1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * bpf_jit_comp.c: BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bpf.h> 12 #include <linux/memory.h> 13 #include <linux/sort.h> 14 #include <asm/extable.h> 15 #include <asm/set_memory.h> 16 #include <asm/nospec-branch.h> 17 #include <asm/text-patching.h> 18 #include <asm/asm-prototypes.h> 19 20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 21 { 22 if (len == 1) 23 *ptr = bytes; 24 else if (len == 2) 25 *(u16 *)ptr = bytes; 26 else { 27 *(u32 *)ptr = bytes; 28 barrier(); 29 } 30 return ptr + len; 31 } 32 33 #define EMIT(bytes, len) \ 34 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0) 35 36 #define EMIT1(b1) EMIT(b1, 1) 37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 40 41 #define EMIT1_off32(b1, off) \ 42 do { EMIT1(b1); EMIT(off, 4); } while (0) 43 #define EMIT2_off32(b1, b2, off) \ 44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 45 #define EMIT3_off32(b1, b2, b3, off) \ 46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 47 #define EMIT4_off32(b1, b2, b3, b4, off) \ 48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 49 50 static bool is_imm8(int value) 51 { 52 return value <= 127 && value >= -128; 53 } 54 55 static bool is_simm32(s64 value) 56 { 57 return value == (s64)(s32)value; 58 } 59 60 static bool is_uimm32(u64 value) 61 { 62 return value == (u64)(u32)value; 63 } 64 65 /* mov dst, src */ 66 #define EMIT_mov(DST, SRC) \ 67 do { \ 68 if (DST != SRC) \ 69 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 70 } while (0) 71 72 static int bpf_size_to_x86_bytes(int bpf_size) 73 { 74 if (bpf_size == BPF_W) 75 return 4; 76 else if (bpf_size == BPF_H) 77 return 2; 78 else if (bpf_size == BPF_B) 79 return 1; 80 else if (bpf_size == BPF_DW) 81 return 4; /* imm32 */ 82 else 83 return 0; 84 } 85 86 /* 87 * List of x86 cond jumps opcodes (. + s8) 88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 89 */ 90 #define X86_JB 0x72 91 #define X86_JAE 0x73 92 #define X86_JE 0x74 93 #define X86_JNE 0x75 94 #define X86_JBE 0x76 95 #define X86_JA 0x77 96 #define X86_JL 0x7C 97 #define X86_JGE 0x7D 98 #define X86_JLE 0x7E 99 #define X86_JG 0x7F 100 101 /* Pick a register outside of BPF range for JIT internal work */ 102 #define AUX_REG (MAX_BPF_JIT_REG + 1) 103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 104 105 /* 106 * The following table maps BPF registers to x86-64 registers. 107 * 108 * x86-64 register R12 is unused, since if used as base address 109 * register in load/store instructions, it always needs an 110 * extra byte of encoding and is callee saved. 111 * 112 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 113 * trampoline. x86-64 register R10 is used for blinding (if enabled). 114 */ 115 static const int reg2hex[] = { 116 [BPF_REG_0] = 0, /* RAX */ 117 [BPF_REG_1] = 7, /* RDI */ 118 [BPF_REG_2] = 6, /* RSI */ 119 [BPF_REG_3] = 2, /* RDX */ 120 [BPF_REG_4] = 1, /* RCX */ 121 [BPF_REG_5] = 0, /* R8 */ 122 [BPF_REG_6] = 3, /* RBX callee saved */ 123 [BPF_REG_7] = 5, /* R13 callee saved */ 124 [BPF_REG_8] = 6, /* R14 callee saved */ 125 [BPF_REG_9] = 7, /* R15 callee saved */ 126 [BPF_REG_FP] = 5, /* RBP readonly */ 127 [BPF_REG_AX] = 2, /* R10 temp register */ 128 [AUX_REG] = 3, /* R11 temp register */ 129 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 130 }; 131 132 static const int reg2pt_regs[] = { 133 [BPF_REG_0] = offsetof(struct pt_regs, ax), 134 [BPF_REG_1] = offsetof(struct pt_regs, di), 135 [BPF_REG_2] = offsetof(struct pt_regs, si), 136 [BPF_REG_3] = offsetof(struct pt_regs, dx), 137 [BPF_REG_4] = offsetof(struct pt_regs, cx), 138 [BPF_REG_5] = offsetof(struct pt_regs, r8), 139 [BPF_REG_6] = offsetof(struct pt_regs, bx), 140 [BPF_REG_7] = offsetof(struct pt_regs, r13), 141 [BPF_REG_8] = offsetof(struct pt_regs, r14), 142 [BPF_REG_9] = offsetof(struct pt_regs, r15), 143 }; 144 145 /* 146 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 147 * which need extra byte of encoding. 148 * rax,rcx,...,rbp have simpler encoding 149 */ 150 static bool is_ereg(u32 reg) 151 { 152 return (1 << reg) & (BIT(BPF_REG_5) | 153 BIT(AUX_REG) | 154 BIT(BPF_REG_7) | 155 BIT(BPF_REG_8) | 156 BIT(BPF_REG_9) | 157 BIT(X86_REG_R9) | 158 BIT(BPF_REG_AX)); 159 } 160 161 /* 162 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 163 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 164 * of encoding. al,cl,dl,bl have simpler encoding. 165 */ 166 static bool is_ereg_8l(u32 reg) 167 { 168 return is_ereg(reg) || 169 (1 << reg) & (BIT(BPF_REG_1) | 170 BIT(BPF_REG_2) | 171 BIT(BPF_REG_FP)); 172 } 173 174 static bool is_axreg(u32 reg) 175 { 176 return reg == BPF_REG_0; 177 } 178 179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 180 static u8 add_1mod(u8 byte, u32 reg) 181 { 182 if (is_ereg(reg)) 183 byte |= 1; 184 return byte; 185 } 186 187 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 188 { 189 if (is_ereg(r1)) 190 byte |= 1; 191 if (is_ereg(r2)) 192 byte |= 4; 193 return byte; 194 } 195 196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 197 static u8 add_1reg(u8 byte, u32 dst_reg) 198 { 199 return byte + reg2hex[dst_reg]; 200 } 201 202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 204 { 205 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 206 } 207 208 /* Some 1-byte opcodes for binary ALU operations */ 209 static u8 simple_alu_opcodes[] = { 210 [BPF_ADD] = 0x01, 211 [BPF_SUB] = 0x29, 212 [BPF_AND] = 0x21, 213 [BPF_OR] = 0x09, 214 [BPF_XOR] = 0x31, 215 [BPF_LSH] = 0xE0, 216 [BPF_RSH] = 0xE8, 217 [BPF_ARSH] = 0xF8, 218 }; 219 220 static void jit_fill_hole(void *area, unsigned int size) 221 { 222 /* Fill whole space with INT3 instructions */ 223 memset(area, 0xcc, size); 224 } 225 226 struct jit_context { 227 int cleanup_addr; /* Epilogue code offset */ 228 }; 229 230 /* Maximum number of bytes emitted while JITing one eBPF insn */ 231 #define BPF_MAX_INSN_SIZE 128 232 #define BPF_INSN_SAFETY 64 233 234 /* Number of bytes emit_patch() needs to generate instructions */ 235 #define X86_PATCH_SIZE 5 236 /* Number of bytes that will be skipped on tailcall */ 237 #define X86_TAIL_CALL_OFFSET 11 238 239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 240 { 241 u8 *prog = *pprog; 242 int cnt = 0; 243 244 if (callee_regs_used[0]) 245 EMIT1(0x53); /* push rbx */ 246 if (callee_regs_used[1]) 247 EMIT2(0x41, 0x55); /* push r13 */ 248 if (callee_regs_used[2]) 249 EMIT2(0x41, 0x56); /* push r14 */ 250 if (callee_regs_used[3]) 251 EMIT2(0x41, 0x57); /* push r15 */ 252 *pprog = prog; 253 } 254 255 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 256 { 257 u8 *prog = *pprog; 258 int cnt = 0; 259 260 if (callee_regs_used[3]) 261 EMIT2(0x41, 0x5F); /* pop r15 */ 262 if (callee_regs_used[2]) 263 EMIT2(0x41, 0x5E); /* pop r14 */ 264 if (callee_regs_used[1]) 265 EMIT2(0x41, 0x5D); /* pop r13 */ 266 if (callee_regs_used[0]) 267 EMIT1(0x5B); /* pop rbx */ 268 *pprog = prog; 269 } 270 271 /* 272 * Emit x86-64 prologue code for BPF program. 