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
429 	 *	goto out;
430 	 */
431 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
432 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
433 	EMIT2(X86_JA, 14);                            /* ja out */
434 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
435 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
436 
437 	poke->ip = image + (addr - X86_PATCH_SIZE);
438 	poke->adj_off = PROLOGUE_SIZE;
439 
440 	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
441 	prog += X86_PATCH_SIZE;
442 	/* out: */
443 
444 	*pprog = prog;
445 }
446 
447 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
448 {
449 	struct bpf_jit_poke_descriptor *poke;
450 	struct bpf_array *array;
451 	struct bpf_prog *target;
452 	int i, ret;
453 
454 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
455 		poke = &prog->aux->poke_tab[i];
456 		WARN_ON_ONCE(READ_ONCE(poke->ip_stable));
457 
458 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
459 			continue;
460 
461 		array = container_of(poke->tail_call.map, struct bpf_array, map);
462 		mutex_lock(&array->aux->poke_mutex);
463 		target = array->ptrs[poke->tail_call.key];
464 		if (target) {
465 			/* Plain memcpy is used when image is not live yet
466 			 * and still not locked as read-only. Once poke
467 			 * location is active (poke->ip_stable), any parallel
468 			 * bpf_arch_text_poke() might occur still on the
469 			 * read-write image until we finally locked it as
470 			 * read-only. Both modifications on the given image
471 			 * are under text_mutex to avoid interference.
472 			 */
473 			ret = __bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, NULL,
474 						   (u8 *)target->bpf_func +
475 						   poke->adj_off, false);
476 			BUG_ON(ret < 0);
477 		}
478 		WRITE_ONCE(poke->ip_stable, true);
479 		mutex_unlock(&array->aux->poke_mutex);
480 	}
481 }
482 
483 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
484 			   u32 dst_reg, const u32 imm32)
485 {
486 	u8 *prog = *pprog;
487 	u8 b1, b2, b3;
488 	int cnt = 0;
489 
490 	/*
491 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
492 	 * (which zero-extends imm32) to save 2 bytes.
493 	 */
494 	if (sign_propagate && (s32)imm32 < 0) {
495 		/* 'mov %rax, imm32' sign extends imm32 */
496 		b1 = add_1mod(0x48, dst_reg);
497 		b2 = 0xC7;
498 		b3 = 0xC0;
499 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
500 		goto done;
501 	}
502 
503 	/*
504 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
505 	 * to save 3 bytes.
506 	 */
507 	if (imm32 == 0) {
508 		if (is_ereg(dst_reg))
509 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
510 		b2 = 0x31; /* xor */
511 		b3 = 0xC0;
512 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
513 		goto done;
514 	}
515 
516 	/* mov %eax, imm32 */
517 	if (is_ereg(dst_reg))
518 		EMIT1(add_1mod(0x40, dst_reg));
519 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
520 done:
521 	*pprog = prog;
522 }
523 
524 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
525 			   const u32 imm32_hi, const u32 imm32_lo)
526 {
527 	u8 *prog = *pprog;
528 	int cnt = 0;
529 
530 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
531 		/*
532 		 * For emitting plain u32, where sign bit must not be
533 		 * propagated LLVM tends to load imm64 over mov32
534 		 * directly, so save couple of bytes by just doing
535 		 * 'mov %eax, imm32' instead.
536 		 */
537 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
538 	} else {
539 		/* movabsq %rax, imm64 */
540 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
541 		EMIT(imm32_lo, 4);
542 		EMIT(imm32_hi, 4);
543 	}
544 
545 	*pprog = prog;
546 }
547 
548 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
549 {
550 	u8 *prog = *pprog;
551 	int cnt = 0;
552 
553 	if (is64) {
554 		/* mov dst, src */
555 		EMIT_mov(dst_reg, src_reg);
556 	} else {
557 		/* mov32 dst, src */
558 		if (is_ereg(dst_reg) || is_ereg(src_reg))
559 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
560 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
561 	}
562 
563 	*pprog = prog;
564 }
565 
566 /* LDX: dst_reg = *(u8*)(src_reg + off) */
567 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
568 {
569 	u8 *prog = *pprog;
570 	int cnt = 0;
571 
572 	switch (size) {
573 	case BPF_B:
574 		/* Emit 'movzx rax, byte ptr [rax + off]' */
575 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
576 		break;
577 	case BPF_H:
578 		/* Emit 'movzx rax, word ptr [rax + off]' */
579 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
580 		break;
581 	case BPF_W:
582 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
583 		if (is_ereg(dst_reg) || is_ereg(src_reg))
584 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
585 		else
586 			EMIT1(0x8B);
587 		break;
588 	case BPF_DW:
589 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
590 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
591 		break;
592 	}
593 	/*
594 	 * If insn->off == 0 we can save one extra byte, but
595 	 * special case of x86 R13 which always needs an offset
596 	 * is not worth the hassle
597 	 */
598 	if (is_imm8(off))
599 		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
600 	else
601 		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
602 	*pprog = prog;
603 }
604 
605 /* STX: *(u8*)(dst_reg + off) = src_reg */
606 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
607 {
608 	u8 *prog = *pprog;
609 	int cnt = 0;
610 
611 	switch (size) {
612 	case BPF_B:
613 		/* Emit 'mov byte ptr [rax + off], al' */
