1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * bpf_jit_comp.c: BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/set_memory.h> 16 #include <asm/nospec-branch.h> 17 #include <asm/text-patching.h> 18 #include <asm/asm-prototypes.h> 19 20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 21 { 22 if (len == 1) 23 *ptr = bytes; 24 else if (len == 2) 25 *(u16 *)ptr = bytes; 26 else { 27 *(u32 *)ptr = bytes; 28 barrier(); 29 } 30 return ptr + len; 31 } 32 33 #define EMIT(bytes, len) \ 34 do { prog = emit_code(prog, bytes, len); } while (0) 35 36 #define EMIT1(b1) EMIT(b1, 1) 37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 40 41 #define EMIT1_off32(b1, off) \ 42 do { EMIT1(b1); EMIT(off, 4); } while (0) 43 #define EMIT2_off32(b1, b2, off) \ 44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 45 #define EMIT3_off32(b1, b2, b3, off) \ 46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 47 #define EMIT4_off32(b1, b2, b3, b4, off) \ 48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 49 50 static bool is_imm8(int value) 51 { 52 return value <= 127 && value >= -128; 53 } 54 55 static bool is_simm32(s64 value) 56 { 57 return value == (s64)(s32)value; 58 } 59 60 static bool is_uimm32(u64 value) 61 { 62 return value == (u64)(u32)value; 63 } 64 65 /* mov dst, src */ 66 #define EMIT_mov(DST, SRC) \ 67 do { \ 68 if (DST != SRC) \ 69 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 70 } while (0) 71 72 static int bpf_size_to_x86_bytes(int bpf_size) 73 { 74 if (bpf_size == BPF_W) 75 return 4; 76 else if (bpf_size == BPF_H) 77 return 2; 78 else if (bpf_size == BPF_B) 79 return 1; 80 else if (bpf_size == BPF_DW) 81 return 4; /* imm32 */ 82 else 83 return 0; 84 } 85 86 /* 87 * List of x86 cond jumps opcodes (. + s8) 88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 89 */ 90 #define X86_JB 0x72 91 #define X86_JAE 0x73 92 #define X86_JE 0x74 93 #define X86_JNE 0x75 94 #define X86_JBE 0x76 95 #define X86_JA 0x77 96 #define X86_JL 0x7C 97 #define X86_JGE 0x7D 98 #define X86_JLE 0x7E 99 #define X86_JG 0x7F 100 101 /* Pick a register outside of BPF range for JIT internal work */ 102 #define AUX_REG (MAX_BPF_JIT_REG + 1) 103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 104 105 /* 106 * The following table maps BPF registers to x86-64 registers. 107 * 108 * x86-64 register R12 is unused, since if used as base address 109 * register in load/store instructions, it always needs an 110 * extra byte of encoding and is callee saved. 111 * 112 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 113 * trampoline. x86-64 register R10 is used for blinding (if enabled). 114 */ 115 static const int reg2hex[] = { 116 [BPF_REG_0] = 0, /* RAX */ 117 [BPF_REG_1] = 7, /* RDI */ 118 [BPF_REG_2] = 6, /* RSI */ 119 [BPF_REG_3] = 2, /* RDX */ 120 [BPF_REG_4] = 1, /* RCX */ 121 [BPF_REG_5] = 0, /* R8 */ 122 [BPF_REG_6] = 3, /* RBX callee saved */ 123 [BPF_REG_7] = 5, /* R13 callee saved */ 124 [BPF_REG_8] = 6, /* R14 callee saved */ 125 [BPF_REG_9] = 7, /* R15 callee saved */ 126 [BPF_REG_FP] = 5, /* RBP readonly */ 127 [BPF_REG_AX] = 2, /* R10 temp register */ 128 [AUX_REG] = 3, /* R11 temp register */ 129 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 130 }; 131 132 static const int reg2pt_regs[] = { 133 [BPF_REG_0] = offsetof(struct pt_regs, ax), 134 [BPF_REG_1] = offsetof(struct pt_regs, di), 135 [BPF_REG_2] = offsetof(struct pt_regs, si), 136 [BPF_REG_3] = offsetof(struct pt_regs, dx), 137 [BPF_REG_4] = offsetof(struct pt_regs, cx), 138 [BPF_REG_5] = offsetof(struct pt_regs, r8), 139 [BPF_REG_6] = offsetof(struct pt_regs, bx), 140 [BPF_REG_7] = offsetof(struct pt_regs, r13), 141 [BPF_REG_8] = offsetof(struct pt_regs, r14), 142 [BPF_REG_9] = offsetof(struct pt_regs, r15), 143 }; 144 145 /* 146 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 147 * which need extra byte of encoding. 148 * rax,rcx,...,rbp have simpler encoding 149 */ 150 static bool is_ereg(u32 reg) 151 { 152 return (1 << reg) & (BIT(BPF_REG_5) | 153 BIT(AUX_REG) | 154 BIT(BPF_REG_7) | 155 BIT(BPF_REG_8) | 156 BIT(BPF_REG_9) | 157 BIT(X86_REG_R9) | 158 BIT(BPF_REG_AX)); 159 } 160 161 /* 162 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 163 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 164 * of encoding. al,cl,dl,bl have simpler encoding. 165 */ 166 static bool is_ereg_8l(u32 reg) 167 { 168 return is_ereg(reg) || 169 (1 << reg) & (BIT(BPF_REG_1) | 170 BIT(BPF_REG_2) | 171 BIT(BPF_REG_FP)); 172 } 173 174 static bool is_axreg(u32 reg) 175 { 176 return reg == BPF_REG_0; 177 } 178 179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 180 static u8 add_1mod(u8 byte, u32 reg) 181 { 182 if (is_ereg(reg)) 183 byte |= 1; 184 return byte; 185 } 186 187 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 188 { 189 if (is_ereg(r1)) 190 byte |= 1; 191 if (is_ereg(r2)) 192 byte |= 4; 193 return byte; 194 } 195 196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 197 static u8 add_1reg(u8 byte, u32 dst_reg) 198 { 199 return byte + reg2hex[dst_reg]; 200 } 201 202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 204 { 205 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 206 } 207 208 /* Some 1-byte opcodes for binary ALU operations */ 209 static u8 simple_alu_opcodes[] = { 210 [BPF_ADD] = 0x01, 211 [BPF_SUB] = 0x29, 212 [BPF_AND] = 0x21, 213 [BPF_OR] = 0x09, 214 [BPF_XOR] = 0x31, 215 [BPF_LSH] = 0xE0, 216 [BPF_RSH] = 0xE8, 217 [BPF_ARSH] = 0xF8, 218 }; 219 220 static void jit_fill_hole(void *area, unsigned int size) 221 { 222 /* Fill whole space with INT3 instructions */ 223 memset(area, 0xcc, size); 224 } 225 226 struct jit_context { 227 int cleanup_addr; /* Epilogue code offset */ 228 }; 229 230 /* Maximum number of bytes emitted while JITing one eBPF insn */ 231 #define BPF_MAX_INSN_SIZE 128 232 #define BPF_INSN_SAFETY 64 233 234 /* Number of bytes emit_patch() needs to generate instructions */ 235 #define X86_PATCH_SIZE 5 236 /* Number of bytes that will be skipped on tailcall */ 237 #define X86_TAIL_CALL_OFFSET 11 238 239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 240 { 241 u8 *prog = *pprog; 242 243 if (callee_regs_used[0]) 244 EMIT1(0x53); /* push rbx */ 245 if (callee_regs_used[1]) 246 EMIT2(0x41, 0x55); /* push r13 */ 247 if (callee_regs_used[2]) 248 EMIT2(0x41, 0x56); /* push r14 */ 249 if (callee_regs_used[3]) 250 EMIT2(0x41, 0x57); /* push r15 */ 251 *pprog = prog; 252 } 253 254 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 255 { 256 u8 *prog = *pprog; 257 258 if (callee_regs_used[3]) 259 EMIT2(0x41, 0x5F); /* pop r15 */ 260 if (callee_regs_used[2]) 261 EMIT2(0x41, 0x5E); /* pop r14 */ 262 if (callee_regs_used[1]) 263 EMIT2(0x41, 0x5D); /* pop r13 */ 264 if (callee_regs_used[0]) 265 EMIT1(0x5B); /* pop rbx */ 266 *pprog = prog; 267 } 268 269 /* 270 * Emit x86-64 prologue code for BPF program. 271 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 272 * while jumping to another program 273 */ 274 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, 275 bool tail_call_reachable, bool is_subprog) 276 { 277 u8 *prog = *pprog; 278 279 /* BPF trampoline can be made to work without these nops, 280 * but let's waste 5 bytes for now and optimize later 281 */ 282 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 283 prog += X86_PATCH_SIZE; 284 if (!ebpf_from_cbpf) { 285 if (tail_call_reachable && !is_subprog) 286 EMIT2(0x31, 0xC0); /* xor eax, eax */ 287 else 288 EMIT2(0x66, 0x90); /* nop2 */ 289 } 290 EMIT1(0x55); /* push rbp */ 291 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 292 /* sub rsp, rounded_stack_depth */ 293 if (stack_depth) 294 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 295 if (tail_call_reachable) 296 EMIT1(0x50); /* push rax */ 297 *pprog = prog; 298 } 299 300 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 301 { 302 u8 *prog = *pprog; 303 s64 offset; 304 305 offset = func - (ip + X86_PATCH_SIZE); 306 if (!is_simm32(offset)) { 307 pr_err("Target call %p is out of range\n", func); 308 return -ERANGE; 309 } 310 EMIT1_off32(opcode, offset); 311 *pprog = prog; 312 return 0; 313 } 314 315 static int emit_call(u8 **pprog, void *func, void *ip) 316 { 317 return emit_patch(pprog, func, ip, 0xE8); 318 } 319 320 static int emit_jump(u8 **pprog, void *func, void *ip) 321 { 322 return emit_patch(pprog, func, ip, 0xE9); 323 } 324 325 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 326 void *old_addr, void *new_addr, 327 const bool text_live) 328 { 329 const u8 *nop_insn = x86_nops[5]; 330 u8 old_insn[X86_PATCH_SIZE]; 331 u8 new_insn[X86_PATCH_SIZE]; 332 u8 *prog; 333 int ret; 334 335 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 336 if (old_addr) { 337 prog = old_insn; 338 ret = t == BPF_MOD_CALL ? 