273 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 274 * while jumping to another program 275 */ 276 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, 277 bool tail_call_reachable, bool is_subprog) 278 { 279 u8 *prog = *pprog; 280 int cnt = X86_PATCH_SIZE; 281 282 /* BPF trampoline can be made to work without these nops, 283 * but let's waste 5 bytes for now and optimize later 284 */ 285 memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt); 286 prog += cnt; 287 if (!ebpf_from_cbpf) { 288 if (tail_call_reachable && !is_subprog) 289 EMIT2(0x31, 0xC0); /* xor eax, eax */ 290 else 291 EMIT2(0x66, 0x90); /* nop2 */ 292 } 293 EMIT1(0x55); /* push rbp */ 294 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 295 /* sub rsp, rounded_stack_depth */ 296 if (stack_depth) 297 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 298 if (tail_call_reachable) 299 EMIT1(0x50); /* push rax */ 300 *pprog = prog; 301 } 302 303 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 304 { 305 u8 *prog = *pprog; 306 int cnt = 0; 307 s64 offset; 308 309 offset = func - (ip + X86_PATCH_SIZE); 310 if (!is_simm32(offset)) { 311 pr_err("Target call %p is out of range\n", func); 312 return -ERANGE; 313 } 314 EMIT1_off32(opcode, offset); 315 *pprog = prog; 316 return 0; 317 } 318 319 static int emit_call(u8 **pprog, void *func, void *ip) 320 { 321 return emit_patch(pprog, func, ip, 0xE8); 322 } 323 324 static int emit_jump(u8 **pprog, void *func, void *ip) 325 { 326 return emit_patch(pprog, func, ip, 0xE9); 327 } 328 329 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 330 void *old_addr, void *new_addr, 331 const bool text_live) 332 { 333 const u8 *nop_insn = ideal_nops[NOP_ATOMIC5]; 334 u8 old_insn[X86_PATCH_SIZE]; 335 u8 new_insn[X86_PATCH_SIZE]; 336 u8 *prog; 337 int ret; 338 339 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 340 if (old_addr) { 341 prog = old_insn; 342 ret = t == BPF_MOD_CALL ? 343 emit_call(&prog, old_addr, ip) : 344 emit_jump(&prog, old_addr, ip); 345 if (ret) 346 return ret; 347 } 348 349 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 350 if (new_addr) { 351 prog = new_insn; 352 ret = t == BPF_MOD_CALL ? 353 emit_call(&prog, new_addr, ip) : 354 emit_jump(&prog, new_addr, ip); 355 if (ret) 356 return ret; 357 } 358 359 ret = -EBUSY; 360 mutex_lock(&text_mutex); 361 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 362 goto out; 363 ret = 1; 364 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 365 if (text_live) 366 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); 367 else 368 memcpy(ip, new_insn, X86_PATCH_SIZE); 369 ret = 0; 370 } 371 out: 372 mutex_unlock(&text_mutex); 373 return ret; 374 } 375 376 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 377 void *old_addr, void *new_addr) 378 { 379 if (!is_kernel_text((long)ip) && 380 !is_bpf_text_address((long)ip)) 381 /* BPF poking in modules is not supported */ 382 return -EINVAL; 383 384 return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true); 385 } 386 387 static int get_pop_bytes(bool *callee_regs_used) 388 { 389 int bytes = 0; 390 391 if (callee_regs_used[3]) 392 bytes += 2; 393 if (callee_regs_used[2]) 394 bytes += 2; 395 if (callee_regs_used[1]) 396 bytes += 2; 397 if (callee_regs_used[0]) 398 bytes += 1; 399 400 return bytes; 401 } 402 403 /* 404 * Generate the following code: 405 * 406 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 407 * if (index >= array->map.max_entries) 408 * goto out; 409 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) 410 * goto out; 411 * prog = array->ptrs[index]; 412 * if (prog == NULL) 413 * goto out; 414 * goto *(prog->bpf_func + prologue_size); 415 * out: 416 */ 417 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used, 418 u32 stack_depth) 419 { 420 int tcc_off = -4 - round_up(stack_depth, 8); 421 u8 *prog = *pprog; 422 int pop_bytes = 0; 423 int off1 = 42; 424 int off2 = 31; 425 int off3 = 9; 426 int cnt = 0; 427 428 /* count the additional bytes used for popping callee regs from stack 429 * that need to be taken into account for each of the offsets that 430 * are used for bailing out of the tail call 431 */ 432 pop_bytes = get_pop_bytes(callee_regs_used); 433 off1 += pop_bytes; 434 off2 += pop_bytes; 435 off3 += pop_bytes; 436 437 if (stack_depth) { 438 off1 += 7; 439 off2 += 7; 440 off3 += 7; 441 } 442 443 /* 444 * rdi - pointer to ctx 445 * rsi - pointer to bpf_array 446 * rdx - index in bpf_array 447 */ 448 449 /* 450 * if (index >= array->map.max_entries) 451 * goto out; 452 */ 453 EMIT2(0x89, 0xD2); /* mov edx, edx */ 454 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 455 offsetof(struct bpf_array, map.max_entries)); 456 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */ 457 EMIT2(X86_JBE, OFFSET1); /* jbe out */ 458 459 /* 460 * if (tail_call_cnt > MAX_TAIL_CALL_CNT) 461 * goto out; 462 */ 463 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 464 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 465 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE) 466 EMIT2(X86_JA, OFFSET2); /* ja out */ 467 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 468 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 469 470 /* prog = array->ptrs[index]; */ 471 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 472 offsetof(struct bpf_array, ptrs)); 473 474 /* 475 * if (prog == NULL) 476 * goto out; 477 */ 478 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 479 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE) 480 EMIT2(X86_JE, OFFSET3); /* je out */ 481 482 *pprog = prog; 483 pop_callee_regs(pprog, callee_regs_used); 484 prog = *pprog; 485 486 EMIT1(0x58); /* pop rax */ 487 if (stack_depth) 488 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 489 round_up(stack_depth, 8)); 490 491 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 492 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 493 offsetof(struct bpf_prog, bpf_func)); 494 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 495 X86_TAIL_CALL_OFFSET); 496 /* 497 * Now we're ready to jump into next BPF program 498 * rdi == ctx (1st arg) 499 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 500 */ 501 RETPOLINE_RCX_BPF_JIT(); 502 503 /* out: */ 504 *pprog = prog; 505 } 506 507 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke, 508 u8 **pprog, int addr, u8 *image, 509 bool *callee_regs_used, u32 stack_depth) 510 { 511 int tcc_off = -4 - round_up(stack_depth, 8); 512 u8 *prog = *pprog; 513 int pop_bytes = 0; 514 int off1 = 20; 515 int poke_off; 516 int cnt = 0; 517 518 /* count the additional bytes used for popping callee regs to stack 519 * that need to be taken into account for jump offset that is used for 520 * bailing out from of the tail call when limit is reached 521 */ 522 pop_bytes = get_pop_bytes(callee_regs_used); 523 off1 += pop_bytes; 524 525 /* 526 * total bytes for: 527 * - nop5/ jmpq $off 528 * - pop callee regs 529 * - sub rsp, $val if depth > 0 530 * - pop rax 531 */ 532 poke_off = X86_PATCH_SIZE + pop_bytes + 1; 533 if (stack_depth) { 534 poke_off += 7; 535 off1 += 7; 536 } 537 538 /* 539 * if (tail_call_cnt > MAX_TAIL_CALL_CNT) 540 * goto out; 541 */ 542 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ 543 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ 544 EMIT2(X86_JA, off1); /* ja out */ 545 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ 546 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ 547 548 poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE); 549 poke->adj_off = X86_TAIL_CALL_OFFSET; 550 poke->tailcall_target = image + (addr - X86_PATCH_SIZE); 551 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 552 553 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 554 poke->tailcall_bypass); 555 556 *pprog = prog; 557 pop_callee_regs(pprog, callee_regs_used); 558 prog = *pprog; 559 EMIT1(0x58); /* pop rax */ 560 if (stack_depth) 561 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 562 563 memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE); 564 prog += X86_PATCH_SIZE; 565 /* out: */ 566 567 *pprog = prog; 568 } 569 570 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 571 { 572 struct bpf_jit_poke_descriptor *poke; 573 struct bpf_array *array; 574 struct bpf_prog *target; 575 int i, ret; 576 577 for (i = 0; i < prog->aux->size_poke_tab; i++) { 578 poke = &prog->aux->poke_tab[i]; 579 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 580 581 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 582 continue; 583 584 array = container_of(poke->tail_call.map, struct bpf_array, map); 585 mutex_lock(&array->aux->poke_mutex); 586 target = array->ptrs[poke->tail_call.key]; 587 if (target) { 588 /* Plain memcpy is used when image is not live yet 589 * and still not locked as read-only. Once poke 590 * location is active (poke->tailcall_target_stable), 591 * any parallel bpf_arch_text_poke() might occur 592 * still on the read-write image until we finally 593 * locked it as read-only. Both modifications on 594 * the given image are under text_mutex to avoid 595 * interference. 