614 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
615 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
616 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
617 		else
618 			EMIT1(0x88);
619 		break;
620 	case BPF_H:
621 		if (is_ereg(dst_reg) || is_ereg(src_reg))
622 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
623 		else
624 			EMIT2(0x66, 0x89);
625 		break;
626 	case BPF_W:
627 		if (is_ereg(dst_reg) || is_ereg(src_reg))
628 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
629 		else
630 			EMIT1(0x89);
631 		break;
632 	case BPF_DW:
633 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
634 		break;
635 	}
636 	if (is_imm8(off))
637 		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
638 	else
639 		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
640 	*pprog = prog;
641 }
642 
643 static bool ex_handler_bpf(const struct exception_table_entry *x,
644 			   struct pt_regs *regs, int trapnr,
645 			   unsigned long error_code, unsigned long fault_addr)
646 {
647 	u32 reg = x->fixup >> 8;
648 
649 	/* jump over faulting load and clear dest register */
650 	*(unsigned long *)((void *)regs + reg) = 0;
651 	regs->ip += x->fixup & 0xff;
652 	return true;
653 }
654 
655 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
656 		  int oldproglen, struct jit_context *ctx)
657 {
658 	struct bpf_insn *insn = bpf_prog->insnsi;
659 	int insn_cnt = bpf_prog->len;
660 	bool seen_exit = false;
661 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
662 	int i, cnt = 0, excnt = 0;
663 	int proglen = 0;
664 	u8 *prog = temp;
665 
666 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
667 		      bpf_prog_was_classic(bpf_prog));
668 	addrs[0] = prog - temp;
669 
670 	for (i = 1; i <= insn_cnt; i++, insn++) {
671 		const s32 imm32 = insn->imm;
672 		u32 dst_reg = insn->dst_reg;
673 		u32 src_reg = insn->src_reg;
674 		u8 b2 = 0, b3 = 0;
675 		s64 jmp_offset;
676 		u8 jmp_cond;
677 		int ilen;
678 		u8 *func;
679 
680 		switch (insn->code) {
681 			/* ALU */
682 		case BPF_ALU | BPF_ADD | BPF_X:
683 		case BPF_ALU | BPF_SUB | BPF_X:
684 		case BPF_ALU | BPF_AND | BPF_X:
685 		case BPF_ALU | BPF_OR | BPF_X:
686 		case BPF_ALU | BPF_XOR | BPF_X:
687 		case BPF_ALU64 | BPF_ADD | BPF_X:
688 		case BPF_ALU64 | BPF_SUB | BPF_X:
689 		case BPF_ALU64 | BPF_AND | BPF_X:
690 		case BPF_ALU64 | BPF_OR | BPF_X:
691 		case BPF_ALU64 | BPF_XOR | BPF_X:
692 			switch (BPF_OP(insn->code)) {
693 			case BPF_ADD: b2 = 0x01; break;
694 			case BPF_SUB: b2 = 0x29; break;
695 			case BPF_AND: b2 = 0x21; break;
696 			case BPF_OR: b2 = 0x09; break;
697 			case BPF_XOR: b2 = 0x31; break;
698 			}
699 			if (BPF_CLASS(insn->code) == BPF_ALU64)
700 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
701 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
702 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
703 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
704 			break;
705 
706 		case BPF_ALU64 | BPF_MOV | BPF_X:
707 		case BPF_ALU | BPF_MOV | BPF_X:
708 			emit_mov_reg(&prog,
709 				     BPF_CLASS(insn->code) == BPF_ALU64,
710 				     dst_reg, src_reg);
711 			break;
712 
713 			/* neg dst */
714 		case BPF_ALU | BPF_NEG:
715 		case BPF_ALU64 | BPF_NEG:
716 			if (BPF_CLASS(insn->code) == BPF_ALU64)
717 				EMIT1(add_1mod(0x48, dst_reg));
718 			else if (is_ereg(dst_reg))
719 				EMIT1(add_1mod(0x40, dst_reg));
720 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
721 			break;
722 
723 		case BPF_ALU | BPF_ADD | BPF_K:
724 		case BPF_ALU | BPF_SUB | BPF_K:
725 		case BPF_ALU | BPF_AND | BPF_K:
726 		case BPF_ALU | BPF_OR | BPF_K:
727 		case BPF_ALU | BPF_XOR | BPF_K:
728 		case BPF_ALU64 | BPF_ADD | BPF_K:
729 		case BPF_ALU64 | BPF_SUB | BPF_K:
730 		case BPF_ALU64 | BPF_AND | BPF_K:
731 		case BPF_ALU64 | BPF_OR | BPF_K:
732 		case BPF_ALU64 | BPF_XOR | BPF_K:
733 			if (BPF_CLASS(insn->code) == BPF_ALU64)
734 				EMIT1(add_1mod(0x48, dst_reg));
735 			else if (is_ereg(dst_reg))
736 				EMIT1(add_1mod(0x40, dst_reg));
737 
738 			/*
739 			 * b3 holds 'normal' opcode, b2 short form only valid
740 			 * in case dst is eax/rax.
741 			 */
742 			switch (BPF_OP(insn->code)) {
743 			case BPF_ADD:
744 				b3 = 0xC0;
745 				b2 = 0x05;
746 				break;
747 			case BPF_SUB:
748 				b3 = 0xE8;
749 				b2 = 0x2D;
750 				break;
751 			case BPF_AND:
752 				b3 = 0xE0;
753 				b2 = 0x25;
754 				break;
755 			case BPF_OR:
756 				b3 = 0xC8;
757 				b2 = 0x0D;
758 				break;
759 			case BPF_XOR:
760 				b3 = 0xF0;
761 				b2 = 0x35;
762 				break;
763 			}
764 
765 			if (is_imm8(imm32))
766 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
767 			else if (is_axreg(dst_reg))
768 				EMIT1_off32(b2, imm32);
769 			else
770 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
771 			break;
772 
773 		case BPF_ALU64 | BPF_MOV | BPF_K:
774 		case BPF_ALU | BPF_MOV | BPF_K:
775 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
776 				       dst_reg, imm32);
777 			break;
778 
779 		case BPF_LD | BPF_IMM | BPF_DW:
780 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
781 			insn++;
782 			i++;
783 			break;
784 
785 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
786 		case BPF_ALU | BPF_MOD | BPF_X:
787 		case BPF_ALU | BPF_DIV | BPF_X:
788 		case BPF_ALU | BPF_MOD | BPF_K:
789 		case BPF_ALU | BPF_DIV | BPF_K:
790 		case BPF_ALU64 | BPF_MOD | BPF_X:
791 		case BPF_ALU64 | BPF_DIV | BPF_X:
792 		case BPF_ALU64 | BPF_MOD | BPF_K:
793 		case BPF_ALU64 | BPF_DIV | BPF_K:
794 			EMIT1(0x50); /* push rax */
795 			EMIT1(0x52); /* push rdx */