339 emit_call(&prog, old_addr, ip) : 340 emit_jump(&prog, old_addr, ip); 341 if (ret) 342 return ret; 343 } 344 345 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 346 if (new_addr) { 347 prog = new_insn; 348 ret = t == BPF_MOD_CALL ? 349 emit_call(&prog, new_addr, ip) : 350 emit_jump(&prog, new_addr, ip); 351 if (ret) 352 return ret; 353 } 354 355 ret = -EBUSY; 356 mutex_lock(&text_mutex); 357 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 358 goto out; 359 ret = 1; 360 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 361 if (text_live) 362 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); 363 else 364 memcpy(ip, new_insn, X86_PATCH_SIZE); 365 ret = 0; 366 } 367 out: 368 mutex_unlock(&text_mutex); 369 return ret; 370 } 371 372 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 373 void *old_addr, void *new_addr) 374 { 375 if (!is_kernel_text((long)ip) && 376 !is_bpf_text_address((long)ip)) 377 /* BPF poking in modules is not supported */ 378 return -EINVAL; 379 380 return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true); 381 } 382 383 static int get_pop_bytes(bool *callee_regs_used) 384 { 385 int bytes = 0; 386 387 if (callee_regs_used[3]) 388 bytes += 2; 389 if (callee_regs_used[2]) 390 bytes += 2; 391 if (callee_regs_used[1]) 392 bytes += 2; 393 if (callee_regs_used[0]) 394 bytes += 1; 395 396 return bytes; 397 } 398 399 /* 400 * Generate the following code: 401 * 402 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 403 * if (index >= array->map.max_entries) 404 * goto out; 405 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) 406 * goto out; 407 * prog = array->ptrs[index]; 408 * if (prog == NULL) 409 * goto out; 410 * goto *(prog->bpf_func + prologue_size); 411 * out: 412 */ 413 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used, 414 u32 stack_depth) 415 { 416 int tcc_off = -4 - round_up(stack_depth, 8); 417 u8 *prog = *pprog; 418 int pop_bytes = 0; 419 int off1 = 42; 420 int off2 = 31; 421 int off3 = 9; 422 423 /* count the additional bytes used for popping callee regs from stack 424 * that need to be taken into account for each of the offsets that 425 * are used for bailing out of the tail call 426 */ 427 pop_bytes = get_pop_bytes(callee_regs_used); 428 off1 += pop_bytes; 429 off2 += pop_bytes; 430 off3 += pop_bytes; 431 432 if (stack_depth) { 433 off1 += 7; 434 off2 += 7; 435 off3 += 7; 436 } 437 438 /* 439 * rdi - pointer to ctx 440 * rsi - pointer to bpf_array 441 * rdx - index in bpf_array 442 */ 443 444 /* 445 * if (index >= array->map.max_entries) 446 * goto out; 447 */ 448 EMIT2(0x89, 0xD2); /* mov edx, edx */ 449 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 450 offsetof(struct bpf_array, map.max_entries)); 451 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */ 452 EMIT2(X86_JBE, OFFSET1); /* jbe out */ 453 454 /* 455 * if (tail_call_cnt > MAX_TAIL_CALL_CNT) 456 * goto out; 457 */ 458 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 459 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 460 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE) 461 EMIT2(X86_JA, OFFSET2); /* ja out */ 462 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 463 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 464 465 /* prog = array->ptrs[index]; */ 466 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 467 offsetof(struct bpf_array, ptrs)); 468 469 /* 470 * if (prog == NULL) 471 * goto out; 472 */ 473 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 474 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE) 475 EMIT2(X86_JE, OFFSET3); /* je out */ 476 477 *pprog = prog; 478 pop_callee_regs(pprog, callee_regs_used); 479 prog = *pprog; 480 481 EMIT1(0x58); /* pop rax */ 482 if (stack_depth) 483 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 484 round_up(stack_depth, 8)); 485 486 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 487 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 488 offsetof(struct bpf_prog, bpf_func)); 489 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 490 X86_TAIL_CALL_OFFSET); 491 /* 492 * Now we're ready to jump into next BPF program 493 * rdi == ctx (1st arg) 494 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 495 */ 496 RETPOLINE_RCX_BPF_JIT(); 497 498 /* out: */ 499 *pprog = prog; 500 } 501 502 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke, 503 u8 **pprog, int addr, u8 *image, 504 bool *callee_regs_used, u32 stack_depth) 505 { 506 int tcc_off = -4 - round_up(stack_depth, 8); 507 u8 *prog = *pprog; 508 int pop_bytes = 0; 509 int off1 = 20; 510 int poke_off; 511 512 /* count the additional bytes used for popping callee regs to stack 513 * that need to be taken into account for jump offset that is used for 514 * bailing out from of the tail call when limit is reached 515 */ 516 pop_bytes = get_pop_bytes(callee_regs_used); 517 off1 += pop_bytes; 518 519 /* 520 * total bytes for: 521 * - nop5/ jmpq $off 522 * - pop callee regs 523 * - sub rsp, $val if depth > 0 524 * - pop rax 525 */ 526 poke_off = X86_PATCH_SIZE + pop_bytes + 1; 527 if (stack_depth) { 528 poke_off += 7; 529 off1 += 7; 530 } 531 532 /* 533 * if (tail_call_cnt > MAX_TAIL_CALL_CNT) 534 * goto out; 535 */ 536 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 537 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 538 EMIT2(X86_JA, off1); /* ja out */ 539 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 540 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 541 542 poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE); 543 poke->adj_off = X86_TAIL_CALL_OFFSET; 544 poke->tailcall_target = image + (addr - X86_PATCH_SIZE); 545 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 546 547 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 548 poke->tailcall_bypass); 549 550 *pprog = prog; 551 pop_callee_regs(pprog, callee_regs_used); 552 prog = *pprog; 553 EMIT1(0x58); /* pop rax */ 554 if (stack_depth) 555 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 556 557 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 558 prog += X86_PATCH_SIZE; 559 /* out: */ 560 561 *pprog = prog; 562 } 563 564 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 565 { 566 struct bpf_jit_poke_descriptor *poke; 567 struct bpf_array *array; 568 struct bpf_prog *target; 569 int i, ret; 570 571 for (i = 0; i < prog->aux->size_poke_tab; i++) { 572 poke = &prog->aux->poke_tab[i]; 573 if (poke->aux && poke->aux != prog->aux) 574 continue; 575 576 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 577 578 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 579 continue; 580 581 array = container_of(poke->tail_call.map, struct bpf_array, map); 582 mutex_lock(&array->aux->poke_mutex); 583 target = array->ptrs[poke->tail_call.key]; 584 if (target) { 585 /* Plain memcpy is used when image is not live yet 586 * and still not locked as read-only. Once poke 587 * location is active (poke->tailcall_target_stable), 588 * any parallel bpf_arch_text_poke() might occur 589 * still on the read-write image until we finally 590 * locked it as read-only. Both modifications on 591 * the given image are under text_mutex to avoid 592 * interference. 593 */ 594 ret = __bpf_arch_text_poke(poke->tailcall_target, 595 BPF_MOD_JUMP, NULL, 596 (u8 *)target->bpf_func + 597 poke->adj_off, false); 598 BUG_ON(ret < 0); 599 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 600 BPF_MOD_JUMP, 601 (u8 *)poke->tailcall_target + 602 X86_PATCH_SIZE, NULL, false); 603 BUG_ON(ret < 0); 604 } 605 WRITE_ONCE(poke->tailcall_target_stable, true); 606 mutex_unlock(&array->aux->poke_mutex); 607 } 608 } 609 610 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 611 u32 dst_reg, const u32 imm32) 612 { 613 u8 *prog = *pprog; 614 u8 b1, b2, b3; 615 616 /* 617 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 618 * (which zero-extends imm32) to save 2 bytes. 619 */ 620 if (sign_propagate && (s32)imm32 < 0) { 621 /* 'mov %rax, imm32' sign extends imm32 */ 622 b1 = add_1mod(0x48, dst_reg); 623 b2 = 0xC7; 624 b3 = 0xC0; 625 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 626 goto done; 627 } 628 629 /* 630 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 631 * to save 3 bytes. 