596 */ 597 ret = __bpf_arch_text_poke(poke->tailcall_target, 598 BPF_MOD_JUMP, NULL, 599 (u8 *)target->bpf_func + 600 poke->adj_off, false); 601 BUG_ON(ret < 0); 602 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 603 BPF_MOD_JUMP, 604 (u8 *)poke->tailcall_target + 605 X86_PATCH_SIZE, NULL, false); 606 BUG_ON(ret < 0); 607 } 608 WRITE_ONCE(poke->tailcall_target_stable, true); 609 mutex_unlock(&array->aux->poke_mutex); 610 } 611 } 612 613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 614 u32 dst_reg, const u32 imm32) 615 { 616 u8 *prog = *pprog; 617 u8 b1, b2, b3; 618 int cnt = 0; 619 620 /* 621 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 622 * (which zero-extends imm32) to save 2 bytes. 623 */ 624 if (sign_propagate && (s32)imm32 < 0) { 625 /* 'mov %rax, imm32' sign extends imm32 */ 626 b1 = add_1mod(0x48, dst_reg); 627 b2 = 0xC7; 628 b3 = 0xC0; 629 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 630 goto done; 631 } 632 633 /* 634 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 635 * to save 3 bytes. 636 */ 637 if (imm32 == 0) { 638 if (is_ereg(dst_reg)) 639 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 640 b2 = 0x31; /* xor */ 641 b3 = 0xC0; 642 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 643 goto done; 644 } 645 646 /* mov %eax, imm32 */ 647 if (is_ereg(dst_reg)) 648 EMIT1(add_1mod(0x40, dst_reg)); 649 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 650 done: 651 *pprog = prog; 652 } 653 654 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 655 const u32 imm32_hi, const u32 imm32_lo) 656 { 657 u8 *prog = *pprog; 658 int cnt = 0; 659 660 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) { 661 /* 662 * For emitting plain u32, where sign bit must not be 663 * propagated LLVM tends to load imm64 over mov32 664 * directly, so save couple of bytes by just doing 665 * 'mov %eax, imm32' instead. 666 */ 667 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 668 } else { 669 /* movabsq %rax, imm64 */ 670 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 671 EMIT(imm32_lo, 4); 672 EMIT(imm32_hi, 4); 673 } 674 675 *pprog = prog; 676 } 677 678 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 679 { 680 u8 *prog = *pprog; 681 int cnt = 0; 682 683 if (is64) { 684 /* mov dst, src */ 685 EMIT_mov(dst_reg, src_reg); 686 } else { 687 /* mov32 dst, src */ 688 if (is_ereg(dst_reg) || is_ereg(src_reg)) 689 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 690 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 691 } 692 693 *pprog = prog; 694 } 695 696 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 697 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 698 { 699 u8 *prog = *pprog; 700 int cnt = 0; 701 702 if (is_imm8(off)) { 703 /* 1-byte signed displacement. 704 * 705 * If off == 0 we could skip this and save one extra byte, but 706 * special case of x86 R13 which always needs an offset is not 707 * worth the hassle 708 */ 709 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 710 } else { 711 /* 4-byte signed displacement */ 712 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 713 } 714 *pprog = prog; 715 } 716 717 /* 718 * Emit a REX byte if it will be necessary to address these registers 719 */ 720 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 721 { 722 u8 *prog = *pprog; 723 int cnt = 0; 724 725 if (is64) 726 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 727 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 728 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 729 *pprog = prog; 730 } 731 732 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 733 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 734 { 735 u8 *prog = *pprog; 736 int cnt = 0; 737 738 switch (size) { 739 case BPF_B: 740 /* Emit 'movzx rax, byte ptr [rax + off]' */ 741 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 742 break; 743 case BPF_H: 744 /* Emit 'movzx rax, word ptr [rax + off]' */ 745 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 746 break; 747 case BPF_W: 748 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 749 if (is_ereg(dst_reg) || is_ereg(src_reg)) 750 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 751 else 752 EMIT1(0x8B); 753 break; 754 case BPF_DW: 755 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 756 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 757 break; 758 } 759 emit_insn_suffix(&prog, src_reg, dst_reg, off); 760 *pprog = prog; 761 } 762 763 /* STX: *(u8*)(dst_reg + off) = src_reg */ 764 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 765 { 766 u8 *prog = *pprog; 767 int cnt = 0; 768 769 switch (size) { 770 case BPF_B: 771 /* Emit 'mov byte ptr [rax + off], al' */ 772 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 773 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 774 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 775 else 776 EMIT1(0x88); 777 break; 778 case BPF_H: 779 if (is_ereg(dst_reg) || is_ereg(src_reg)) 780 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 781 else 782 EMIT2(0x66, 0x89); 783 break; 784 case BPF_W: 785 if (is_ereg(dst_reg) || is_ereg(src_reg)) 786 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 787 else 788 EMIT1(0x89); 789 break; 790 case BPF_DW: 791 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 792 break; 793 } 794 emit_insn_suffix(&prog, dst_reg, src_reg, off); 795 *pprog = prog; 796 } 797 798 static int emit_atomic(u8 **pprog, u8 atomic_op, 799 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 800 { 801 u8 *prog = *pprog; 802 int cnt = 0; 803 804 EMIT1(0xF0); /* lock prefix */ 805 806 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 807 808 /* emit opcode */ 809 switch (atomic_op) { 810 case BPF_ADD: 811 case BPF_SUB: 812 case BPF_AND: 813 case BPF_OR: 814 case BPF_XOR: 815 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 816 EMIT1(simple_alu_opcodes[atomic_op]); 817 break; 818 case BPF_ADD | BPF_FETCH: 819 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 820 EMIT2(0x0F, 0xC1); 821 break; 822 case BPF_XCHG: 823 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 824 EMIT1(0x87); 825 break; 826 case BPF_CMPXCHG: 827 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 828 EMIT2(0x0F, 0xB1); 829 break; 830 default: 831 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 832 return -EFAULT; 833 } 834 835 emit_insn_suffix(&prog, dst_reg, src_reg, off); 836 837 *pprog = prog; 838 return 0; 839 } 840 841 static bool ex_handler_bpf(const struct exception_table_entry *x, 842 struct pt_regs *regs, int trapnr, 843 unsigned long error_code, unsigned long fault_addr) 844 { 845 u32 reg = x->fixup >> 8; 846 847 /* jump over faulting load and clear dest register */ 848 *(unsigned long *)((void *)regs + reg) = 0; 849 regs->ip += x->fixup & 0xff; 850 