796 
797 			if (BPF_SRC(insn->code) == BPF_X)
798 				/* mov r11, src_reg */
799 				EMIT_mov(AUX_REG, src_reg);
800 			else
801 				/* mov r11, imm32 */
802 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
803 
804 			/* mov rax, dst_reg */
805 			EMIT_mov(BPF_REG_0, dst_reg);
806 
807 			/*
808 			 * xor edx, edx
809 			 * equivalent to 'xor rdx, rdx', but one byte less
810 			 */
811 			EMIT2(0x31, 0xd2);
812 
813 			if (BPF_CLASS(insn->code) == BPF_ALU64)
814 				/* div r11 */
815 				EMIT3(0x49, 0xF7, 0xF3);
816 			else
817 				/* div r11d */
818 				EMIT3(0x41, 0xF7, 0xF3);
819 
820 			if (BPF_OP(insn->code) == BPF_MOD)
821 				/* mov r11, rdx */
822 				EMIT3(0x49, 0x89, 0xD3);
823 			else
824 				/* mov r11, rax */
825 				EMIT3(0x49, 0x89, 0xC3);
826 
827 			EMIT1(0x5A); /* pop rdx */
828 			EMIT1(0x58); /* pop rax */
829 
830 			/* mov dst_reg, r11 */
831 			EMIT_mov(dst_reg, AUX_REG);
832 			break;
833 
834 		case BPF_ALU | BPF_MUL | BPF_K:
835 		case BPF_ALU | BPF_MUL | BPF_X:
836 		case BPF_ALU64 | BPF_MUL | BPF_K:
837 		case BPF_ALU64 | BPF_MUL | BPF_X:
838 		{
839 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
840 
841 			if (dst_reg != BPF_REG_0)
842 				EMIT1(0x50); /* push rax */
843 			if (dst_reg != BPF_REG_3)
844 				EMIT1(0x52); /* push rdx */
845 
846 			/* mov r11, dst_reg */
847 			EMIT_mov(AUX_REG, dst_reg);
848 
849 			if (BPF_SRC(insn->code) == BPF_X)
850 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
851 			else
852 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
853 
854 			if (is64)
855 				EMIT1(add_1mod(0x48, AUX_REG));
856 			else if (is_ereg(AUX_REG))
857 				EMIT1(add_1mod(0x40, AUX_REG));
858 			/* mul(q) r11 */
859 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
860 
861 			if (dst_reg != BPF_REG_3)
862 				EMIT1(0x5A); /* pop rdx */
863 			if (dst_reg != BPF_REG_0) {
864 				/* mov dst_reg, rax */
865 				EMIT_mov(dst_reg, BPF_REG_0);
866 				EMIT1(0x58); /* pop rax */
867 			}
868 			break;
869 		}
870 			/* Shifts */
871 		case BPF_ALU | BPF_LSH | BPF_K:
872 		case BPF_ALU | BPF_RSH | BPF_K:
873 		case BPF_ALU | BPF_ARSH | BPF_K:
874 		case BPF_ALU64 | BPF_LSH | BPF_K:
875 		case BPF_ALU64 | BPF_RSH | BPF_K:
876 		case BPF_ALU64 | BPF_ARSH | BPF_K:
877 			if (BPF_CLASS(insn->code) == BPF_ALU64)
878 				EMIT1(add_1mod(0x48, dst_reg));
879 			else if (is_ereg(dst_reg))
880 				EMIT1(add_1mod(0x40, dst_reg));
881 
882 			switch (BPF_OP(insn->code)) {
883 			case BPF_LSH: b3 = 0xE0; break;
884 			case BPF_RSH: b3 = 0xE8; break;
885 			case BPF_ARSH: b3 = 0xF8; break;
886 			}
887 
888 			if (imm32 == 1)
889 				EMIT2(0xD1, add_1reg(b3, dst_reg));
890 			else
891 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
892 			break;
893 
894 		case BPF_ALU | BPF_LSH | BPF_X:
895 		case BPF_ALU | BPF_RSH | BPF_X:
896 		case BPF_ALU | BPF_ARSH | BPF_X:
897 		case BPF_ALU64 | BPF_LSH | BPF_X:
898 		case BPF_ALU64 | BPF_RSH | BPF_X:
899 		case BPF_ALU64 | BPF_ARSH | BPF_X:
900 
901 			/* Check for bad case when dst_reg == rcx */
902 			if (dst_reg == BPF_REG_4) {
903 				/* mov r11, dst_reg */
904 				EMIT_mov(AUX_REG, dst_reg);
905 				dst_reg = AUX_REG;
906 			}
907 
908 			if (src_reg != BPF_REG_4) { /* common case */
909 				EMIT1(0x51); /* push rcx */
910 
911 				/* mov rcx, src_reg */
912 				EMIT_mov(BPF_REG_4, src_reg);
913 			}
914 
915 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
916 			if (BPF_CLASS(insn->code) == BPF_ALU64)
917 				EMIT1(add_1mod(0x48, dst_reg));
918 			else if (is_ereg(dst_reg))
919 				EMIT1(add_1mod(0x40, dst_reg));
920 
921 			switch (BPF_OP(insn->code)) {
922 			case BPF_LSH: b3 = 0xE0; break;
923 			case BPF_RSH: b3 = 0xE8; break;
924 			case BPF_ARSH: b3 = 0xF8; break;
925 			}
926 			EMIT2(0xD3, add_1reg(b3, dst_reg));
927 
928 			if (src_reg != BPF_REG_4)
929 				EMIT1(0x59); /* pop rcx */
930 
931 			if (insn->dst_reg == BPF_REG_4)
932 				/* mov dst_reg, r11 */
933 				EMIT_mov(insn->dst_reg, AUX_REG);
934 			break;
935 
936 		case BPF_ALU | BPF_END | BPF_FROM_BE:
937 			switch (imm32) {
938 			case 16:
939 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
940 				EMIT1(0x66);
941 				if (is_ereg(dst_reg))
942 					EMIT1(0x41);
943 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
944 
945 				/* Emit 'movzwl eax, ax' */
946 				if (is_ereg(dst_reg))
947 					EMIT3(0x45, 0x0F, 0xB7);
948 				else
949 					EMIT2(0x0F, 0xB7);
950 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
951 				break;
952 			case 32:
953 				/* Emit 'bswap eax' to swap lower 4 bytes */
954 				if (is_ereg(dst_reg))
955 					EMIT2(0x41, 0x0F);
956 				else
957 					EMIT1(0x0F);
958 				EMIT1(add_1reg(0xC8, dst_reg));
959 				break;
960 			case 64:
961 				/* Emit 'bswap rax' to swap 8 bytes */
962 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
963 				      add_1reg(0xC8, dst_reg));
964 				break;
965 			}
966 			break;
967 
968 		case BPF_ALU | BPF_END | BPF_FROM_LE:
969 			switch (imm32) {
970 			case 16:
971 				/*
972 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
973 				 * into 64 bit
974 				 */
975 				if (is_ereg(dst_reg))
976 					EMIT3(0x45, 0x0F, 0xB7);
977 				else
978 					EMIT2(0x0F, 0xB7);
979 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
980 				break;
981 			case 32:
982 				/* Emit 'mov eax, eax' to clear upper 32-bits */
983 				if (is_ereg(dst_reg))
984 					EMIT1(0x45);
985 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
986 				break;
987 			case 64:
988 				/* nop */
989 				break;
990 			}
991 			break;