632 */ 633 if (imm32 == 0) { 634 if (is_ereg(dst_reg)) 635 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 636 b2 = 0x31; /* xor */ 637 b3 = 0xC0; 638 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 639 goto done; 640 } 641 642 /* mov %eax, imm32 */ 643 if (is_ereg(dst_reg)) 644 EMIT1(add_1mod(0x40, dst_reg)); 645 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 646 done: 647 *pprog = prog; 648 } 649 650 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 651 const u32 imm32_hi, const u32 imm32_lo) 652 { 653 u8 *prog = *pprog; 654 655 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) { 656 /* 657 * For emitting plain u32, where sign bit must not be 658 * propagated LLVM tends to load imm64 over mov32 659 * directly, so save couple of bytes by just doing 660 * 'mov %eax, imm32' instead. 661 */ 662 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 663 } else { 664 /* movabsq %rax, imm64 */ 665 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 666 EMIT(imm32_lo, 4); 667 EMIT(imm32_hi, 4); 668 } 669 670 *pprog = prog; 671 } 672 673 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 674 { 675 u8 *prog = *pprog; 676 677 if (is64) { 678 /* mov dst, src */ 679 EMIT_mov(dst_reg, src_reg); 680 } else { 681 /* mov32 dst, src */ 682 if (is_ereg(dst_reg) || is_ereg(src_reg)) 683 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 684 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 685 } 686 687 *pprog = prog; 688 } 689 690 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 691 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 692 { 693 u8 *prog = *pprog; 694 695 if (is_imm8(off)) { 696 /* 1-byte signed displacement. 697 * 698 * If off == 0 we could skip this and save one extra byte, but 699 * special case of x86 R13 which always needs an offset is not 700 * worth the hassle 701 */ 702 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 703 } else { 704 /* 4-byte signed displacement */ 705 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 706 } 707 *pprog = prog; 708 } 709 710 /* 711 * Emit a REX byte if it will be necessary to address these registers 712 */ 713 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 714 { 715 u8 *prog = *pprog; 716 717 if (is64) 718 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 719 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 720 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 721 *pprog = prog; 722 } 723 724 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 725 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 726 { 727 u8 *prog = *pprog; 728 729 switch (size) { 730 case BPF_B: 731 /* Emit 'movzx rax, byte ptr [rax + off]' */ 732 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 733 break; 734 case BPF_H: 735 /* Emit 'movzx rax, word ptr [rax + off]' */ 736 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 737 break; 738 case BPF_W: 739 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 740 if (is_ereg(dst_reg) || is_ereg(src_reg)) 741 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 742 else 743 EMIT1(0x8B); 744 break; 745 case BPF_DW: 746 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 747 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 748 break; 749 } 750 emit_insn_suffix(&prog, src_reg, dst_reg, off); 751 *pprog = prog; 752 } 753 754 /* STX: *(u8*)(dst_reg + off) = src_reg */ 755 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 756 { 757 u8 *prog = *pprog; 758 759 switch (size) { 760 case BPF_B: 761 /* Emit 'mov byte ptr [rax + off], al' */ 762 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 763 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 764 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 765 else 766 EMIT1(0x88); 767 break; 768 case BPF_H: 769 if (is_ereg(dst_reg) || is_ereg(src_reg)) 770 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 771 else 772 EMIT2(0x66, 0x89); 773 break; 774 case BPF_W: 775 if (is_ereg(dst_reg) || is_ereg(src_reg)) 776 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 777 else 778 EMIT1(0x89); 779 break; 780 case BPF_DW: 781 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 782 break; 783 } 784 emit_insn_suffix(&prog, dst_reg, src_reg, off); 785 *pprog = prog; 786 } 787 788 static int emit_atomic(u8 **pprog, u8 atomic_op, 789 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 790 { 791 u8 *prog = *pprog; 792 793 EMIT1(0xF0); /* lock prefix */ 794 795 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 796 797 /* emit opcode */ 798 switch (atomic_op) { 799 case BPF_ADD: 800 case BPF_SUB: 801 case BPF_AND: 802 case BPF_OR: 803 case BPF_XOR: 804 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 805 EMIT1(simple_alu_opcodes[atomic_op]); 806 break; 807 case BPF_ADD | BPF_FETCH: 808 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 809 EMIT2(0x0F, 0xC1); 810 break; 811 case BPF_XCHG: 812 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 813 EMIT1(0x87); 814 break; 815 case BPF_CMPXCHG: 816 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 817 EMIT2(0x0F, 0xB1); 818 break; 819 default: 820 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 821 return -EFAULT; 822 } 823 824 emit_insn_suffix(&prog, dst_reg, src_reg, off); 825 826 *pprog = prog; 827 return 0; 828 } 829 830 static bool ex_handler_bpf(const struct exception_table_entry *x, 831 struct pt_regs *regs, int trapnr, 832 unsigned long error_code, unsigned long fault_addr) 833 { 834 u32 reg = x->fixup >> 8; 835 836 /* jump over faulting load and clear dest register */ 837 *(unsigned long *)((void *)regs + reg) = 0; 838 regs->ip += x->fixup & 0xff; 839 return true; 840 } 841 842 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 843 bool *regs_used, bool *tail_call_seen) 844 { 845 int i; 846 847 for (i = 1; i <= insn_cnt; i++, insn++) { 848 if (insn->code == (BPF_JMP | BPF_TAIL_CALL)) 849 *tail_call_seen = true; 850 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 851 regs_used[0] = true; 852 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 853 regs_used[1] = true; 854 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 855 regs_used[2] = true; 856 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 857 regs_used[3] = true; 858 } 859 } 860 861 static void emit_nops(u8 **pprog, int len) 862 { 863 u8 *prog = *pprog; 864 int i, noplen; 865 866 while (len > 0) { 867 noplen = len; 868 869 if (noplen > ASM_NOP_MAX) 870 noplen = ASM_NOP_MAX; 871 872 for (i = 0; i < noplen; i++) 873 EMIT1(x86_nops[noplen][i]); 874 len -= noplen; 875 } 876 877 *pprog = prog; 878 } 879 880 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 881 882 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, 883 int oldproglen, struct jit_context *ctx, bool jmp_padding) 884 { 885 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 886 struct bpf_insn *insn = bpf_prog->insnsi; 887 bool callee_regs_used[4] = {}; 888 int insn_cnt = bpf_prog->len; 889 bool tail_call_seen = false; 890 bool seen_exit = false; 891 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 892 int i, excnt = 0; 893 int ilen, proglen = 0; 894 u8 *prog = temp; 895 int err; 896 897 detect_reg_usage(insn, insn_cnt, callee_regs_used, 898 &tail_call_seen); 899 900 /* tail call's presence in current prog implies it is reachable */ 901 tail_call_reachable |= tail_call_seen; 902 903 emit_prologue(&prog, bpf_prog->aux->stack_depth, 904 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 905 bpf_prog->aux->func_idx != 0); 906 push_callee_regs(&prog, callee_regs_used); 907 908 ilen = prog - temp; 909 if (image) 910 memcpy(image + proglen, temp, ilen); 911 proglen += ilen; 912 addrs[0] = proglen; 913 prog = temp; 914 915 for (i = 1; i <= insn_cnt; i++, insn++) { 916 const s32 imm32 = insn->imm; 917 u32 dst_reg = insn->dst_reg; 918 u32 src_reg = insn->src_reg; 919 u8 b2 = 0, b3 = 0; 920 u8 *start_of_ldx; 921 s64 jmp_offset; 922 u8 jmp_cond; 923 u8 *func; 924 int nops; 925 926 switch (insn->code) { 927 /* ALU */ 928 case BPF_ALU | BPF_ADD | BPF_X: 929 case BPF_ALU | BPF_SUB | BPF_X: 930 case BPF_ALU | BPF_AND | BPF_X: 931 case BPF_ALU | BPF_OR | BPF_X: 932 case BPF_ALU | BPF_XOR | BPF_X: 933 case BPF_ALU64 | BPF_ADD | BPF_X: 934 case BPF_ALU64 | BPF_SUB | BPF_X: 935 case BPF_ALU64 | BPF_AND | BPF_X: 936 case BPF_ALU64 | BPF_OR | BPF_X: 937 case BPF_ALU64 | BPF_XOR | BPF_X: 938 maybe_emit_mod(&prog, dst_reg, src_reg, 939 BPF_CLASS(insn->code) == BPF_ALU64); 940 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 941 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 942 break; 943 944 case BPF_ALU64 | BPF_MOV | BPF_X: 945 case BPF_ALU | BPF_MOV | BPF_X: 946 emit_mov_reg(&prog, 947 BPF_CLASS(insn->code) == BPF_ALU64, 948 dst_reg, src_reg); 949 break; 950 951 /* neg dst */ 952 case BPF_ALU | BPF_NEG: 953 case BPF_ALU64 | BPF_NEG: 954 if (BPF_CLASS(insn->code) == BPF_ALU64) 955 EMIT1(add_1mod(0x48, dst_reg)); 956 else if (is_ereg(dst_reg)) 957 EMIT1(add_1mod(0x40, dst_reg)); 958 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 959 break; 960 961 case BPF_ALU | BPF_ADD | BPF_K: 962 case BPF_ALU | BPF_SUB | BPF_K: 963 case BPF_ALU | BPF_AND | BPF_K: 964 case BPF_ALU | BPF_OR | BPF_K: 965 case BPF_ALU | BPF_XOR | BPF_K: 966 case BPF_ALU64 | BPF_ADD | BPF_K: 967 case BPF_ALU64 | BPF_SUB | BPF_K: 968 case BPF_ALU64 | BPF_AND | BPF_K: 969 case BPF_ALU64 | BPF_OR | BPF_K: 970 case BPF_ALU64 | BPF_XOR | BPF_K: 971 if (BPF_CLASS(insn->code) == BPF_ALU64) 972 EMIT1(add_1mod(0x48, dst_reg)); 973 else if (is_ereg(dst_reg)) 974 EMIT1(add_1mod(0x40, dst_reg)); 975 976 /* 977 * b3 holds 'normal' opcode, b2 short form only valid 978 * in case dst is eax/rax. 979 */ 980 switch (BPF_OP(insn->code)) { 981 case BPF_ADD: 982 b3 = 0xC0; 983 b2 = 0x05; 984 break; 985 case BPF_SUB: 986 b3 = 0xE8; 987 b2 = 0x2D; 988 break; 989 case BPF_AND: 990 b3 = 0xE0; 991 b2 = 0x25; 992 break; 993 case BPF_OR: 994 b3 = 0xC8; 995 b2 = 0x0D; 996 break; 997 case BPF_XOR: 998 b3 = 0xF0; 999 b2 = 0x35; 1000 break; 1001 } 1002 1003 if (is_imm8(imm32)) 1004 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1005 else if (is_axreg(dst_reg)) 1006 EMIT1_off32(b2, imm32); 1007 else 1008 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1009 break; 1010 1011 case BPF_ALU64 | BPF_MOV | BPF_K: 1012 case BPF_ALU | BPF_MOV | BPF_K: 1013 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1014 dst_reg, imm32); 1015 break; 1016 1017 case BPF_LD | BPF_IMM | BPF_DW: 1018 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1019 insn++; 1020 i++; 1021 break; 1022 1023 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1024 case BPF_ALU | BPF_MOD | BPF_X: 1025 case BPF_ALU | BPF_DIV | BPF_X: 1026 case BPF_ALU | BPF_MOD | BPF_K: 1027 case BPF_ALU | BPF_DIV | BPF_K: 1028 case BPF_ALU64 | BPF_MOD | BPF_X: 1029 case BPF_ALU64 | BPF_DIV | BPF_X: 1030 case BPF_ALU64 | BPF_MOD | BPF_K: 1031 case BPF_ALU64 | BPF_DIV | BPF_K: 1032 EMIT1(0x50); /* push rax */ 1033 EMIT1(0x52); /* push rdx */ 1034 1035 if (BPF_SRC(insn->code) == BPF_X) 1036 /* mov r11, src_reg */ 1037 EMIT_mov(AUX_REG, src_reg); 1038 else 1039 /* mov r11, imm32 */ 1040 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1041 1042 /* mov rax, dst_reg */ 1043 EMIT_mov(BPF_REG_0, dst_reg); 1044 1045 /* 1046 * xor edx, edx 1047 * equivalent to 'xor rdx, rdx', but one byte less 1048 */ 1049 EMIT2(0x31, 0xd2); 1050 1051 if (BPF_CLASS(insn->code) == BPF_ALU64) 1052 /* div r11 */ 1053 EMIT3(0x49, 0xF7, 0xF3); 1054 else 1055 /* div r11d */ 1056 EMIT3(0x41, 0xF7, 0xF3); 1057 1058 if (BPF_OP(insn->code) == BPF_MOD) 1059 /* mov r11, rdx */ 1060 EMIT3(0x49, 0x89, 0xD3); 1061 else 1062 /* mov r11, rax */ 1063 EMIT3(0x49, 0x89, 0xC3); 1064 1065 EMIT1(0x5A); /* pop rdx */ 1066 EMIT1(0x58); /* pop rax */ 1067 1068 /* mov dst_reg, r11 */ 1069 EMIT_mov(dst_reg, AUX_REG); 1070 break; 1071 1072 case BPF_ALU | BPF_MUL | BPF_K: 1073 case BPF_ALU | BPF_MUL | BPF_X: 1074 case BPF_ALU64 | BPF_MUL | BPF_K: 1075 case BPF_ALU64 | BPF_MUL | BPF_X: 1076 { 1077 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1078 1079 if (dst_reg != BPF_REG_0) 1080 EMIT1(0x50); /* push rax */ 1081 if (dst_reg != BPF_REG_3) 1082 EMIT1(0x52); /* push rdx */ 1083 1084 /* mov r11, dst_reg */ 1085 EMIT_mov(AUX_REG, dst_reg); 1086 1087 if (BPF_SRC(insn->code) == BPF_X) 1088 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg); 1089 else 1090 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32); 1091 1092 if (is64) 1093 EMIT1(add_1mod(0x48, AUX_REG)); 1094 else if (is_ereg(AUX_REG)) 1095 EMIT1(add_1mod(0x40, AUX_REG)); 1096 /* mul(q) r11 */ 1097 EMIT2(0xF7, add_1reg(0xE0, AUX_REG)); 1098 1099 if (dst_reg != BPF_REG_3) 1100 EMIT1(0x5A); /* pop rdx */ 1101 if (dst_reg != BPF_REG_0) { 1102 /* mov dst_reg, rax */ 1103 EMIT_mov(dst_reg, BPF_REG_0); 1104 EMIT1(0x58); /* pop rax */ 1105 } 1106 break; 1107 } 1108 /* Shifts */ 1109 case BPF_ALU | BPF_LSH | BPF_K: 1110 case BPF_ALU | BPF_RSH | BPF_K: 1111 case BPF_ALU | BPF_ARSH | BPF_K: 1112 case BPF_ALU64 | BPF_LSH | BPF_K: 1113 case BPF_ALU64 | BPF_RSH | BPF_K: 1114 case BPF_ALU64 | BPF_ARSH | BPF_K: 1115 if (BPF_CLASS(insn->code) == BPF_ALU64) 1116 EMIT1(add_1mod(0x48, dst_reg)); 1117 else if (is_ereg(dst_reg)) 1118 EMIT1(add_1mod(0x40, dst_reg)); 1119 1120 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1121 if (imm32 == 1) 1122 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1123 else 1124 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1125 break; 1126 1127 case BPF_ALU | BPF_LSH | BPF_X: 1128 case BPF_ALU | BPF_RSH | BPF_X: 1129 case BPF_ALU | BPF_ARSH | BPF_X: 1130 case BPF_ALU64 | BPF_LSH | BPF_X: 1131 case BPF_ALU64 | BPF_RSH | BPF_X: 1132 case BPF_ALU64 | BPF_ARSH | BPF_X: 1133 1134 /* Check for bad case when dst_reg == rcx */ 1135 if (dst_reg == BPF_REG_4) { 1136 /* mov r11, dst_reg */ 1137 EMIT_mov(AUX_REG, dst_reg); 1138 dst_reg = AUX_REG; 1139 } 1140 1141 if (src_reg != BPF_REG_4) { /* common case */ 1142 EMIT1(0x51); /* push rcx */ 1143 1144 /* mov rcx, src_reg */ 1145 EMIT_mov(BPF_REG_4, src_reg); 1146 } 1147 1148 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1149 if (BPF_CLASS(insn->code) == BPF_ALU64) 1150 EMIT1(add_1mod(0x48, dst_reg)); 1151 else if (is_ereg(dst_reg)) 1152 EMIT1(add_1mod(0x40, dst_reg)); 1153 1154 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1155 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1156 1157 if (src_reg != BPF_REG_4) 1158 EMIT1(0x59); /* pop rcx */ 1159 1160 if (insn->dst_reg == BPF_REG_4) 1161 /* mov dst_reg, r11 */ 1162 EMIT_mov(insn->dst_reg, AUX_REG); 1163 break; 1164 1165 case BPF_ALU | BPF_END | BPF_FROM_BE: 1166 switch (imm32) { 1167 case 16: 1168 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1169 EMIT1(0x66); 1170 if (is_ereg(dst_reg)) 1171 EMIT1(0x41); 1172 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1173 1174 /* Emit 'movzwl eax, ax' */ 1175 if (is_ereg(dst_reg)) 1176 EMIT3(0x45, 0x0F, 0xB7); 1177 else 1178 EMIT2(0x0F, 0xB7); 1179 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1180 break; 1181 case 32: 1182 /* Emit 'bswap eax' to swap lower 4 bytes */ 1183 if (is_ereg(dst_reg)) 1184 EMIT2(0x41, 0x0F); 1185 else 1186 EMIT1(0x0F); 1187 EMIT1(add_1reg(0xC8, dst_reg)); 1188 break; 1189 case 64: 1190 /* Emit 'bswap rax' to swap 8 bytes */ 1191 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1192 add_1reg(0xC8, dst_reg)); 1193 break; 1194 } 1195 break; 1196 1197 case BPF_ALU | BPF_END | BPF_FROM_LE: 1198 switch (imm32) { 1199 case 16: 1200 /* 1201 * Emit 'movzwl eax, ax' to zero extend 16-bit 1202 * into 64 bit 1203 */ 1204 if (is_ereg(dst_reg)) 1205 EMIT3(0x45, 0x0F, 0xB7); 1206 else 1207 EMIT2(0x0F, 0xB7); 1208 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1209 break; 1210 case 32: 1211 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1212 if (is_ereg(dst_reg)) 1213 EMIT1(0x45); 1214 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1215 break; 1216 case 64: 1217 /* nop */ 1218 break; 1219 } 1220 break; 1221 1222 /* ST: *(u8*)(dst_reg + off) = imm */ 1223 case BPF_ST | BPF_MEM | BPF_B: 1224 if (is_ereg(dst_reg)) 1225 EMIT2(0x41, 0xC6); 1226 else 1227 EMIT1(0xC6); 1228 goto st; 1229 case BPF_ST | BPF_MEM | BPF_H: 1230 if (is_ereg(dst_reg)) 1231 EMIT3(0x66, 0x41, 0xC7); 1232 else 1233 EMIT2(0x66, 0xC7); 1234 goto st; 1235 case BPF_ST | BPF_MEM | BPF_W: 1236 if (is_ereg(dst_reg)) 1237 EMIT2(0x41, 0xC7); 1238 else 1239 EMIT1(0xC7); 1240 goto st; 1241 case BPF_ST | BPF_MEM | BPF_DW: 1242 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 1243 1244 st: if (is_imm8(insn->off)) 1245 EMIT2(add_1reg(0x40, dst_reg), insn->off); 1246 else 1247 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 