return true; 851 } 852 853 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 854 bool *regs_used, bool *tail_call_seen) 855 { 856 int i; 857 858 for (i = 1; i <= insn_cnt; i++, insn++) { 859 if (insn->code == (BPF_JMP | BPF_TAIL_CALL)) 860 *tail_call_seen = true; 861 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 862 regs_used[0] = true; 863 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 864 regs_used[1] = true; 865 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 866 regs_used[2] = true; 867 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 868 regs_used[3] = true; 869 } 870 } 871 872 static int emit_nops(u8 **pprog, int len) 873 { 874 u8 *prog = *pprog; 875 int i, noplen, cnt = 0; 876 877 while (len > 0) { 878 noplen = len; 879 880 if (noplen > ASM_NOP_MAX) 881 noplen = ASM_NOP_MAX; 882 883 for (i = 0; i < noplen; i++) 884 EMIT1(ideal_nops[noplen][i]); 885 len -= noplen; 886 } 887 888 *pprog = prog; 889 890 return cnt; 891 } 892 893 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 894 895 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, 896 int oldproglen, struct jit_context *ctx, bool jmp_padding) 897 { 898 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 899 struct bpf_insn *insn = bpf_prog->insnsi; 900 bool callee_regs_used[4] = {}; 901 int insn_cnt = bpf_prog->len; 902 bool tail_call_seen = false; 903 bool seen_exit = false; 904 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 905 int i, cnt = 0, excnt = 0; 906 int ilen, proglen = 0; 907 u8 *prog = temp; 908 int err; 909 910 detect_reg_usage(insn, insn_cnt, callee_regs_used, 911 &tail_call_seen); 912 913 /* tail call's presence in current prog implies it is reachable */ 914 tail_call_reachable |= tail_call_seen; 915 916 emit_prologue(&prog, bpf_prog->aux->stack_depth, 917 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 918 bpf_prog->aux->func_idx != 0); 919 push_callee_regs(&prog, callee_regs_used); 920 921 ilen = prog - temp; 922 if (image) 923 memcpy(image + proglen, temp, ilen); 924 proglen += ilen; 925 addrs[0] = proglen; 926 prog = temp; 927 928 for (i = 1; i <= insn_cnt; i++, insn++) { 929 const s32 imm32 = insn->imm; 930 u32 dst_reg = insn->dst_reg; 931 u32 src_reg = insn->src_reg; 932 u8 b2 = 0, b3 = 0; 933 u8 *start_of_ldx; 934 s64 jmp_offset; 935 u8 jmp_cond; 936 u8 *func; 937 int nops; 938 939 switch (insn->code) { 940 /* ALU */ 941 case BPF_ALU | BPF_ADD | BPF_X: 942 case BPF_ALU | BPF_SUB | BPF_X: 943 case BPF_ALU | BPF_AND | BPF_X: 944 case BPF_ALU | BPF_OR | BPF_X: 945 case BPF_ALU | BPF_XOR | BPF_X: 946 case BPF_ALU64 | BPF_ADD | BPF_X: 947 case BPF_ALU64 | BPF_SUB | BPF_X: 948 case BPF_ALU64 | BPF_AND | BPF_X: 949 case BPF_ALU64 | BPF_OR | BPF_X: 950 case BPF_ALU64 | BPF_XOR | BPF_X: 951 maybe_emit_mod(&prog, dst_reg, src_reg, 952 BPF_CLASS(insn->code) == BPF_ALU64); 953 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 954 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 955 break; 956 957 case BPF_ALU64 | BPF_MOV | BPF_X: 958 case BPF_ALU | BPF_MOV | BPF_X: 959 emit_mov_reg(&prog, 960 BPF_CLASS(insn->code) == BPF_ALU64, 961 dst_reg, src_reg); 962 break; 963 964 /* neg dst */ 965 case BPF_ALU | BPF_NEG: 966 case BPF_ALU64 | BPF_NEG: 967 if (BPF_CLASS(insn->code) == BPF_ALU64) 968 EMIT1(add_1mod(0x48, dst_reg)); 969 else if (is_ereg(dst_reg)) 970 EMIT1(add_1mod(0x40, dst_reg)); 971 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 972 break; 973 974 case BPF_ALU | BPF_ADD | BPF_K: 975 case BPF_ALU | BPF_SUB | BPF_K: 976 case BPF_ALU | BPF_AND | BPF_K: 977 case BPF_ALU | BPF_OR | BPF_K: 978 case BPF_ALU | BPF_XOR | BPF_K: 979 case BPF_ALU64 | BPF_ADD | BPF_K: 980 case BPF_ALU64 | BPF_SUB | BPF_K: 981 case BPF_ALU64 | BPF_AND | BPF_K: 982 case BPF_ALU64 | BPF_OR | BPF_K: 983 case BPF_ALU64 | BPF_XOR | BPF_K: 984 if (BPF_CLASS(insn->code) == BPF_ALU64) 985 EMIT1(add_1mod(0x48, dst_reg)); 986 else if (is_ereg(dst_reg)) 987 EMIT1(add_1mod(0x40, dst_reg)); 988 989 /* 990 * b3 holds 'normal' opcode, b2 short form only valid 991 * in case dst is eax/rax. 992 */ 993 switch (BPF_OP(insn->code)) { 994 case BPF_ADD: 995 b3 = 0xC0; 996 b2 = 0x05; 997 break; 998 case BPF_SUB: 999 b3 = 0xE8; 1000 b2 = 0x2D; 1001 break; 1002 case BPF_AND: 1003 b3 = 0xE0; 1004 b2 = 0x25; 1005 break; 1006 case BPF_OR: 1007 b3 = 0xC8; 1008 b2 = 0x0D; 1009 break; 1010 case BPF_XOR: 1011 b3 = 0xF0; 1012 b2 = 0x35; 1013 break; 1014 } 1015 1016 if (is_imm8(imm32)) 1017 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1018 else if (is_axreg(dst_reg)) 1019 EMIT1_off32(b2, imm32); 1020 else 1021 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1022 break; 1023 1024 case BPF_ALU64 | BPF_MOV | BPF_K: 1025 case BPF_ALU | BPF_MOV | BPF_K: 1026 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1027 dst_reg, imm32); 1028 break; 1029 1030 case BPF_LD | BPF_IMM | BPF_DW: 1031 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1032 insn++; 1033 i++; 1034 break; 1035 1036 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1037 case BPF_ALU | BPF_MOD | BPF_X: 1038 case BPF_ALU | BPF_DIV | BPF_X: 1039 case BPF_ALU | BPF_MOD | BPF_K: 1040 case BPF_ALU | BPF_DIV | BPF_K: 1041 case BPF_ALU64 | BPF_MOD | BPF_X: 1042 case BPF_ALU64 | BPF_DIV | BPF_X: 1043 case BPF_ALU64 | BPF_MOD | BPF_K: 1044 case BPF_ALU64 | BPF_DIV | BPF_K: 1045 EMIT1(0x50); /* push rax */ 1046 EMIT1(0x52); /* push rdx */ 1047 1048 if (BPF_SRC(insn->code) == BPF_X) 1049 /* mov r11, src_reg */ 1050 EMIT_mov(AUX_REG, src_reg); 1051 else 1052 /* mov r11, imm32 */ 1053 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1054 1055 /* mov rax, dst_reg */ 1056 EMIT_mov(BPF_REG_0, dst_reg); 1057 1058 /* 1059 * xor edx, edx 1060 * equivalent to 'xor rdx, rdx', but one byte less 1061 */ 1062 EMIT2(0x31, 0xd2); 1063 1064 if (BPF_CLASS(insn->code) == BPF_ALU64) 1065 /* div r11 */ 1066 EMIT3(0x49, 0xF7, 0xF3); 1067 else 1068 /* div r11d */ 1069 EMIT3(0x41, 0xF7, 0xF3); 1070 1071 if (BPF_OP(insn->code) == BPF_MOD) 1072 /* mov r11, rdx */ 1073 EMIT3(0x49, 0x89, 0xD3); 1074 else 1075 /* mov r11, rax */ 1076 EMIT3(0x49, 0x89, 0xC3); 1077 1078 EMIT1(0x5A); /* pop rdx */ 1079 EMIT1(0x58); /* pop rax */ 1080 1081 /* mov dst_reg, r11 */ 1082 EMIT_mov(dst_reg, AUX_REG); 1083 break; 1084 1085 case BPF_ALU | BPF_MUL | BPF_K: 1086 case BPF_ALU | BPF_MUL | BPF_X: 1087 case BPF_ALU64 | BPF_MUL | BPF_K: 1088 case BPF_ALU64 | BPF_MUL | BPF_X: 1089 { 1090 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1091 1092 if (dst_reg != BPF_REG_0) 1093 EMIT1(0x50); /* push rax */ 1094 if (dst_reg != BPF_REG_3) 1095 EMIT1(0x52); /* push rdx */ 1096 1097 /* mov r11, dst_reg */ 1098 EMIT_mov(AUX_REG, dst_reg); 1099 1100 if (BPF_SRC(insn->code) == BPF_X) 1101 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg); 1102 else 1103 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32); 1104 1105 if (is64) 1106 EMIT1(add_1mod(0x48, AUX_REG)); 1107 else if (is_ereg(AUX_REG)) 1108 EMIT1(add_1mod(0x40, AUX_REG)); 1109 /* mul(q) r11 */ 1110 EMIT2(0xF7, add_1reg(0xE0, AUX_REG)); 1111 1112 if (dst_reg != BPF_REG_3) 1113 EMIT1(0x5A); /* pop rdx */ 1114 if (dst_reg != BPF_REG_0) { 1115 /* mov dst_reg, rax */ 1116 EMIT_mov(dst_reg, BPF_REG_0); 1117 EMIT1(0x58); /* pop rax */ 1118 } 1119 break; 1120 } 1121 /* Shifts */ 1122 case BPF_ALU | BPF_LSH | BPF_K: 1123 case BPF_ALU | BPF_RSH | BPF_K: 1124 case BPF_ALU | BPF_ARSH | BPF_K: 1125 case BPF_ALU64 | BPF_LSH | BPF_K: 1126 case BPF_ALU64 | BPF_RSH | BPF_K: 1127 case BPF_ALU64 | BPF_ARSH | BPF_K: 1128 if (BPF_CLASS(insn->code) == BPF_ALU64) 1129 EMIT1(add_1mod(0x48, dst_reg)); 1130 else if (is_ereg(dst_reg)) 1131 