992 
993 			/* ST: *(u8*)(dst_reg + off) = imm */
994 		case BPF_ST | BPF_MEM | BPF_B:
995 			if (is_ereg(dst_reg))
996 				EMIT2(0x41, 0xC6);
997 			else
998 				EMIT1(0xC6);
999 			goto st;
1000 		case BPF_ST | BPF_MEM | BPF_H:
1001 			if (is_ereg(dst_reg))
1002 				EMIT3(0x66, 0x41, 0xC7);
1003 			else
1004 				EMIT2(0x66, 0xC7);
1005 			goto st;
1006 		case BPF_ST | BPF_MEM | BPF_W:
1007 			if (is_ereg(dst_reg))
1008 				EMIT2(0x41, 0xC7);
1009 			else
1010 				EMIT1(0xC7);
1011 			goto st;
1012 		case BPF_ST | BPF_MEM | BPF_DW:
1013 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1014 
1015 st:			if (is_imm8(insn->off))
1016 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1017 			else
1018 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1019 
1020 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1021 			break;
1022 
1023 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1024 		case BPF_STX | BPF_MEM | BPF_B:
1025 		case BPF_STX | BPF_MEM | BPF_H:
1026 		case BPF_STX | BPF_MEM | BPF_W:
1027 		case BPF_STX | BPF_MEM | BPF_DW:
1028 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1029 			break;
1030 
1031 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1032 		case BPF_LDX | BPF_MEM | BPF_B:
1033 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1034 		case BPF_LDX | BPF_MEM | BPF_H:
1035 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1036 		case BPF_LDX | BPF_MEM | BPF_W:
1037 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1038 		case BPF_LDX | BPF_MEM | BPF_DW:
1039 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1040 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1041 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1042 				struct exception_table_entry *ex;
1043 				u8 *_insn = image + proglen;
1044 				s64 delta;
1045 
1046 				if (!bpf_prog->aux->extable)
1047 					break;
1048 
1049 				if (excnt >= bpf_prog->aux->num_exentries) {
1050 					pr_err("ex gen bug\n");
1051 					return -EFAULT;
1052 				}
1053 				ex = &bpf_prog->aux->extable[excnt++];
1054 
1055 				delta = _insn - (u8 *)&ex->insn;
1056 				if (!is_simm32(delta)) {
1057 					pr_err("extable->insn doesn't fit into 32-bit\n");
1058 					return -EFAULT;
1059 				}
1060 				ex->insn = delta;
1061 
1062 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1063 				if (!is_simm32(delta)) {
1064 					pr_err("extable->handler doesn't fit into 32-bit\n");
1065 					return -EFAULT;
1066 				}
1067 				ex->handler = delta;
1068 
1069 				if (dst_reg > BPF_REG_9) {
1070 					pr_err("verifier error\n");
1071 					return -EFAULT;
1072 				}
1073 				/*
1074 				 * Compute size of x86 insn and its target dest x86 register.
1075 				 * ex_handler_bpf() will use lower 8 bits to adjust
1076 				 * pt_regs->ip to jump over this x86 instruction
1077 				 * and upper bits to figure out which pt_regs to zero out.
1078 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1079 				 * of 4 bytes will be ignored and rbx will be zero inited.
1080 				 */
1081 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1082 			}
1083 			break;
1084 
1085 			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1086 		case BPF_STX | BPF_XADD | BPF_W:
1087 			/* Emit 'lock add dword ptr [rax + off], eax' */
1088 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1089 				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1090 			else
1091 				EMIT2(0xF0, 0x01);
1092 			goto xadd;
1093 		case BPF_STX | BPF_XADD | BPF_DW:
1094 			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1095 xadd:			if (is_imm8(insn->off))
1096 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1097 			else
1098 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1099 					    insn->off);
1100 			break;
1101 
1102 			/* call */
1103 		case BPF_JMP | BPF_CALL:
1104 			func = (u8 *) __bpf_call_base + imm32;
1105 			if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1106 				return -EINVAL;
1107 			break;
1108 
1109 		case BPF_JMP | BPF_TAIL_CALL:
1110 			if (imm32)
1111 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1112 							  &prog, addrs[i], image);
1113 			else
1114 				emit_bpf_tail_call_indirect(&prog);
1115 			break;
1116 
1117 			/* cond jump */
1118 		case BPF_JMP | BPF_JEQ | BPF_X:
1119 		case BPF_JMP | BPF_JNE | BPF_X:
1120 		case BPF_JMP | BPF_JGT | BPF_X:
1121 		case BPF_JMP | BPF_JLT | BPF_X:
1122 		case BPF_JMP | BPF_JGE | BPF_X:
1123 		case BPF_JMP | BPF_JLE | BPF_X:
1124 		case BPF_JMP | BPF_JSGT | BPF_X:
1125 		case BPF_JMP | BPF_JSLT | BPF_X:
1126 		case BPF_JMP | BPF_JSGE | BPF_X:
1127 		case BPF_JMP | BPF_JSLE | BPF_X:
1128 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1129 		case BPF_JMP32 | BPF_JNE | BPF_X:
1130 		case BPF_JMP32 | BPF_JGT | BPF_X:
1131 		case BPF_JMP32 | BPF_JLT | BPF_X:
1132 		case BPF_JMP32 | BPF_JGE | BPF_X:
1133 		case BPF_JMP32 | BPF_JLE | BPF_X:
1134 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1135 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1136 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1137 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1138 			/* cmp dst_reg, src_reg */
1139 			if (BPF_CLASS(insn->code) == BPF_JMP)
1140 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1141 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1142 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1143 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1144 			goto emit_cond_jmp;
1145 
1146 		case BPF_JMP | BPF_JSET | BPF_X:
1147 		case BPF_JMP32 | BPF_JSET | BPF_X:
1148 			/* test dst_reg, src_reg */