1248 1249 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 1250 break; 1251 1252 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1253 case BPF_STX | BPF_MEM | BPF_B: 1254 case BPF_STX | BPF_MEM | BPF_H: 1255 case BPF_STX | BPF_MEM | BPF_W: 1256 case BPF_STX | BPF_MEM | BPF_DW: 1257 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1258 break; 1259 1260 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1261 case BPF_LDX | BPF_MEM | BPF_B: 1262 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1263 case BPF_LDX | BPF_MEM | BPF_H: 1264 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1265 case BPF_LDX | BPF_MEM | BPF_W: 1266 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1267 case BPF_LDX | BPF_MEM | BPF_DW: 1268 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1269 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { 1270 /* test src_reg, src_reg */ 1271 maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */ 1272 EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg)); 1273 /* jne start_of_ldx */ 1274 EMIT2(X86_JNE, 0); 1275 /* xor dst_reg, dst_reg */ 1276 emit_mov_imm32(&prog, false, dst_reg, 0); 1277 /* jmp byte_after_ldx */ 1278 EMIT2(0xEB, 0); 1279 1280 /* populate jmp_offset for JNE above */ 1281 temp[4] = prog - temp - 5 /* sizeof(test + jne) */; 1282 start_of_ldx = prog; 1283 } 1284 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1285 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { 1286 struct exception_table_entry *ex; 1287 u8 *_insn = image + proglen + (start_of_ldx - temp); 1288 s64 delta; 1289 1290 /* populate jmp_offset for JMP above */ 1291 start_of_ldx[-1] = prog - start_of_ldx; 1292 1293 if (!bpf_prog->aux->extable) 1294 break; 1295 1296 if (excnt >= bpf_prog->aux->num_exentries) { 1297 pr_err("ex gen bug\n"); 1298 return -EFAULT; 1299 } 1300 ex = &bpf_prog->aux->extable[excnt++]; 1301 1302 delta = _insn - (u8 *)&ex->insn; 1303 if (!is_simm32(delta)) { 1304 pr_err("extable->insn doesn't fit into 32-bit\n"); 1305 return -EFAULT; 1306 } 1307 ex->insn = delta; 1308 1309 delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler; 1310 if (!is_simm32(delta)) { 1311 pr_err("extable->handler doesn't fit into 32-bit\n"); 1312 return -EFAULT; 1313 } 1314 ex->handler = delta; 1315 1316 if (dst_reg > BPF_REG_9) { 1317 pr_err("verifier error\n"); 1318 return -EFAULT; 1319 } 1320 /* 1321 * Compute size of x86 insn and its target dest x86 register. 1322 * ex_handler_bpf() will use lower 8 bits to adjust 1323 * pt_regs->ip to jump over this x86 instruction 1324 * and upper bits to figure out which pt_regs to zero out. 1325 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 1326 * of 4 bytes will be ignored and rbx will be zero inited. 1327 */ 1328 ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8); 1329 } 1330 break; 1331 1332 case BPF_STX | BPF_ATOMIC | BPF_W: 1333 case BPF_STX | BPF_ATOMIC | BPF_DW: 1334 if (insn->imm == (BPF_AND | BPF_FETCH) || 1335 insn->imm == (BPF_OR | BPF_FETCH) || 1336 insn->imm == (BPF_XOR | BPF_FETCH)) { 1337 u8 *branch_target; 1338 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 1339 u32 real_src_reg = src_reg; 1340 1341 /* 1342 * Can't be implemented with a single x86 insn. 1343 * Need to do a CMPXCHG loop. 1344 */ 1345 1346 /* Will need RAX as a CMPXCHG operand so save R0 */ 1347 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 1348 if (src_reg == BPF_REG_0) 1349 real_src_reg = BPF_REG_AX; 1350 1351 branch_target = prog; 1352 /* Load old value */ 1353 emit_ldx(&prog, BPF_SIZE(insn->code), 1354 BPF_REG_0, dst_reg, insn->off); 1355 /* 1356 * Perform the (commutative) operation locally, 1357 * put the result in the AUX_REG. 1358 */ 1359 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 1360 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 1361 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 1362 add_2reg(0xC0, AUX_REG, real_src_reg)); 1363 /* Attempt to swap in new value */ 1364 err = emit_atomic(&prog, BPF_CMPXCHG, 1365 dst_reg, AUX_REG, insn->off, 1366 BPF_SIZE(insn->code)); 1367 if (WARN_ON(err)) 1368 return err; 1369 /* 1370 * ZF tells us whether we won the race. If it's 1371 * cleared we need to try again. 1372 */ 1373 EMIT2(X86_JNE, -(prog - branch_target) - 2); 1374 /* Return the pre-modification value */ 1375 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 1376 /* Restore R0 after clobbering RAX */ 1377 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 1378 break; 1379 1380 } 1381 1382 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, 1383 insn->off, BPF_SIZE(insn->code)); 1384 if (err) 1385 return err; 1386 break; 1387 1388 /* call */ 1389 case BPF_JMP | BPF_CALL: 1390 func = (u8 *) __bpf_call_base + imm32; 1391 if (tail_call_reachable) { 1392 EMIT3_off32(0x48, 0x8B, 0x85, 1393 -(bpf_prog->aux->stack_depth + 8)); 1394 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7)) 1395 return -EINVAL; 1396 } else { 1397 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1])) 1398 return -EINVAL; 1399 } 1400 break; 1401 1402 case BPF_JMP | BPF_TAIL_CALL: 1403 if (imm32) 1404 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1], 1405 &prog, addrs[i], image, 1406 callee_regs_used, 1407 bpf_prog->aux->stack_depth); 1408 else 1409 emit_bpf_tail_call_indirect(&prog, 1410 callee_regs_used, 1411 bpf_prog->aux->stack_depth); 1412 break; 1413 1414 /* cond jump */ 1415 case BPF_JMP | BPF_JEQ | BPF_X: 1416 case BPF_JMP | BPF_JNE | BPF_X: 1417 case BPF_JMP | BPF_JGT | BPF_X: 1418 case BPF_JMP | BPF_JLT | BPF_X: 1419 case BPF_JMP | BPF_JGE | BPF_X: 1420 case BPF_JMP | BPF_JLE | BPF_X: 1421 case BPF_JMP | BPF_JSGT | BPF_X: 1422 case BPF_JMP | BPF_JSLT | BPF_X: 1423 case BPF_JMP | BPF_JSGE | BPF_X: 1424 case BPF_JMP | BPF_JSLE | BPF_X: 1425 case BPF_JMP32 | BPF_JEQ | BPF_X: 1426 case BPF_JMP32 | BPF_JNE | BPF_X: 1427 case BPF_JMP32 | BPF_JGT | BPF_X: 1428 case BPF_JMP32 | BPF_JLT | BPF_X: 1429 case BPF_JMP32 | BPF_JGE | BPF_X: 1430 case BPF_JMP32 | BPF_JLE | BPF_X: 1431 case BPF_JMP32 | BPF_JSGT | BPF_X: 1432 case BPF_JMP32 | BPF_JSLT | BPF_X: 1433 case BPF_JMP32 | BPF_JSGE | BPF_X: 1434 case BPF_JMP32 | BPF_JSLE | BPF_X: 1435 /* cmp dst_reg, src_reg */ 1436 maybe_emit_mod(&prog, dst_reg, src_reg, 1437 BPF_CLASS(insn->code) == BPF_JMP); 1438 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 1439 goto emit_cond_jmp; 1440 1441 case BPF_JMP | BPF_JSET | BPF_X: 1442 case BPF_JMP32 | BPF_JSET | BPF_X: 1443 /* test dst_reg, src_reg */ 1444 maybe_emit_mod(&prog, dst_reg, src_reg, 1445 BPF_CLASS(insn->code) == BPF_JMP); 1446 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 1447 goto emit_cond_jmp; 1448 1449 case BPF_JMP | BPF_JSET | BPF_K: 1450 case BPF_JMP32 | BPF_JSET | BPF_K: 1451 /* test dst_reg, imm32 */ 1452 if (BPF_CLASS(insn->code) == BPF_JMP) 1453 EMIT1(add_1mod(0x48, dst_reg)); 1454 else if (is_ereg(dst_reg)) 1455 EMIT1(add_1mod(0x40, dst_reg)); 1456 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 1457 goto emit_cond_jmp; 1458 1459 case BPF_JMP | BPF_JEQ | BPF_K: 1460 case BPF_JMP | BPF_JNE | BPF_K: 1461 case BPF_JMP | BPF_JGT | BPF_K: 1462 case BPF_JMP | BPF_JLT | BPF_K: 1463 case BPF_JMP | BPF_JGE | BPF_K: 1464 case BPF_JMP | BPF_JLE | BPF_K: 1465 case BPF_JMP | BPF_JSGT | BPF_K: 1466 case BPF_JMP | BPF_JSLT | BPF_K: 1467 case BPF_JMP | BPF_JSGE | BPF_K: 1468 case BPF_JMP | BPF_JSLE | BPF_K: 1469 case BPF_JMP32 | BPF_JEQ | BPF_K: 1470 case BPF_JMP32 | BPF_JNE | BPF_K: 1471 case BPF_JMP32 | BPF_JGT | BPF_K: 1472 case BPF_JMP32 | BPF_JLT | BPF_K: 1473 case BPF_JMP32 | BPF_JGE | BPF_K: 1474 case BPF_JMP32 | BPF_JLE | BPF_K: 1475 case BPF_JMP32 | BPF_JSGT | BPF_K: 1476 case BPF_JMP32 | BPF_JSLT | BPF_K: 1477 case BPF_JMP32 | BPF_JSGE | BPF_K: 1478 case BPF_JMP32 | BPF_JSLE | BPF_K: 1479 /* test dst_reg, dst_reg to save one extra byte */ 1480 if (imm32 == 0) { 1481 maybe_emit_mod(&prog, dst_reg, dst_reg, 1482 BPF_CLASS(insn->code) == BPF_JMP); 1483 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1484 goto emit_cond_jmp; 1485 } 1486 1487 /* cmp dst_reg, imm8/32 */ 1488 if (BPF_CLASS(insn->code) == BPF_JMP) 1489 EMIT1(add_1mod(0x48, dst_reg)); 1490 else if (is_ereg(dst_reg)) 1491 EMIT1(add_1mod(0x40, dst_reg)); 1492 1493 if (is_imm8(imm32)) 1494 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 1495 else 1496 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 1497 1498 emit_cond_jmp: /* Convert BPF opcode