EMIT1(add_1mod(0x40, dst_reg)); 1132 1133 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1134 if (imm32 == 1) 1135 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1136 else 1137 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1138 break; 1139 1140 case BPF_ALU | BPF_LSH | BPF_X: 1141 case BPF_ALU | BPF_RSH | BPF_X: 1142 case BPF_ALU | BPF_ARSH | BPF_X: 1143 case BPF_ALU64 | BPF_LSH | BPF_X: 1144 case BPF_ALU64 | BPF_RSH | BPF_X: 1145 case BPF_ALU64 | BPF_ARSH | BPF_X: 1146 1147 /* Check for bad case when dst_reg == rcx */ 1148 if (dst_reg == BPF_REG_4) { 1149 /* mov r11, dst_reg */ 1150 EMIT_mov(AUX_REG, dst_reg); 1151 dst_reg = AUX_REG; 1152 } 1153 1154 if (src_reg != BPF_REG_4) { /* common case */ 1155 EMIT1(0x51); /* push rcx */ 1156 1157 /* mov rcx, src_reg */ 1158 EMIT_mov(BPF_REG_4, src_reg); 1159 } 1160 1161 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1162 if (BPF_CLASS(insn->code) == BPF_ALU64) 1163 EMIT1(add_1mod(0x48, dst_reg)); 1164 else if (is_ereg(dst_reg)) 1165 EMIT1(add_1mod(0x40, dst_reg)); 1166 1167 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1168 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1169 1170 if (src_reg != BPF_REG_4) 1171 EMIT1(0x59); /* pop rcx */ 1172 1173 if (insn->dst_reg == BPF_REG_4) 1174 /* mov dst_reg, r11 */ 1175 EMIT_mov(insn->dst_reg, AUX_REG); 1176 break; 1177 1178 case BPF_ALU | BPF_END | BPF_FROM_BE: 1179 switch (imm32) { 1180 case 16: 1181 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 1182 EMIT1(0x66); 1183 if (is_ereg(dst_reg)) 1184 EMIT1(0x41); 1185 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 1186 1187 /* Emit 'movzwl eax, ax' */ 1188 if (is_ereg(dst_reg)) 1189 EMIT3(0x45, 0x0F, 0xB7); 1190 else 1191 EMIT2(0x0F, 0xB7); 1192 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1193 break; 1194 case 32: 1195 /* Emit 'bswap eax' to swap lower 4 bytes */ 1196 if (is_ereg(dst_reg)) 1197 EMIT2(0x41, 0x0F); 1198 else 1199 EMIT1(0x0F); 1200 EMIT1(add_1reg(0xC8, dst_reg)); 1201 break; 1202 case 64: 1203 /* Emit 'bswap rax' to swap 8 bytes */ 1204 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 1205 add_1reg(0xC8, dst_reg)); 1206 break; 1207 } 1208 break; 1209 1210 case BPF_ALU | BPF_END | BPF_FROM_LE: 1211 switch (imm32) { 1212 case 16: 1213 /* 1214 * Emit 'movzwl eax, ax' to zero extend 16-bit 1215 * into 64 bit 1216 */ 1217 if (is_ereg(dst_reg)) 1218 EMIT3(0x45, 0x0F, 0xB7); 1219 else 1220 EMIT2(0x0F, 0xB7); 1221 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 1222 break; 1223 case 32: 1224 /* Emit 'mov eax, eax' to clear upper 32-bits */ 1225 if (is_ereg(dst_reg)) 1226 EMIT1(0x45); 1227 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 1228 break; 1229 case 64: 1230 /* nop */ 1231 break; 1232 } 1233 break; 1234 1235 /* ST: *(u8*)(dst_reg + off) = imm */ 1236 case BPF_ST | BPF_MEM | BPF_B: 1237 if (is_ereg(dst_reg)) 1238 EMIT2(0x41, 0xC6); 1239 else 1240 EMIT1(0xC6); 1241 goto st; 1242 case BPF_ST | BPF_MEM | BPF_H: 1243 if (is_ereg(dst_reg)) 1244 EMIT3(0x66, 0x41, 0xC7); 1245 else 1246 EMIT2(0x66, 0xC7); 1247 goto st; 1248 case BPF_ST | BPF_MEM | BPF_W: 1249 if (is_ereg(dst_reg)) 1250 EMIT2(0x41, 0xC7); 1251 else 1252 EMIT1(0xC7); 1253 goto st; 1254 case BPF_ST | BPF_MEM | BPF_DW: 1255 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 1256 1257 st: if (is_imm8(insn->off)) 1258 EMIT2(add_1reg(0x40, dst_reg), insn->off); 1259 else 1260 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 1261 1262 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 1263 break; 1264 1265 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1266 case BPF_STX | BPF_MEM | BPF_B: 1267 case BPF_STX | BPF_MEM | BPF_H: 1268 case BPF_STX | BPF_MEM | BPF_W: 1269 case BPF_STX | BPF_MEM | BPF_DW: 1270 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1271 break; 1272 1273 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1274 case BPF_LDX | BPF_MEM | BPF_B: 1275 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1276 case BPF_LDX | BPF_MEM | BPF_H: 1277 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1278 case BPF_LDX | BPF_MEM | BPF_W: 1279 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1280 case BPF_LDX | BPF_MEM | BPF_DW: 1281 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1282 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { 1283 /* test src_reg, src_reg */ 1284 maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */ 1285 EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg)); 1286 /* jne start_of_ldx */ 1287 EMIT2(X86_JNE, 0); 1288 /* xor dst_reg, dst_reg */ 1289 emit_mov_imm32(&prog, false, dst_reg, 0); 1290 /* jmp byte_after_ldx */ 1291 EMIT2(0xEB, 0); 1292 1293 /* populate jmp_offset for JNE above */ 1294 temp[4] = prog - temp - 5 /* sizeof(test + jne) */; 1295 start_of_ldx = prog; 1296 } 1297 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 1298 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { 1299 struct exception_table_entry *ex; 1300 u8 *_insn = image + proglen; 1301 s64 delta; 1302 1303 /* populate jmp_offset for JMP above */ 1304 start_of_ldx[-1] = prog - start_of_ldx; 1305 1306 if (!bpf_prog->aux->extable) 1307 break; 1308 1309 if (excnt >= bpf_prog->aux->num_exentries) { 1310 pr_err("ex gen bug\n"); 1311 return -EFAULT; 1312 } 1313 ex = &bpf_prog->aux->extable[excnt++]; 1314 1315 delta = _insn - (u8 *)&ex->insn; 1316 if (!is_simm32(delta)) { 1317 pr_err("extable->insn doesn't fit into 32-bit\n"); 1318 return -EFAULT; 1319 } 1320 ex->insn = delta; 1321 1322 delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler; 1323 if (!is_simm32(delta)) { 1324 pr_err("extable->handler doesn't fit into 32-bit\n"); 1325 return -EFAULT; 1326 } 1327 ex->handler = delta; 1328 1329 if (dst_reg > BPF_REG_9) { 1330 pr_err("verifier error\n"); 1331 return -EFAULT; 1332 } 1333 /* 1334 * Compute size of x86 insn and its target dest x86 register. 1335 * ex_handler_bpf() will use lower 8 bits to adjust 1336 * pt_regs->ip to jump over this x86 instruction 1337 * and upper bits to figure out which pt_regs to zero out. 1338 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 1339 * of 4 bytes will be ignored and rbx will be zero inited. 1340 */ 1341 ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8); 1342 } 1343 break; 1344 1345 case BPF_STX | BPF_ATOMIC | BPF_W: 1346 case BPF_STX | BPF_ATOMIC | BPF_DW: 1347 if (insn->imm == (BPF_AND | BPF_FETCH) || 1348 insn->imm == (BPF_OR | BPF_FETCH) || 1349 insn->imm == (BPF_XOR | BPF_FETCH)) { 1350 u8 *branch_target; 1351 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 1352 1353 /* 1354 * Can't be implemented with a single x86 insn. 1355 * Need to do a CMPXCHG loop. 1356 */ 1357 1358 /* Will need RAX as a CMPXCHG operand so save R0 */ 1359 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 1360 branch_target = prog; 1361 /* Load old value */ 1362 emit_ldx(&prog, BPF_SIZE(insn->code), 1363 BPF_REG_0, dst_reg, insn->off); 1364 /* 1365 * Perform the (commutative) operation locally, 1366 * put the result in the AUX_REG. 1367 */ 1368 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 1369 maybe_emit_mod(&prog, AUX_REG, src_reg, is64); 1370 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 1371 add_2reg(0xC0, AUX_REG, src_reg)); 1372 /* Attempt to swap in new value */ 1373 err = emit_atomic(&prog, BPF_CMPXCHG, 1374 dst_reg, AUX_REG, insn->off, 1375 BPF_SIZE(insn->code)); 1376 if (WARN_ON(err)) 1377 return err; 1378 /* 1379 * ZF tells us whether we won the race. If it's 1380 * cleared we need to try again. 