1149 			if (BPF_CLASS(insn->code) == BPF_JMP)
1150 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1151 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1152 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1153 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1154 			goto emit_cond_jmp;
1155 
1156 		case BPF_JMP | BPF_JSET | BPF_K:
1157 		case BPF_JMP32 | BPF_JSET | BPF_K:
1158 			/* test dst_reg, imm32 */
1159 			if (BPF_CLASS(insn->code) == BPF_JMP)
1160 				EMIT1(add_1mod(0x48, dst_reg));
1161 			else if (is_ereg(dst_reg))
1162 				EMIT1(add_1mod(0x40, dst_reg));
1163 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1164 			goto emit_cond_jmp;
1165 
1166 		case BPF_JMP | BPF_JEQ | BPF_K:
1167 		case BPF_JMP | BPF_JNE | BPF_K:
1168 		case BPF_JMP | BPF_JGT | BPF_K:
1169 		case BPF_JMP | BPF_JLT | BPF_K:
1170 		case BPF_JMP | BPF_JGE | BPF_K:
1171 		case BPF_JMP | BPF_JLE | BPF_K:
1172 		case BPF_JMP | BPF_JSGT | BPF_K:
1173 		case BPF_JMP | BPF_JSLT | BPF_K:
1174 		case BPF_JMP | BPF_JSGE | BPF_K:
1175 		case BPF_JMP | BPF_JSLE | BPF_K:
1176 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1177 		case BPF_JMP32 | BPF_JNE | BPF_K:
1178 		case BPF_JMP32 | BPF_JGT | BPF_K:
1179 		case BPF_JMP32 | BPF_JLT | BPF_K:
1180 		case BPF_JMP32 | BPF_JGE | BPF_K:
1181 		case BPF_JMP32 | BPF_JLE | BPF_K:
1182 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1183 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1184 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1185 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1186 			/* test dst_reg, dst_reg to save one extra byte */
1187 			if (imm32 == 0) {
1188 				if (BPF_CLASS(insn->code) == BPF_JMP)
1189 					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1190 				else if (is_ereg(dst_reg))
1191 					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1192 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1193 				goto emit_cond_jmp;
1194 			}
1195 
1196 			/* cmp dst_reg, imm8/32 */
1197 			if (BPF_CLASS(insn->code) == BPF_JMP)
1198 				EMIT1(add_1mod(0x48, dst_reg));
1199 			else if (is_ereg(dst_reg))
1200 				EMIT1(add_1mod(0x40, dst_reg));
1201 
1202 			if (is_imm8(imm32))
1203 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1204 			else
1205 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1206 
1207 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1208 			switch (BPF_OP(insn->code)) {
1209 			case BPF_JEQ:
1210 				jmp_cond = X86_JE;
1211 				break;
1212 			case BPF_JSET:
1213 			case BPF_JNE:
1214 				jmp_cond = X86_JNE;
1215 				break;
1216 			case BPF_JGT:
1217 				/* GT is unsigned '>', JA in x86 */
1218 				jmp_cond = X86_JA;
1219 				break;
1220 			case BPF_JLT:
1221 				/* LT is unsigned '<', JB in x86 */
1222 				jmp_cond = X86_JB;
1223 				break;
1224 			case BPF_JGE:
1225 				/* GE is unsigned '>=', JAE in x86 */
1226 				jmp_cond = X86_JAE;
1227 				break;
1228 			case BPF_JLE:
1229 				/* LE is unsigned '<=', JBE in x86 */
1230 				jmp_cond = X86_JBE;
1231 				break;
1232 			case BPF_JSGT:
1233 				/* Signed '>', GT in x86 */
1234 				jmp_cond = X86_JG;
1235 				break;
1236 			case BPF_JSLT:
1237 				/* Signed '<', LT in x86 */
1238 				jmp_cond = X86_JL;
1239 				break;
1240 			case BPF_JSGE:
1241 				/* Signed '>=', GE in x86 */
1242 				jmp_cond = X86_JGE;
1243 				break;
1244 			case BPF_JSLE:
1245 				/* Signed '<=', LE in x86 */
1246 				jmp_cond = X86_JLE;
1247 				break;
1248 			default: /* to silence GCC warning */
1249 				return -EFAULT;
1250 			}
1251 			jmp_offset = addrs[i + insn->off] - addrs[i];
1252 			if (is_imm8(jmp_offset)) {
1253 				EMIT2(jmp_cond, jmp_offset);
1254 			} else if (is_simm32(jmp_offset)) {
1255 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1256 			} else {
1257 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1258 				return -EFAULT;
1259 			}
1260 
1261 			break;
1262 
1263 		case BPF_JMP | BPF_JA:
1264 			if (insn->off == -1)
1265 				/* -1 jmp instructions will always jump
1266 				 * backwards two bytes. Explicitly handling
1267 				 * this case avoids wasting too many passes
1268 				 * when there are long sequences of replaced
1269 				 * dead code.
1270 				 */
1271 				jmp_offset = -2;
1272 			else
1273 				jmp_offset = addrs[i + insn->off] - addrs[i];
1274 
1275 			if (!jmp_offset)
1276 				/* Optimize out nop jumps */
1277 				break;
1278 emit_jmp:
1279 			if (is_imm8(jmp_offset)) {
1280 				EMIT2(0xEB, jmp_offset);
1281 			} else if (is_simm32(jmp_offset)) {
1282 				EMIT1_off32(0xE9, jmp_offset);
1283 			} else {
1284 				pr_err("jmp gen bug %llx\n", jmp_offset);
1285 				return -EFAULT;
1286 			}
1287 			break;
1288 
1289 		case BPF_JMP | BPF_EXIT:
1290 			if (seen_exit) {
1291 				jmp_offset = ctx->cleanup_addr - addrs[i];
1292 				goto emit_jmp;
1293 			}
1294 			seen_exit = true;
1295 			/* Update cleanup_addr */
1296 			ctx->cleanup_addr = proglen;
1297 			if (!bpf_prog_was_classic(bpf_prog))
1298 				EMIT1(0x5B); /* get rid of tail_call_cnt */
1299 			EMIT2(0x41, 0x5F);   /* pop r15 */
1300 			EMIT2(0x41, 0x5E);   /* pop r14 */
1301 			EMIT2(0x41, 0x5D);   /* pop r13 */
1302 			EMIT1(0x5B);         /* pop rbx */
1303 			EMIT1(0xC9);         /* leave */
1304 			EMIT1(0xC3);         /* ret */
1305 			break;
1306 
1307 		default:
1308 			/*
1309 			 * By design x86-64 JIT should support all BPF instructions.
1310 			 * This error will be seen if new instruction was added
1311 			 * to the interpreter, but not to the JIT, or if there is
1312 			 * junk in bpf_prog.