to x86 */ 1499 switch (BPF_OP(insn->code)) { 1500 case BPF_JEQ: 1501 jmp_cond = X86_JE; 1502 break; 1503 case BPF_JSET: 1504 case BPF_JNE: 1505 jmp_cond = X86_JNE; 1506 break; 1507 case BPF_JGT: 1508 /* GT is unsigned '>', JA in x86 */ 1509 jmp_cond = X86_JA; 1510 break; 1511 case BPF_JLT: 1512 /* LT is unsigned '<', JB in x86 */ 1513 jmp_cond = X86_JB; 1514 break; 1515 case BPF_JGE: 1516 /* GE is unsigned '>=', JAE in x86 */ 1517 jmp_cond = X86_JAE; 1518 break; 1519 case BPF_JLE: 1520 /* LE is unsigned '<=', JBE in x86 */ 1521 jmp_cond = X86_JBE; 1522 break; 1523 case BPF_JSGT: 1524 /* Signed '>', GT in x86 */ 1525 jmp_cond = X86_JG; 1526 break; 1527 case BPF_JSLT: 1528 /* Signed '<', LT in x86 */ 1529 jmp_cond = X86_JL; 1530 break; 1531 case BPF_JSGE: 1532 /* Signed '>=', GE in x86 */ 1533 jmp_cond = X86_JGE; 1534 break; 1535 case BPF_JSLE: 1536 /* Signed '<=', LE in x86 */ 1537 jmp_cond = X86_JLE; 1538 break; 1539 default: /* to silence GCC warning */ 1540 return -EFAULT; 1541 } 1542 jmp_offset = addrs[i + insn->off] - addrs[i]; 1543 if (is_imm8(jmp_offset)) { 1544 if (jmp_padding) { 1545 /* To keep the jmp_offset valid, the extra bytes are 1546 * padded before the jump insn, so we subtract the 1547 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 1548 * 1549 * If the previous pass already emits an imm8 1550 * jmp_cond, then this BPF insn won't shrink, so 1551 * "nops" is 0. 1552 * 1553 * On the other hand, if the previous pass emits an 1554 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 1555 * keep the image from shrinking further. 1556 * 1557 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 1558 * is 2 bytes, so the size difference is 4 bytes. 1559 */ 1560 nops = INSN_SZ_DIFF - 2; 1561 if (nops != 0 && nops != 4) { 1562 pr_err("unexpected jmp_cond padding: %d bytes\n", 1563 nops); 1564 return -EFAULT; 1565 } 1566 emit_nops(&prog, nops); 1567 } 1568 EMIT2(jmp_cond, jmp_offset); 1569 } else if (is_simm32(jmp_offset)) { 1570 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 1571 } else { 1572 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 1573 return -EFAULT; 1574 } 1575 1576 break; 1577 1578 case BPF_JMP | BPF_JA: 1579 if (insn->off == -1) 1580 /* -1 jmp instructions will always jump 1581 * backwards two bytes. Explicitly handling 1582 * this case avoids wasting too many passes 1583 * when there are long sequences of replaced 1584 * dead code. 1585 */ 1586 jmp_offset = -2; 1587 else 1588 jmp_offset = addrs[i + insn->off] - addrs[i]; 1589 1590 if (!jmp_offset) { 1591 /* 1592 * If jmp_padding is enabled, the extra nops will 1593 * be inserted. Otherwise, optimize out nop jumps. 1594 */ 1595 if (jmp_padding) { 1596 /* There are 3 possible conditions. 1597 * (1) This BPF_JA is already optimized out in 1598 * the previous run, so there is no need 1599 * to pad any extra byte (0 byte). 1600 * (2) The previous pass emits an imm8 jmp, 1601 * so we pad 2 bytes to match the previous 1602 * insn size. 1603 * (3) Similarly, the previous pass emits an 1604 * imm32 jmp, and 5 bytes is padded. 1605 */ 1606 nops = INSN_SZ_DIFF; 1607 if (nops != 0 && nops != 2 && nops != 5) { 1608 pr_err("unexpected nop jump padding: %d bytes\n", 1609 nops); 1610 return -EFAULT; 1611 } 1612 emit_nops(&prog, nops); 1613 } 1614 break; 1615 } 1616 emit_jmp: 1617 if (is_imm8(jmp_offset)) { 1618 if (jmp_padding) { 1619 /* To avoid breaking jmp_offset, the extra bytes 1620 * are padded before the actual jmp insn, so 1621 * 2 bytes is subtracted from INSN_SZ_DIFF. 1622 * 1623 * If the previous pass already emits an imm8 1624 * jmp, there is nothing to pad (0 byte). 1625 * 1626 * If it emits an imm32 jmp (5 bytes) previously 1627 * and now an imm8 jmp (2 bytes), then we pad 1628 * (5 - 2 = 3) bytes to stop the image from 1629 * shrinking further. 1630 */ 1631 nops = INSN_SZ_DIFF - 2; 1632 if (nops != 0 && nops != 3) { 1633 pr_err("unexpected jump padding: %d bytes\n", 1634 nops); 1635 return -EFAULT; 1636 } 1637 emit_nops(&prog, INSN_SZ_DIFF - 2); 1638 } 1639 EMIT2(0xEB, jmp_offset); 1640 } else if (is_simm32(jmp_offset)) { 1641 EMIT1_off32(0xE9, jmp_offset); 1642 } else { 1643 pr_err("jmp gen bug %llx\n", jmp_offset); 1644 return -EFAULT; 1645 } 1646 break; 1647 1648 case BPF_JMP | BPF_EXIT: 1649 if (seen_exit) { 1650 jmp_offset = ctx->cleanup_addr - addrs[i]; 1651 goto emit_jmp; 1652 } 1653 seen_exit = true; 1654 /* Update cleanup_addr */ 1655 ctx->cleanup_addr = proglen; 1656 pop_callee_regs(&prog, callee_regs_used); 1657 EMIT1(0xC9); /* leave */ 1658 EMIT1(0xC3); /* ret */ 1659 break; 1660 1661 default: 1662 /* 1663 * By design x86-64 JIT should support all BPF instructions. 1664 * This error will be seen if new instruction was added 1665 * to the interpreter, but not to the JIT, or if there is 1666 * junk in bpf_prog. 1667 */ 1668 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 1669 return -EINVAL; 1670 } 1671 1672 ilen = prog - temp; 1673 if (ilen > BPF_MAX_INSN_SIZE) { 1674 pr_err("bpf_jit: fatal insn size error\n"); 1675 return -EFAULT; 1676 } 1677 1678 if (image) { 1679 /* 1680 * When populating the image, assert that: 1681 * 1682 * i) We do not write beyond the allocated space, and 1683 * ii) addrs[i] did not change from the prior run, in order 1684 * to validate assumptions made for computing branch 1685 * displacements. 1686 */ 1687 if (unlikely(proglen + ilen > oldproglen || 1688 proglen + ilen != addrs[i])) { 1689 pr_err("bpf_jit: fatal error\n"); 1690 return -EFAULT; 1691 } 1692 memcpy(image + proglen, temp, ilen); 1693 } 1694 proglen += ilen; 1695 addrs[i] = proglen; 1696 prog = temp; 1697 } 1698 1699 if (image && excnt != bpf_prog->aux->num_exentries) { 1700 pr_err("extable is not populated\n"); 1701 return -EFAULT; 1702 } 1703 return proglen; 1704 } 1705 1706 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args, 1707 int stack_size) 1708 { 1709 int i; 1710 /* Store function arguments to stack. 1711 * For a function that accepts two pointers the sequence will be: 1712 * mov QWORD PTR [rbp-0x10],rdi 1713 * mov QWORD PTR [rbp-0x8],rsi 1714 */ 1715 for (i = 0; i < min(nr_args, 6); i++) 1716 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]), 1717 BPF_REG_FP, 1718 i == 5 ? X86_REG_R9 : BPF_REG_1 + i, 1719 -(stack_size - i * 8)); 1720 } 1721 1722 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args, 1723 int stack_size) 1724 { 1725 int i; 1726 1727 /* Restore function arguments from stack. 1728 * For a function that accepts two pointers the sequence will be: 1729 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 1730 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 1731 */ 1732 for (i = 0; i < min(nr_args, 6); i++) 1733 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]), 1734 i == 5 ? X86_REG_R9 : BPF_REG_1 + i, 1735 BPF_REG_FP, 1736 -(stack_size - i * 8)); 1737 } 1738 1739 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 1740 struct bpf_prog *p, int stack_size, bool mod_ret) 1741 { 1742 u8 *prog = *pprog; 1743 u8 *jmp_insn; 1744 1745 /* arg1: mov rdi, progs[i] */ 1746 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 1747 if (emit_call(&prog, 1748 p->aux->sleepable ? __bpf_prog_enter_sleepable : 1749 __bpf_prog_enter, prog)) 1750 return -EINVAL; 1751 /* remember prog start time returned by __bpf_prog_enter */ 1752 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 1753 1754 /* if (__bpf_prog_enter*(prog) == 0) 1755 * goto skip_exec_of_prog; 1756 */ 1757 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 1758 /* emit 2 nops that will be replaced with JE insn */ 1759 jmp_insn = prog; 1760 emit_nops(&prog, 2); 1761 1762 /* arg1: lea rdi, [rbp - stack_size] */ 1763 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 1764 /* arg2: progs[i]->insnsi for interpreter */ 1765 if (!p->jited) 1766 emit_mov_imm64(&prog, BPF_REG_2, 1767 (long) p->insnsi >> 32, 1768 (u32) (long) p->insnsi); 1769 /* call JITed bpf program or interpreter */ 1770 if (emit_call(&prog, p->bpf_func, prog)) 1771 return -EINVAL; 1772 1773 /* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 1774 * of the previous call which is then passed on the stack to 1775 * the next BPF program. 