1381 */ 1382 EMIT2(X86_JNE, -(prog - branch_target) - 2); 1383 /* Return the pre-modification value */ 1384 emit_mov_reg(&prog, is64, src_reg, BPF_REG_0); 1385 /* Restore R0 after clobbering RAX */ 1386 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 1387 break; 1388 1389 } 1390 1391 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, 1392 insn->off, BPF_SIZE(insn->code)); 1393 if (err) 1394 return err; 1395 break; 1396 1397 /* call */ 1398 case BPF_JMP | BPF_CALL: 1399 func = (u8 *) __bpf_call_base + imm32; 1400 if (tail_call_reachable) { 1401 EMIT3_off32(0x48, 0x8B, 0x85, 1402 -(bpf_prog->aux->stack_depth + 8)); 1403 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7)) 1404 return -EINVAL; 1405 } else { 1406 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1])) 1407 return -EINVAL; 1408 } 1409 break; 1410 1411 case BPF_JMP | BPF_TAIL_CALL: 1412 if (imm32) 1413 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1], 1414 &prog, addrs[i], image, 1415 callee_regs_used, 1416 bpf_prog->aux->stack_depth); 1417 else 1418 emit_bpf_tail_call_indirect(&prog, 1419 callee_regs_used, 1420 bpf_prog->aux->stack_depth); 1421 break; 1422 1423 /* cond jump */ 1424 case BPF_JMP | BPF_JEQ | BPF_X: 1425 case BPF_JMP | BPF_JNE | BPF_X: 1426 case BPF_JMP | BPF_JGT | BPF_X: 1427 case BPF_JMP | BPF_JLT | BPF_X: 1428 case BPF_JMP | BPF_JGE | BPF_X: 1429 case BPF_JMP | BPF_JLE | BPF_X: 1430 case BPF_JMP | BPF_JSGT | BPF_X: 1431 case BPF_JMP | BPF_JSLT | BPF_X: 1432 case BPF_JMP | BPF_JSGE | BPF_X: 1433 case BPF_JMP | BPF_JSLE | BPF_X: 1434 case BPF_JMP32 | BPF_JEQ | BPF_X: 1435 case BPF_JMP32 | BPF_JNE | BPF_X: 1436 case BPF_JMP32 | BPF_JGT | BPF_X: 1437 case BPF_JMP32 | BPF_JLT | BPF_X: 1438 case BPF_JMP32 | BPF_JGE | BPF_X: 1439 case BPF_JMP32 | BPF_JLE | BPF_X: 1440 case BPF_JMP32 | BPF_JSGT | BPF_X: 1441 case BPF_JMP32 | BPF_JSLT | BPF_X: 1442 case BPF_JMP32 | BPF_JSGE | BPF_X: 1443 case BPF_JMP32 | BPF_JSLE | BPF_X: 1444 /* cmp dst_reg, src_reg */ 1445 maybe_emit_mod(&prog, dst_reg, src_reg, 1446 BPF_CLASS(insn->code) == BPF_JMP); 1447 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 1448 goto emit_cond_jmp; 1449 1450 case BPF_JMP | BPF_JSET | BPF_X: 1451 case BPF_JMP32 | BPF_JSET | BPF_X: 1452 /* test dst_reg, src_reg */ 1453 maybe_emit_mod(&prog, dst_reg, src_reg, 1454 BPF_CLASS(insn->code) == BPF_JMP); 1455 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 1456 goto emit_cond_jmp; 1457 1458 case BPF_JMP | BPF_JSET | BPF_K: 1459 case BPF_JMP32 | BPF_JSET | BPF_K: 1460 /* test dst_reg, imm32 */ 1461 if (BPF_CLASS(insn->code) == BPF_JMP) 1462 EMIT1(add_1mod(0x48, dst_reg)); 1463 else if (is_ereg(dst_reg)) 1464 EMIT1(add_1mod(0x40, dst_reg)); 1465 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 1466 goto emit_cond_jmp; 1467 1468 case BPF_JMP | BPF_JEQ | BPF_K: 1469 case BPF_JMP | BPF_JNE | BPF_K: 1470 case BPF_JMP | BPF_JGT | BPF_K: 1471 case BPF_JMP | BPF_JLT | BPF_K: 1472 case BPF_JMP | BPF_JGE | BPF_K: 1473 case BPF_JMP | BPF_JLE | BPF_K: 1474 case BPF_JMP | BPF_JSGT | BPF_K: 1475 case BPF_JMP | BPF_JSLT | BPF_K: 1476 case BPF_JMP | BPF_JSGE | BPF_K: 1477 case BPF_JMP | BPF_JSLE | BPF_K: 1478 case BPF_JMP32 | BPF_JEQ | BPF_K: 1479 case BPF_JMP32 | BPF_JNE | BPF_K: 1480 case BPF_JMP32 | BPF_JGT | BPF_K: 1481 case BPF_JMP32 | BPF_JLT | BPF_K: 1482 case BPF_JMP32 | BPF_JGE | BPF_K: 1483 case BPF_JMP32 | BPF_JLE | BPF_K: 1484 case BPF_JMP32 | BPF_JSGT | BPF_K: 1485 case BPF_JMP32 | BPF_JSLT | BPF_K: 1486 case BPF_JMP32 | BPF_JSGE | BPF_K: 1487 case BPF_JMP32 | BPF_JSLE | BPF_K: 1488 /* test dst_reg, dst_reg to save one extra byte */ 1489 if (imm32 == 0) { 1490 maybe_emit_mod(&prog, dst_reg, dst_reg, 1491 BPF_CLASS(insn->code) == BPF_JMP); 1492 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1493 goto emit_cond_jmp; 1494 } 1495 1496 /* cmp dst_reg, imm8/32 */ 1497 if (BPF_CLASS(insn->code) == BPF_JMP) 1498 EMIT1(add_1mod(0x48, dst_reg)); 1499 else if (is_ereg(dst_reg)) 1500 EMIT1(add_1mod(0x40, dst_reg)); 1501 1502 if (is_imm8(imm32)) 1503 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 1504 else 1505 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 1506 1507 emit_cond_jmp: /* Convert BPF opcode to x86 */ 1508 switch (BPF_OP(insn->code)) { 1509 case BPF_JEQ: 1510 jmp_cond = X86_JE; 1511 break; 1512 case BPF_JSET: 1513 case BPF_JNE: 1514 jmp_cond = X86_JNE; 1515 break; 1516 case BPF_JGT: 1517 /* GT is unsigned '>', JA in x86 */ 1518 jmp_cond = X86_JA; 1519 break; 1520 case BPF_JLT: 1521 /* LT is unsigned '<', JB in x86 */ 1522 jmp_cond = X86_JB; 1523 break; 1524 case BPF_JGE: 1525 /* GE is unsigned '>=', JAE in x86 */ 1526 jmp_cond = X86_JAE; 1527 break; 1528 case BPF_JLE: 1529 /* LE is unsigned '<=', JBE in x86 */ 1530 jmp_cond = X86_JBE; 1531 break; 1532 case BPF_JSGT: 1533 /* Signed '>', GT in x86 */ 1534 jmp_cond = X86_JG; 1535 break; 1536 case BPF_JSLT: 1537 /* Signed '<', LT in x86 */ 1538 jmp_cond = X86_JL; 1539 break; 1540 case BPF_JSGE: 1541 /* Signed '>=', GE in x86 */ 1542 jmp_cond = X86_JGE; 1543 break; 1544 case BPF_JSLE: 1545 /* Signed '<=', LE in x86 */ 1546 jmp_cond = X86_JLE; 1547 break; 1548 default: /* to silence GCC warning */ 1549 return -EFAULT; 1550 } 1551 jmp_offset = addrs[i + insn->off] - addrs[i]; 1552 if (is_imm8(jmp_offset)) { 1553 if (jmp_padding) { 1554 /* To keep the jmp_offset valid, the extra bytes are 1555 * padded before the jump insn, so we substract the 1556 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 1557 * 1558 * If the previous pass already emits an imm8 1559 * jmp_cond, then this BPF insn won't shrink, so 1560 * "nops" is 0. 1561 * 1562 * On the other hand, if the previous pass emits an 1563 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 1564 * keep the image from shrinking further. 1565 * 1566 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 1567 * is 2 bytes, so the size difference is 4 bytes. 1568 */ 1569 nops = INSN_SZ_DIFF - 2; 1570 if (nops != 0 && nops != 4) { 1571 pr_err("unexpected jmp_cond padding: %d bytes\n", 1572 nops); 1573 return -EFAULT; 1574 } 1575 cnt += emit_nops(&prog, nops); 1576 } 1577 EMIT2(jmp_cond, jmp_offset); 1578 } else if (is_simm32(jmp_offset)) { 1579 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 1580 } else { 1581 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 1582 return -EFAULT; 1583 } 1584 1585 break; 1586 1587 case BPF_JMP | BPF_JA: 1588 if (insn->off == -1) 1589 /* -1 jmp instructions will always jump 1590 * backwards two bytes. Explicitly handling 1591 * this case avoids wasting too many passes 1592 * when there are long sequences of replaced 1593 * dead code. 1594 */ 1595 jmp_offset = -2; 1596 else 1597 jmp_offset = addrs[i + insn->off] - addrs[i]; 1598 1599 if (!jmp_offset) { 1600 /* 1601 * If jmp_padding is enabled, the extra nops will 1602 * be inserted. Otherwise, optimize out nop jumps. 1603 */ 1604 if (jmp_padding) { 1605 /* There are 3 possible conditions. 1606 * (1) This BPF_JA is already optimized out in 1607 * the previous run, so there is no need 1608 * to pad any extra byte (0 byte). 1609 * (2) The previous pass emits an imm8 jmp, 1610 * so we pad 2 bytes to match the previous 1611 * insn size. 1612 * (3) Similarly, the previous pass emits an 1613 * imm32 jmp, and 5 bytes is padded. 1614 */ 1615 nops = INSN_SZ_DIFF; 1616 if (nops != 0 && nops != 2 && nops != 5) { 1617 pr_err("unexpected nop jump padding: %d bytes\n", 1618 nops); 1619 return -EFAULT; 1620 } 1621 cnt += emit_nops(&prog, nops); 1622 } 1623 break; 1624 } 1625 emit_jmp: 1626 if (is_imm8(jmp_offset)) { 1627 if (jmp_padding) { 1628 /* To avoid breaking jmp_offset, the extra bytes 1629 * are padded before the actual jmp insn, so 1630 * 2 bytes is substracted from INSN_SZ_DIFF. 1631 * 1632 * If the previous pass already emits an imm8 1633 * jmp, there is nothing to pad (0 byte). 