1313 			 */
1314 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1315 			return -EINVAL;
1316 		}
1317 
1318 		ilen = prog - temp;
1319 		if (ilen > BPF_MAX_INSN_SIZE) {
1320 			pr_err("bpf_jit: fatal insn size error\n");
1321 			return -EFAULT;
1322 		}
1323 
1324 		if (image) {
1325 			if (unlikely(proglen + ilen > oldproglen)) {
1326 				pr_err("bpf_jit: fatal error\n");
1327 				return -EFAULT;
1328 			}
1329 			memcpy(image + proglen, temp, ilen);
1330 		}
1331 		proglen += ilen;
1332 		addrs[i] = proglen;
1333 		prog = temp;
1334 	}
1335 
1336 	if (image && excnt != bpf_prog->aux->num_exentries) {
1337 		pr_err("extable is not populated\n");
1338 		return -EFAULT;
1339 	}
1340 	return proglen;
1341 }
1342 
1343 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1344 		      int stack_size)
1345 {
1346 	int i;
1347 	/* Store function arguments to stack.
1348 	 * For a function that accepts two pointers the sequence will be:
1349 	 * mov QWORD PTR [rbp-0x10],rdi
1350 	 * mov QWORD PTR [rbp-0x8],rsi
1351 	 */
1352 	for (i = 0; i < min(nr_args, 6); i++)
1353 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1354 			 BPF_REG_FP,
1355 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1356 			 -(stack_size - i * 8));
1357 }
1358 
1359 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1360 			 int stack_size)
1361 {
1362 	int i;
1363 
1364 	/* Restore function arguments from stack.
1365 	 * For a function that accepts two pointers the sequence will be:
1366 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1367 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1368 	 */
1369 	for (i = 0; i < min(nr_args, 6); i++)
1370 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1371 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1372 			 BPF_REG_FP,
1373 			 -(stack_size - i * 8));
1374 }
1375 
1376 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1377 			   struct bpf_prog *p, int stack_size, bool mod_ret)
1378 {
1379 	u8 *prog = *pprog;
1380 	int cnt = 0;
1381 
1382 	if (emit_call(&prog, __bpf_prog_enter, prog))
1383 		return -EINVAL;
1384 	/* remember prog start time returned by __bpf_prog_enter */
1385 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1386 
1387 	/* arg1: lea rdi, [rbp - stack_size] */
1388 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1389 	/* arg2: progs[i]->insnsi for interpreter */
1390 	if (!p->jited)
1391 		emit_mov_imm64(&prog, BPF_REG_2,
1392 			       (long) p->insnsi >> 32,
1393 			       (u32) (long) p->insnsi);
1394 	/* call JITed bpf program or interpreter */
1395 	if (emit_call(&prog, p->bpf_func, prog))
1396 		return -EINVAL;
1397 
1398 	/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1399 	 * of the previous call which is then passed on the stack to
1400 	 * the next BPF program.
1401 	 */
1402 	if (mod_ret)
1403 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1404 
1405 	/* arg1: mov rdi, progs[i] */
1406 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32,
1407 		       (u32) (long) p);
1408 	/* arg2: mov rsi, rbx <- start time in nsec */
1409 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1410 	if (emit_call(&prog, __bpf_prog_exit, prog))
1411 		return -EINVAL;
1412 
1413 	*pprog = prog;
1414 	return 0;
1415 }
1416 
1417 static void emit_nops(u8 **pprog, unsigned int len)
1418 {
1419 	unsigned int i, noplen;
1420 	u8 *prog = *pprog;
1421 	int cnt = 0;
1422 
1423 	while (len > 0) {
1424 		noplen = len;
1425 
1426 		if (noplen > ASM_NOP_MAX)
1427 			noplen = ASM_NOP_MAX;
1428 
1429 		for (i = 0; i < noplen; i++)
1430 			EMIT1(ideal_nops[noplen][i]);
1431 		len -= noplen;
1432 	}
1433 
1434 	*pprog = prog;
1435 }
1436 
1437 static void emit_align(u8 **pprog, u32 align)
1438 {
1439 	u8 *target, *prog = *pprog;
1440 
1441 	target = PTR_ALIGN(prog, align);
1442 	if (target != prog)
1443 		emit_nops(&prog, target - prog);
1444 
1445 	*pprog = prog;
1446 }
1447 
1448 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1449 {
1450 	u8 *prog = *pprog;
1451 	int cnt = 0;
1452 	s64 offset;
1453 
1454 	offset = func - (ip + 2 + 4);
1455 	if (!is_simm32(offset)) {
1456 		pr_err("Target %p is out of range\n", func);
1457 		return -EINVAL;
1458 	}
1459 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1460 	*pprog = prog;
1461 	return 0;
1462 }
1463 
1464 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1465 		      struct bpf_tramp_progs *tp, int stack_size)
1466 {
1467 	int i;
1468 	u8 *prog = *pprog;
1469 
1470 	for (i = 0; i < tp->nr_progs; i++) {
1471 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1472 			return -EINVAL;
1473 	}
1474 	*pprog = prog;
1475 	return 0;
1476 }
1477 
1478 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1479 			      struct bpf_tramp_progs *tp, int stack_size,
1480 			      u8 **branches)
1481 {
1482 	u8 *prog = *pprog;
1483 	int i, cnt = 0;
1484 
1485 	/* The first fmod_ret program will receive a garbage return value.
1486 	 * Set this to 0 to avoid confusing the program.
1487 	 */
1488 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1489 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1490 	for (i = 0; i < tp->nr_progs; i++) {
1491 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1492 			return -EINVAL;
1493 
1494 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1495 		 * if (*(u64 *)(rbp - 8) !=  0)
1496 		 *	goto do_fexit;
1497 		 */
1498 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1499 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1500 
1501 		/* Save the location of the branch and Generate 6 nops
1502 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1503 		 * are replaced with a conditional jump once do_fexit (i.e. the
1504 		 * start of the fexit invocation) is finalized.
1505 		 */
1506 		branches[i] = prog;
1507 		emit_nops(&prog, 4 + 2);
1508 	}
1509 
1510 	*pprog = prog;
1511 	return 0;
1512 }
1513 
1514 /* Example:
1515  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1516  * its 'struct btf_func_model' will be nr_args=2
1517  * The assembly code when eth_type_trans is executing after trampoline:
1518  *
1519  * push rbp
1520  * mov rbp, rsp
1521  * sub rsp, 16                     // space for skb and dev
1522  * push rbx                        // temp regs to pass start time
1523  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1524  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1525  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1526  * mov rbx, rax                    // remember start time in bpf stats are enabled
1527  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1528  * call addr_of_jited_FENTRY_prog
1529  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1530  * mov rsi, rbx                    // prog start time
1531  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1532  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1533  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1534  * pop rbx
1535  * leave
1536  * ret
1537  *
1538  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1539  * replaced with 'call generated_bpf_trampoline'. When it returns
1540  * eth_type_trans will continue executing with original skb and dev pointers.