1776 */ 1777 if (mod_ret) 1778 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 1779 1780 /* replace 2 nops with JE insn, since jmp target is known */ 1781 jmp_insn[0] = X86_JE; 1782 jmp_insn[1] = prog - jmp_insn - 2; 1783 1784 /* arg1: mov rdi, progs[i] */ 1785 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 1786 /* arg2: mov rsi, rbx <- start time in nsec */ 1787 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 1788 if (emit_call(&prog, 1789 p->aux->sleepable ? __bpf_prog_exit_sleepable : 1790 __bpf_prog_exit, prog)) 1791 return -EINVAL; 1792 1793 *pprog = prog; 1794 return 0; 1795 } 1796 1797 static void emit_align(u8 **pprog, u32 align) 1798 { 1799 u8 *target, *prog = *pprog; 1800 1801 target = PTR_ALIGN(prog, align); 1802 if (target != prog) 1803 emit_nops(&prog, target - prog); 1804 1805 *pprog = prog; 1806 } 1807 1808 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 1809 { 1810 u8 *prog = *pprog; 1811 s64 offset; 1812 1813 offset = func - (ip + 2 + 4); 1814 if (!is_simm32(offset)) { 1815 pr_err("Target %p is out of range\n", func); 1816 return -EINVAL; 1817 } 1818 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 1819 *pprog = prog; 1820 return 0; 1821 } 1822 1823 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 1824 struct bpf_tramp_progs *tp, int stack_size) 1825 { 1826 int i; 1827 u8 *prog = *pprog; 1828 1829 for (i = 0; i < tp->nr_progs; i++) { 1830 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false)) 1831 return -EINVAL; 1832 } 1833 *pprog = prog; 1834 return 0; 1835 } 1836 1837 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 1838 struct bpf_tramp_progs *tp, int stack_size, 1839 u8 **branches) 1840 { 1841 u8 *prog = *pprog; 1842 int i; 1843 1844 /* The first fmod_ret program will receive a garbage return value. 1845 * Set this to 0 to avoid confusing the program. 1846 */ 1847 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 1848 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 1849 for (i = 0; i < tp->nr_progs; i++) { 1850 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true)) 1851 return -EINVAL; 1852 1853 /* mod_ret prog stored return value into [rbp - 8]. Emit: 1854 * if (*(u64 *)(rbp - 8) != 0) 1855 * goto do_fexit; 1856 */ 1857 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 1858 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 1859 1860 /* Save the location of the branch and Generate 6 nops 1861 * (4 bytes for an offset and 2 bytes for the jump) These nops 1862 * are replaced with a conditional jump once do_fexit (i.e. the 1863 * start of the fexit invocation) is finalized. 1864 */ 1865 branches[i] = prog; 1866 emit_nops(&prog, 4 + 2); 1867 } 1868 1869 *pprog = prog; 1870 return 0; 1871 } 1872 1873 /* Example: 1874 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 1875 * its 'struct btf_func_model' will be nr_args=2 1876 * The assembly code when eth_type_trans is executing after trampoline: 1877 * 1878 * push rbp 1879 * mov rbp, rsp 1880 * sub rsp, 16 // space for skb and dev 1881 * push rbx // temp regs to pass start time 1882 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 1883 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 1884 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1885 * mov rbx, rax // remember start time in bpf stats are enabled 1886 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 1887 * call addr_of_jited_FENTRY_prog 1888 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1889 * mov rsi, rbx // prog start time 1890 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1891 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 1892 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 1893 * pop rbx 1894 * leave 1895 * ret 1896 * 1897 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 1898 * replaced with 'call generated_bpf_trampoline'. When it returns 1899 * eth_type_trans will continue executing with original skb and dev pointers. 1900 * 1901 * The assembly code when eth_type_trans is called from trampoline: 1902 * 1903 * push rbp 1904 * mov rbp, rsp 1905 * sub rsp, 24 // space for skb, dev, return value 1906 * push rbx // temp regs to pass start time 1907 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 1908 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 1909 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1910 * mov rbx, rax // remember start time if bpf stats are enabled 1911 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 1912 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 1913 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1914 * mov rsi, rbx // prog start time 1915 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1916 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 1917 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 1918 * call eth_type_trans+5 // execute body of eth_type_trans 1919 * mov qword ptr [rbp - 8], rax // save return value 1920 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1921 * mov rbx, rax // remember start time in bpf stats are enabled 1922 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 1923 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 1924 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1925 * mov rsi, rbx // prog start time 1926 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1927 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 1928 * pop rbx 1929 * leave 1930 * add rsp, 8 // skip eth_type_trans's frame 1931 * ret // return to its caller 1932 */ 1933 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1934 const struct btf_func_model *m, u32 flags, 1935 struct bpf_tramp_progs *tprogs, 1936 void *orig_call) 1937 { 1938 int ret, i, nr_args = m->nr_args; 1939 int stack_size = nr_args * 8; 1940 struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY]; 1941 struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT]; 1942 struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN]; 1943 u8 **branches = NULL; 1944 u8 *prog; 1945 1946 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */ 1947 if (nr_args > 6) 1948 return -ENOTSUPP; 1949 1950 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && 1951 (flags & BPF_TRAMP_F_SKIP_FRAME)) 1952 return -EINVAL; 1953 1954 if (flags & BPF_TRAMP_F_CALL_ORIG) 1955 stack_size += 8; /* room for return value of orig_call */ 1956 1957 if (flags & BPF_TRAMP_F_SKIP_FRAME) 1958 /* skip patched call instruction and point orig_call to actual 1959 * body of the kernel function. 1960 */ 1961 orig_call += X86_PATCH_SIZE; 1962 1963 prog = image; 1964 1965 EMIT1(0x55); /* push rbp */ 1966 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 1967 EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */ 1968 EMIT1(0x53); /* push rbx */ 1969 1970 save_regs(m, &prog, nr_args, stack_size); 1971 1972 if (flags & BPF_TRAMP_F_CALL_ORIG) { 1973 /* arg1: mov rdi, im */ 1974 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 1975 if (emit_call(&prog, __bpf_tramp_enter, prog)) { 1976 ret = -EINVAL; 1977 goto cleanup; 1978 } 1979 } 1980 1981 if (fentry->nr_progs) 1982 if (invoke_bpf(m, &prog, fentry, stack_size)) 1983 return -EINVAL; 1984 1985 if (fmod_ret->nr_progs) { 1986 branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *), 1987 GFP_KERNEL); 1988 if (!branches) 1989 return -ENOMEM; 1990 1991 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size, 1992 branches)) { 1993 ret = -EINVAL; 1994 goto cleanup; 1995 } 1996 } 1997 1998 if (flags & BPF_TRAMP_F_CALL_ORIG) { 1999 restore_regs(m, &prog, nr_args, stack_size); 2000 2001 /* call original function */ 2002 if (emit_call(&prog, orig_call, prog)) { 2003 ret = -EINVAL; 2004 goto cleanup; 2005 } 2006 /* remember return value in a stack for bpf prog to access */ 2007 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2008 im->ip_after_call = prog; 2009 memcpy(prog, x86_nops[5], X86_PATCH_SIZE); 2010 prog += X86_PATCH_SIZE; 2011 } 2012 2013 if (fmod_ret->nr_progs) { 2014 /* From Intel 64 and IA-32 Architectures Optimization 2015 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2016 * Coding Rule 11: All branch targets should be 16-byte 2017 * aligned. 2018 */ 2019 emit_align(&prog, 16); 2020 /* Update the branches saved in invoke_bpf_mod_ret with the 2021 * aligned address of do_fexit. 2022 */ 2023 for (i = 0; i < fmod_ret->nr_progs; i++) 2024 emit_cond_near_jump(&branches[i], prog, branches[i], 2025 X86_JNE); 2026 } 2027 2028 if (fexit->nr_progs) 2029 if (invoke_bpf(m, &prog, fexit, stack_size)) { 2030 ret = -EINVAL; 2031 goto cleanup; 2032 } 2033 2034 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2035 restore_regs(m, &prog, nr_args, stack_size); 2036 2037 /* This needs to be done regardless. If there were fmod_ret programs, 2038 * the return value is only updated on the stack and still needs to be 2039 * restored to R0. 