1634 * 1635 * If it emits an imm32 jmp (5 bytes) previously 1636 * and now an imm8 jmp (2 bytes), then we pad 1637 * (5 - 2 = 3) bytes to stop the image from 1638 * shrinking further. 1639 */ 1640 nops = INSN_SZ_DIFF - 2; 1641 if (nops != 0 && nops != 3) { 1642 pr_err("unexpected jump padding: %d bytes\n", 1643 nops); 1644 return -EFAULT; 1645 } 1646 cnt += emit_nops(&prog, INSN_SZ_DIFF - 2); 1647 } 1648 EMIT2(0xEB, jmp_offset); 1649 } else if (is_simm32(jmp_offset)) { 1650 EMIT1_off32(0xE9, jmp_offset); 1651 } else { 1652 pr_err("jmp gen bug %llx\n", jmp_offset); 1653 return -EFAULT; 1654 } 1655 break; 1656 1657 case BPF_JMP | BPF_EXIT: 1658 if (seen_exit) { 1659 jmp_offset = ctx->cleanup_addr - addrs[i]; 1660 goto emit_jmp; 1661 } 1662 seen_exit = true; 1663 /* Update cleanup_addr */ 1664 ctx->cleanup_addr = proglen; 1665 pop_callee_regs(&prog, callee_regs_used); 1666 EMIT1(0xC9); /* leave */ 1667 EMIT1(0xC3); /* ret */ 1668 break; 1669 1670 default: 1671 /* 1672 * By design x86-64 JIT should support all BPF instructions. 1673 * This error will be seen if new instruction was added 1674 * to the interpreter, but not to the JIT, or if there is 1675 * junk in bpf_prog. 1676 */ 1677 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 1678 return -EINVAL; 1679 } 1680 1681 ilen = prog - temp; 1682 if (ilen > BPF_MAX_INSN_SIZE) { 1683 pr_err("bpf_jit: fatal insn size error\n"); 1684 return -EFAULT; 1685 } 1686 1687 if (image) { 1688 if (unlikely(proglen + ilen > oldproglen)) { 1689 pr_err("bpf_jit: fatal error\n"); 1690 return -EFAULT; 1691 } 1692 memcpy(image + proglen, temp, ilen); 1693 } 1694 proglen += ilen; 1695 addrs[i] = proglen; 1696 prog = temp; 1697 } 1698 1699 if (image && excnt != bpf_prog->aux->num_exentries) { 1700 pr_err("extable is not populated\n"); 1701 return -EFAULT; 1702 } 1703 return proglen; 1704 } 1705 1706 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args, 1707 int stack_size) 1708 { 1709 int i; 1710 /* Store function arguments to stack. 1711 * For a function that accepts two pointers the sequence will be: 1712 * mov QWORD PTR [rbp-0x10],rdi 1713 * mov QWORD PTR [rbp-0x8],rsi 1714 */ 1715 for (i = 0; i < min(nr_args, 6); i++) 1716 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]), 1717 BPF_REG_FP, 1718 i == 5 ? X86_REG_R9 : BPF_REG_1 + i, 1719 -(stack_size - i * 8)); 1720 } 1721 1722 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args, 1723 int stack_size) 1724 { 1725 int i; 1726 1727 /* Restore function arguments from stack. 1728 * For a function that accepts two pointers the sequence will be: 1729 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 1730 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 1731 */ 1732 for (i = 0; i < min(nr_args, 6); i++) 1733 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]), 1734 i == 5 ? X86_REG_R9 : BPF_REG_1 + i, 1735 BPF_REG_FP, 1736 -(stack_size - i * 8)); 1737 } 1738 1739 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 1740 struct bpf_prog *p, int stack_size, bool mod_ret) 1741 { 1742 u8 *prog = *pprog; 1743 u8 *jmp_insn; 1744 int cnt = 0; 1745 1746 /* arg1: mov rdi, progs[i] */ 1747 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 1748 if (emit_call(&prog, 1749 p->aux->sleepable ? __bpf_prog_enter_sleepable : 1750 __bpf_prog_enter, prog)) 1751 return -EINVAL; 1752 /* remember prog start time returned by __bpf_prog_enter */ 1753 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 1754 1755 /* if (__bpf_prog_enter*(prog) == 0) 1756 * goto skip_exec_of_prog; 1757 */ 1758 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 1759 /* emit 2 nops that will be replaced with JE insn */ 1760 jmp_insn = prog; 1761 emit_nops(&prog, 2); 1762 1763 /* arg1: lea rdi, [rbp - stack_size] */ 1764 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 1765 /* arg2: progs[i]->insnsi for interpreter */ 1766 if (!p->jited) 1767 emit_mov_imm64(&prog, BPF_REG_2, 1768 (long) p->insnsi >> 32, 1769 (u32) (long) p->insnsi); 1770 /* call JITed bpf program or interpreter */ 1771 if (emit_call(&prog, p->bpf_func, prog)) 1772 return -EINVAL; 1773 1774 /* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 1775 * of the previous call which is then passed on the stack to 1776 * the next BPF program. 1777 */ 1778 if (mod_ret) 1779 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 1780 1781 /* replace 2 nops with JE insn, since jmp target is known */ 1782 jmp_insn[0] = X86_JE; 1783 jmp_insn[1] = prog - jmp_insn - 2; 1784 1785 /* arg1: mov rdi, progs[i] */ 1786 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 1787 /* arg2: mov rsi, rbx <- start time in nsec */ 1788 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 1789 if (emit_call(&prog, 1790 p->aux->sleepable ? __bpf_prog_exit_sleepable : 1791 __bpf_prog_exit, prog)) 1792 return -EINVAL; 1793 1794 *pprog = prog; 1795 return 0; 1796 } 1797 1798 static void emit_align(u8 **pprog, u32 align) 1799 { 1800 u8 *target, *prog = *pprog; 1801 1802 target = PTR_ALIGN(prog, align); 1803 if (target != prog) 1804 emit_nops(&prog, target - prog); 1805 1806 *pprog = prog; 1807 } 1808 1809 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 1810 { 1811 u8 *prog = *pprog; 1812 int cnt = 0; 1813 s64 offset; 1814 1815 offset = func - (ip + 2 + 4); 1816 if (!is_simm32(offset)) { 1817 pr_err("Target %p is out of range\n", func); 1818 return -EINVAL; 1819 } 1820 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 1821 *pprog = prog; 1822 return 0; 1823 } 1824 1825 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 1826 struct bpf_tramp_progs *tp, int stack_size) 1827 { 1828 int i; 1829 u8 *prog = *pprog; 1830 1831 for (i = 0; i < tp->nr_progs; i++) { 1832 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false)) 1833 return -EINVAL; 1834 } 1835 *pprog = prog; 1836 return 0; 1837 } 1838 1839 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 1840 struct bpf_tramp_progs *tp, int stack_size, 1841 u8 **branches) 1842 { 1843 u8 *prog = *pprog; 1844 int i, cnt = 0; 1845 1846 /* The first fmod_ret program will receive a garbage return value. 1847 * Set this to 0 to avoid confusing the program. 1848 */ 1849 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 1850 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 1851 for (i = 0; i < tp->nr_progs; i++) { 1852 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true)) 1853 return -EINVAL; 1854 1855 /* mod_ret prog stored return value into [rbp - 8]. Emit: 1856 * if (*(u64 *)(rbp - 8) != 0) 1857 * goto do_fexit; 1858 */ 1859 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 1860 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 1861 1862 /* Save the location of the branch and Generate 6 nops 1863 * (4 bytes for an offset and 2 bytes for the jump) These nops 1864 * are replaced with a conditional jump once do_fexit (i.e. the 1865 * start of the fexit invocation) is finalized. 