1541  *
1542  * The assembly code when eth_type_trans is called from trampoline:
1543  *
1544  * push rbp
1545  * mov rbp, rsp
1546  * sub rsp, 24                     // space for skb, dev, return value
1547  * push rbx                        // temp regs to pass start time
1548  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1549  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1550  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1551  * mov rbx, rax                    // remember start time if bpf stats are enabled
1552  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1553  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1554  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1555  * mov rsi, rbx                    // prog start time
1556  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1557  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1558  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1559  * call eth_type_trans+5           // execute body of eth_type_trans
1560  * mov qword ptr [rbp - 8], rax    // save return value
1561  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1562  * mov rbx, rax                    // remember start time in bpf stats are enabled
1563  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1564  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1565  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1566  * mov rsi, rbx                    // prog start time
1567  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1568  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1569  * pop rbx
1570  * leave
1571  * add rsp, 8                      // skip eth_type_trans's frame
1572  * ret                             // return to its caller
1573  */
1574 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1575 				const struct btf_func_model *m, u32 flags,
1576 				struct bpf_tramp_progs *tprogs,
1577 				void *orig_call)
1578 {
1579 	int ret, i, cnt = 0, nr_args = m->nr_args;
1580 	int stack_size = nr_args * 8;
1581 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1582 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1583 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1584 	u8 **branches = NULL;
1585 	u8 *prog;
1586 
1587 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1588 	if (nr_args > 6)
1589 		return -ENOTSUPP;
1590 
1591 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1592 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1593 		return -EINVAL;
1594 
1595 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1596 		stack_size += 8; /* room for return value of orig_call */
1597 
1598 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1599 		/* skip patched call instruction and point orig_call to actual
1600 		 * body of the kernel function.
1601 		 */
1602 		orig_call += X86_PATCH_SIZE;
1603 
1604 	prog = image;
1605 
1606 	EMIT1(0x55);		 /* push rbp */
1607 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1608 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1609 	EMIT1(0x53);		 /* push rbx */
1610 
1611 	save_regs(m, &prog, nr_args, stack_size);
1612 
1613 	if (fentry->nr_progs)
1614 		if (invoke_bpf(m, &prog, fentry, stack_size))
1615 			return -EINVAL;
1616 
1617 	if (fmod_ret->nr_progs) {
1618 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1619 				   GFP_KERNEL);
1620 		if (!branches)
1621 			return -ENOMEM;
1622 
1623 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1624 				       branches)) {
1625 			ret = -EINVAL;
1626 			goto cleanup;
1627 		}
1628 	}
1629 
1630 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1631 		if (fentry->nr_progs || fmod_ret->nr_progs)
1632 			restore_regs(m, &prog, nr_args, stack_size);
1633 
1634 		/* call original function */
1635 		if (emit_call(&prog, orig_call, prog)) {
1636 			ret = -EINVAL;
1637 			goto cleanup;
1638 		}
1639 		/* remember return value in a stack for bpf prog to access */
1640 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1641 	}
1642 
1643 	if (fmod_ret->nr_progs) {
1644 		/* From Intel 64 and IA-32 Architectures Optimization
1645 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1646 		 * Coding Rule 11: All branch targets should be 16-byte
1647 		 * aligned.
1648 		 */
1649 		emit_align(&prog, 16);
1650 		/* Update the branches saved in invoke_bpf_mod_ret with the
1651 		 * aligned address of do_fexit.
1652 		 */
1653 		for (i = 0; i < fmod_ret->nr_progs; i++)
1654 			emit_cond_near_jump(&branches[i], prog, branches[i],
1655 					    X86_JNE);
1656 	}
1657 
1658 	if (fexit->nr_progs)
1659 		if (invoke_bpf(m, &prog, fexit, stack_size)) {
1660 			ret = -EINVAL;
1661 			goto cleanup;
1662 		}
1663 
1664 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1665 		restore_regs(m, &prog, nr_args, stack_size);
1666 
1667 	/* This needs to be done regardless. If there were fmod_ret programs,
1668 	 * the return value is only updated on the stack and still needs to be
1669 	 * restored to R0.
1670 	 */
1671 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1672 		/* restore original return value back into RAX */
1673 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1674 
1675 	EMIT1(0x5B); /* pop rbx */
1676 	EMIT1(0xC9); /* leave */
1677 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1678 		/* skip our return address and return to parent */
1679 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1680 	EMIT1(0xC3); /* ret */
1681 	/* Make sure the trampoline generation logic doesn't overflow */
1682 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
1683 		ret = -EFAULT;
1684 		goto cleanup;
1685 	}
1686 	ret = prog - (u8 *)image;
1687 
1688 cleanup:
1689 	kfree(branches);
1690 	return ret;
1691 }
1692 
1693 static int emit_fallback_jump(u8 **pprog)
1694 {
1695 	u8 *prog = *pprog;
1696 	int err = 0;
1697 
1698 #ifdef CONFIG_RETPOLINE
1699 	/* Note that this assumes the the compiler uses external
1700 	 * thunks for indirect calls. Both clang and GCC use the same
1701 	 * naming convention for external thunks.
1702 	 */
1703 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1704 #else
1705 	int cnt = 0;
1706 
1707 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
1708 #endif
1709 	*pprog = prog;
1710 	return err;
1711 }
1712 
1713 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1714 {
1715 	u8 *jg_reloc, *prog = *pprog;
1716 	int pivot, err, jg_bytes = 1, cnt = 0;
1717 	s64 jg_offset;
1718 
1719 	if (a == b) {
1720 		/* Leaf node of recursion, i.e. not a range of indices
1721 		 * anymore.
1722 		 */
1723 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
1724 		if (!is_simm32(progs[a]))
1725 			return -1;
1726 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1727 			    progs[a]);
1728 		err = emit_cond_near_jump(&prog,	/* je func */
1729 					  (void *)progs[a], prog,
1730 					  X86_JE);
1731 		if (err)
1732 			return err;
1733 
1734 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
1735 		if (err)
1736 			return err;
1737 
1738 		*pprog = prog;
1739 		return 0;
1740 	}
1741 
1742 	/* Not a leaf node, so we pivot, and recursively descend into
1743 	 * the lower and upper ranges.