2040 */ 2041 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2042 im->ip_epilogue = prog; 2043 /* arg1: mov rdi, im */ 2044 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 2045 if (emit_call(&prog, __bpf_tramp_exit, prog)) { 2046 ret = -EINVAL; 2047 goto cleanup; 2048 } 2049 /* restore original return value back into RAX */ 2050 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 2051 } 2052 2053 EMIT1(0x5B); /* pop rbx */ 2054 EMIT1(0xC9); /* leave */ 2055 if (flags & BPF_TRAMP_F_SKIP_FRAME) 2056 /* skip our return address and return to parent */ 2057 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 2058 EMIT1(0xC3); /* ret */ 2059 /* Make sure the trampoline generation logic doesn't overflow */ 2060 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) { 2061 ret = -EFAULT; 2062 goto cleanup; 2063 } 2064 ret = prog - (u8 *)image; 2065 2066 cleanup: 2067 kfree(branches); 2068 return ret; 2069 } 2070 2071 static int emit_fallback_jump(u8 **pprog) 2072 { 2073 u8 *prog = *pprog; 2074 int err = 0; 2075 2076 #ifdef CONFIG_RETPOLINE 2077 /* Note that this assumes the the compiler uses external 2078 * thunks for indirect calls. Both clang and GCC use the same 2079 * naming convention for external thunks. 2080 */ 2081 err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog); 2082 #else 2083 EMIT2(0xFF, 0xE2); /* jmp rdx */ 2084 #endif 2085 *pprog = prog; 2086 return err; 2087 } 2088 2089 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs) 2090 { 2091 u8 *jg_reloc, *prog = *pprog; 2092 int pivot, err, jg_bytes = 1; 2093 s64 jg_offset; 2094 2095 if (a == b) { 2096 /* Leaf node of recursion, i.e. not a range of indices 2097 * anymore. 2098 */ 2099 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2100 if (!is_simm32(progs[a])) 2101 return -1; 2102 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 2103 progs[a]); 2104 err = emit_cond_near_jump(&prog, /* je func */ 2105 (void *)progs[a], prog, 2106 X86_JE); 2107 if (err) 2108 return err; 2109 2110 err = emit_fallback_jump(&prog); /* jmp thunk/indirect */ 2111 if (err) 2112 return err; 2113 2114 *pprog = prog; 2115 return 0; 2116 } 2117 2118 /* Not a leaf node, so we pivot, and recursively descend into 2119 * the lower and upper ranges. 2120 */ 2121 pivot = (b - a) / 2; 2122 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2123 if (!is_simm32(progs[a + pivot])) 2124 return -1; 2125 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 2126 2127 if (pivot > 2) { /* jg upper_part */ 2128 /* Require near jump. */ 2129 jg_bytes = 4; 2130 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 2131 } else { 2132 EMIT2(X86_JG, 0); 2133 } 2134 jg_reloc = prog; 2135 2136 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 2137 progs); 2138 if (err) 2139 return err; 2140 2141 /* From Intel 64 and IA-32 Architectures Optimization 2142 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2143 * Coding Rule 11: All branch targets should be 16-byte 2144 * aligned. 2145 */ 2146 emit_align(&prog, 16); 2147 jg_offset = prog - jg_reloc; 2148 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 2149 2150 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 2151 b, progs); 2152 if (err) 2153 return err; 2154 2155 *pprog = prog; 2156 return 0; 2157 } 2158 2159 static int cmp_ips(const void *a, const void *b) 2160 { 2161 const s64 *ipa = a; 2162 const s64 *ipb = b; 2163 2164 if (*ipa > *ipb) 2165 return 1; 2166 if (*ipa < *ipb) 2167 return -1; 2168 return 0; 2169 } 2170 2171 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs) 2172 { 2173 u8 *prog = image; 2174 2175 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 2176 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs); 2177 } 2178 2179 struct x64_jit_data { 2180 struct bpf_binary_header *header; 2181 int *addrs; 2182 u8 *image; 2183 int proglen; 2184 struct jit_context ctx; 2185 }; 2186 2187 #define MAX_PASSES 20 2188 #define PADDING_PASSES (MAX_PASSES - 5) 2189 2190 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2191 { 2192 struct bpf_binary_header *header = NULL; 2193 struct bpf_prog *tmp, *orig_prog = prog; 2194 struct x64_jit_data *jit_data; 2195 int proglen, oldproglen = 0; 2196 struct jit_context ctx = {}; 2197 bool tmp_blinded = false; 2198 bool extra_pass = false; 2199 bool padding = false; 2200 u8 *image = NULL; 2201 int *addrs; 2202 int pass; 2203 int i; 2204 2205 if (!prog->jit_requested) 2206 return orig_prog; 2207 2208 tmp = bpf_jit_blind_constants(prog); 2209 /* 2210 * If blinding was requested and we failed during blinding, 2211 * we must fall back to the interpreter. 2212 */ 2213 if (IS_ERR(tmp)) 2214 return orig_prog; 2215 if (tmp != prog) { 2216 tmp_blinded = true; 2217 prog = tmp; 2218 } 2219 2220 jit_data = prog->aux->jit_data; 2221 if (!jit_data) { 2222 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 2223 if (!jit_data) { 2224 prog = orig_prog; 2225 goto out; 2226 } 2227 prog->aux->jit_data = jit_data; 2228 } 2229 addrs = jit_data->addrs; 2230 if (addrs) { 2231 ctx = jit_data->ctx; 2232 oldproglen = jit_data->proglen; 2233 image = jit_data->image; 2234 header = jit_data->header; 2235 extra_pass = true; 2236 padding = true; 2237 goto skip_init_addrs; 2238 } 2239 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 2240 if (!addrs) { 2241 prog = orig_prog; 2242 goto out_addrs; 2243 } 2244 2245 /* 2246 * Before first pass, make a rough estimation of addrs[] 2247 * each BPF instruction is translated to less than 64 bytes 2248 */ 2249 for (proglen = 0, i = 0; i <= prog->len; i++) { 2250 proglen += 64; 2251 addrs[i] = proglen; 2252 } 2253 ctx.cleanup_addr = proglen; 2254 skip_init_addrs: 2255 2256 /* 2257 * JITed image shrinks with every pass and the loop iterates 2258 * until the image stops shrinking. Very large BPF programs 2259 * may converge on the last pass. In such case do one more 2260 * pass to emit the final image. 2261 */ 2262 for (pass = 0; pass < MAX_PASSES || image; pass++) { 2263 if (!padding && pass >= PADDING_PASSES) 2264 padding = true; 2265 proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding); 2266 if (proglen <= 0) { 2267 out_image: 2268 image = NULL; 2269 if (header) 2270 bpf_jit_binary_free(header); 2271 prog = orig_prog; 2272 goto out_addrs; 2273 } 2274 if (image) { 2275 if (proglen != oldproglen) { 2276 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 2277 proglen, oldproglen); 2278 goto out_image; 2279 } 2280 break; 2281 } 2282 if (proglen == oldproglen) { 2283 /* 2284 * The number of entries in extable is the number of BPF_LDX 2285 * insns that access kernel memory via "pointer to BTF type". 2286 * The verifier changed their opcode from LDX|MEM|size 2287 * to LDX|PROBE_MEM|size to make JITing easier. 2288 */ 2289 u32 align = __alignof__(struct exception_table_entry); 2290 u32 extable_size = prog->aux->num_exentries * 2291 sizeof(struct exception_table_entry); 2292 2293 /* allocate module memory for x86 insns and extable */ 2294 header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size, 2295 &image, align, jit_fill_hole); 2296 if (!header) { 2297 prog = orig_prog; 2298 goto out_addrs; 2299 } 2300 prog->aux->extable = (void *) image + roundup(proglen, align); 2301 } 2302 oldproglen = proglen; 2303 cond_resched(); 2304 } 2305 2306 if (bpf_jit_enable > 1) 2307 bpf_jit_dump(prog->len, proglen, pass + 1, image); 2308 2309 if (image) { 2310 if (!prog->is_func || extra_pass) { 2311 bpf_tail_call_direct_fixup(prog); 2312 bpf_jit_binary_lock_ro(header); 2313 } else { 2314 jit_data->addrs = addrs; 2315 jit_data->ctx = ctx; 2316 jit_data->proglen = proglen; 2317 jit_data->image = image; 2318 jit_data->header = header; 2319 } 2320 prog->bpf_func = (void *)image; 2321 prog->jited = 1; 2322 prog->jited_len = proglen; 2323 } else { 2324 prog = orig_prog; 2325 } 2326 2327 if (!image || !prog->is_func || extra_pass) { 2328 if (image) 2329 bpf_prog_fill_jited_linfo(prog, addrs + 1); 2330 out_addrs: 2331 kvfree(addrs); 2332 kfree(jit_data); 2333 prog->aux->jit_data = NULL; 2334 } 2335 out: 2336 if (tmp_blinded) 2337 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2338 tmp : orig_prog); 2339 return prog; 2340 } 2341 2342 bool bpf_jit_supports_kfunc_call(void) 2343 { 2344 return true; 2345 } 2346