1744 	 */
1745 	pivot = (b - a) / 2;
1746 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
1747 	if (!is_simm32(progs[a + pivot]))
1748 		return -1;
1749 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1750 
1751 	if (pivot > 2) {				/* jg upper_part */
1752 		/* Require near jump. */
1753 		jg_bytes = 4;
1754 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1755 	} else {
1756 		EMIT2(X86_JG, 0);
1757 	}
1758 	jg_reloc = prog;
1759 
1760 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
1761 				  progs);
1762 	if (err)
1763 		return err;
1764 
1765 	/* From Intel 64 and IA-32 Architectures Optimization
1766 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1767 	 * Coding Rule 11: All branch targets should be 16-byte
1768 	 * aligned.
1769 	 */
1770 	emit_align(&prog, 16);
1771 	jg_offset = prog - jg_reloc;
1772 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1773 
1774 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
1775 				  b, progs);
1776 	if (err)
1777 		return err;
1778 
1779 	*pprog = prog;
1780 	return 0;
1781 }
1782 
1783 static int cmp_ips(const void *a, const void *b)
1784 {
1785 	const s64 *ipa = a;
1786 	const s64 *ipb = b;
1787 
1788 	if (*ipa > *ipb)
1789 		return 1;
1790 	if (*ipa < *ipb)
1791 		return -1;
1792 	return 0;
1793 }
1794 
1795 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1796 {
1797 	u8 *prog = image;
1798 
1799 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1800 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1801 }
1802 
1803 struct x64_jit_data {
1804 	struct bpf_binary_header *header;
1805 	int *addrs;
1806 	u8 *image;
1807 	int proglen;
1808 	struct jit_context ctx;
1809 };
1810 
1811 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1812 {
1813 	struct bpf_binary_header *header = NULL;
1814 	struct bpf_prog *tmp, *orig_prog = prog;
1815 	struct x64_jit_data *jit_data;
1816 	int proglen, oldproglen = 0;
1817 	struct jit_context ctx = {};
1818 	bool tmp_blinded = false;
1819 	bool extra_pass = false;
1820 	u8 *image = NULL;
1821 	int *addrs;
1822 	int pass;
1823 	int i;
1824 
1825 	if (!prog->jit_requested)
1826 		return orig_prog;
1827 
1828 	tmp = bpf_jit_blind_constants(prog);
1829 	/*
1830 	 * If blinding was requested and we failed during blinding,
1831 	 * we must fall back to the interpreter.
1832 	 */
1833 	if (IS_ERR(tmp))
1834 		return orig_prog;
1835 	if (tmp != prog) {
1836 		tmp_blinded = true;
1837 		prog = tmp;
1838 	}
1839 
1840 	jit_data = prog->aux->jit_data;
1841 	if (!jit_data) {
1842 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1843 		if (!jit_data) {
1844 			prog = orig_prog;
1845 			goto out;
1846 		}
1847 		prog->aux->jit_data = jit_data;
1848 	}
1849 	addrs = jit_data->addrs;
1850 	if (addrs) {
1851 		ctx = jit_data->ctx;
1852 		oldproglen = jit_data->proglen;
1853 		image = jit_data->image;
1854 		header = jit_data->header;
1855 		extra_pass = true;
1856 		goto skip_init_addrs;
1857 	}
1858 	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1859 	if (!addrs) {
1860 		prog = orig_prog;
1861 		goto out_addrs;
1862 	}
1863 
1864 	/*
1865 	 * Before first pass, make a rough estimation of addrs[]
1866 	 * each BPF instruction is translated to less than 64 bytes
1867 	 */
1868 	for (proglen = 0, i = 0; i <= prog->len; i++) {
1869 		proglen += 64;
1870 		addrs[i] = proglen;
1871 	}
1872 	ctx.cleanup_addr = proglen;
1873 skip_init_addrs:
1874 
1875 	/*
1876 	 * JITed image shrinks with every pass and the loop iterates
1877 	 * until the image stops shrinking. Very large BPF programs
1878 	 * may converge on the last pass. In such case do one more
1879 	 * pass to emit the final image.
1880 	 */
1881 	for (pass = 0; pass < 20 || image; pass++) {
1882 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1883 		if (proglen <= 0) {
1884 out_image:
1885 			image = NULL;
1886 			if (header)
1887 				bpf_jit_binary_free(header);
1888 			prog = orig_prog;
1889 			goto out_addrs;
1890 		}
1891 		if (image) {
1892 			if (proglen != oldproglen) {
1893 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1894 				       proglen, oldproglen);
1895 				goto out_image;
1896 			}
1897 			break;
1898 		}
1899 		if (proglen == oldproglen) {
1900 			/*
1901 			 * The number of entries in extable is the number of BPF_LDX
1902 			 * insns that access kernel memory via "pointer to BTF type".
1903 			 * The verifier changed their opcode from LDX|MEM|size
1904 			 * to LDX|PROBE_MEM|size to make JITing easier.
1905 			 */
1906 			u32 align = __alignof__(struct exception_table_entry);
1907 			u32 extable_size = prog->aux->num_exentries *
1908 				sizeof(struct exception_table_entry);
1909 
1910 			/* allocate module memory for x86 insns and extable */
1911 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
1912 						      &image, align, jit_fill_hole);
1913 			if (!header) {
1914 				prog = orig_prog;
1915 				goto out_addrs;
1916 			}
1917 			prog->aux->extable = (void *) image + roundup(proglen, align);
1918 		}
1919 		oldproglen = proglen;
1920 		cond_resched();
1921 	}
1922 
1923 	if (bpf_jit_enable > 1)
1924 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1925 
1926 	if (image) {
1927 		if (!prog->is_func || extra_pass) {
1928 			bpf_tail_call_direct_fixup(prog);
1929 			bpf_jit_binary_lock_ro(header);
1930 		} else {
1931 			jit_data->addrs = addrs;
1932 			jit_data->ctx = ctx;
1933 			jit_data->proglen = proglen;
1934 			jit_data->image = image;
1935 			jit_data->header = header;
1936 		}
1937 		prog->bpf_func = (void *)image;
1938 		prog->jited = 1;
1939 		prog->jited_len = proglen;
1940 	} else {
1941 		prog = orig_prog;
1942 	}
1943 
1944 	if (!image || !prog->is_func || extra_pass) {
1945 		if (image)
1946 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1947 out_addrs:
1948 		kfree(addrs);
1949 		kfree(jit_data);
1950 		prog->aux->jit_data = NULL;
1951 	}
1952 out:
1953 	if (tmp_blinded)
1954 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1955 					   tmp : orig_prog);
1956 	return prog;
1957 }
1958