1866 */ 1867 branches[i] = prog; 1868 emit_nops(&prog, 4 + 2); 1869 } 1870 1871 *pprog = prog; 1872 return 0; 1873 } 1874 1875 /* Example: 1876 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 1877 * its 'struct btf_func_model' will be nr_args=2 1878 * The assembly code when eth_type_trans is executing after trampoline: 1879 * 1880 * push rbp 1881 * mov rbp, rsp 1882 * sub rsp, 16 // space for skb and dev 1883 * push rbx // temp regs to pass start time 1884 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 1885 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 1886 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1887 * mov rbx, rax // remember start time in bpf stats are enabled 1888 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 1889 * call addr_of_jited_FENTRY_prog 1890 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1891 * mov rsi, rbx // prog start time 1892 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1893 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 1894 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 1895 * pop rbx 1896 * leave 1897 * ret 1898 * 1899 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 1900 * replaced with 'call generated_bpf_trampoline'. When it returns 1901 * eth_type_trans will continue executing with original skb and dev pointers. 1902 * 1903 * The assembly code when eth_type_trans is called from trampoline: 1904 * 1905 * push rbp 1906 * mov rbp, rsp 1907 * sub rsp, 24 // space for skb, dev, return value 1908 * push rbx // temp regs to pass start time 1909 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 1910 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 1911 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1912 * mov rbx, rax // remember start time if bpf stats are enabled 1913 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 1914 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 1915 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1916 * mov rsi, rbx // prog start time 1917 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1918 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 1919 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 1920 * call eth_type_trans+5 // execute body of eth_type_trans 1921 * mov qword ptr [rbp - 8], rax // save return value 1922 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 1923 * mov rbx, rax // remember start time in bpf stats are enabled 1924 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 1925 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 1926 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 1927 * mov rsi, rbx // prog start time 1928 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 1929 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 1930 * pop rbx 1931 * leave 1932 * add rsp, 8 // skip eth_type_trans's frame 1933 * ret // return to its caller 1934 */ 1935 int arch_prepare_bpf_trampoline(void *image, void *image_end, 1936 const struct btf_func_model *m, u32 flags, 1937 struct bpf_tramp_progs *tprogs, 1938 void *orig_call) 1939 { 1940 int ret, i, cnt = 0, nr_args = m->nr_args; 1941 int stack_size = nr_args * 8; 1942 struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY]; 1943 struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT]; 1944 struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN]; 1945 u8 **branches = NULL; 1946 u8 *prog; 1947 1948 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */ 1949 if (nr_args > 6) 1950 return -ENOTSUPP; 1951 1952 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && 1953 (flags & BPF_TRAMP_F_SKIP_FRAME)) 1954 return -EINVAL; 1955 1956 if (flags & BPF_TRAMP_F_CALL_ORIG) 1957 stack_size += 8; /* room for return value of orig_call */ 1958 1959 if (flags & BPF_TRAMP_F_SKIP_FRAME) 1960 /* skip patched call instruction and point orig_call to actual 1961 * body of the kernel function. 1962 */ 1963 orig_call += X86_PATCH_SIZE; 1964 1965 prog = image; 1966 1967 EMIT1(0x55); /* push rbp */ 1968 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 1969 EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */ 1970 EMIT1(0x53); /* push rbx */ 1971 1972 save_regs(m, &prog, nr_args, stack_size); 1973 1974 if (fentry->nr_progs) 1975 if (invoke_bpf(m, &prog, fentry, stack_size)) 1976 return -EINVAL; 1977 1978 if (fmod_ret->nr_progs) { 1979 branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *), 1980 GFP_KERNEL); 1981 if (!branches) 1982 return -ENOMEM; 1983 1984 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size, 1985 branches)) { 1986 ret = -EINVAL; 1987 goto cleanup; 1988 } 1989 } 1990 1991 if (flags & BPF_TRAMP_F_CALL_ORIG) { 1992 if (fentry->nr_progs || fmod_ret->nr_progs) 1993 restore_regs(m, &prog, nr_args, stack_size); 1994 1995 /* call original function */ 1996 if (emit_call(&prog, orig_call, prog)) { 1997 ret = -EINVAL; 1998 goto cleanup; 1999 } 2000 /* remember return value in a stack for bpf prog to access */ 2001 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2002 } 2003 2004 if (fmod_ret->nr_progs) { 2005 /* From Intel 64 and IA-32 Architectures Optimization 2006 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2007 * Coding Rule 11: All branch targets should be 16-byte 2008 * aligned. 2009 */ 2010 emit_align(&prog, 16); 2011 /* Update the branches saved in invoke_bpf_mod_ret with the 2012 * aligned address of do_fexit. 2013 */ 2014 for (i = 0; i < fmod_ret->nr_progs; i++) 2015 emit_cond_near_jump(&branches[i], prog, branches[i], 2016 X86_JNE); 2017 } 2018 2019 if (fexit->nr_progs) 2020 if (invoke_bpf(m, &prog, fexit, stack_size)) { 2021 ret = -EINVAL; 2022 goto cleanup; 2023 } 2024 2025 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2026 restore_regs(m, &prog, nr_args, stack_size); 2027 2028 /* This needs to be done regardless. If there were fmod_ret programs, 2029 * the return value is only updated on the stack and still needs to be 2030 * restored to R0. 2031 */ 2032 if (flags & BPF_TRAMP_F_CALL_ORIG) 2033 /* restore original return value back into RAX */ 2034 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 2035 2036 EMIT1(0x5B); /* pop rbx */ 2037 EMIT1(0xC9); /* leave */ 2038 if (flags & BPF_TRAMP_F_SKIP_FRAME) 2039 /* skip our return address and return to parent */ 2040 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 2041 EMIT1(0xC3); /* ret */ 2042 /* Make sure the trampoline generation logic doesn't overflow */ 2043 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) { 2044 ret = -EFAULT; 2045 goto cleanup; 2046 } 2047 ret = prog - (u8 *)image; 2048 2049 cleanup: 2050 kfree(branches); 2051 return ret; 2052 } 2053 2054 static int emit_fallback_jump(u8 **pprog) 2055 { 2056 u8 *prog = *pprog; 2057 int err = 0; 2058 2059 #ifdef CONFIG_RETPOLINE 2060 /* Note that this assumes the the compiler uses external 2061 * thunks for indirect calls. Both clang and GCC use the same 2062 * naming convention for external thunks. 2063 */ 2064 err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog); 2065 #else 2066 int cnt = 0; 2067 2068 EMIT2(0xFF, 0xE2); /* jmp rdx */ 2069 #endif 2070 *pprog = prog; 2071 return err; 2072 } 2073 2074 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs) 2075 { 2076 u8 *jg_reloc, *prog = *pprog; 2077 int pivot, err, jg_bytes = 1, cnt = 0; 2078 s64 jg_offset; 2079 2080 if (a == b) { 2081 /* Leaf node of recursion, i.e. not a range of indices 2082 * anymore. 2083 */ 2084 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2085 if (!is_simm32(progs[a])) 2086 return -1; 2087 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 2088 progs[a]); 2089 err = emit_cond_near_jump(&prog, /* je func */ 2090 (void *)progs[a], prog, 2091 X86_JE); 2092 if (err) 2093 return err; 2094 2095 err = emit_fallback_jump(&prog); /* jmp thunk/indirect */ 2096 if (err) 2097 return err; 2098 2099 *pprog = prog; 2100 return 0; 2101 } 2102 2103 /* Not a leaf node, so we pivot, and recursively descend into 2104 * the lower and upper ranges. 2105 */ 2106 pivot = (b - a) / 2; 2107 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 2108 if (!is_simm32(progs[a + pivot])) 2109 return -1; 2110 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 2111 2112 if (pivot > 2) { /* jg upper_part */ 2113 /* Require near jump. */ 2114 jg_bytes = 4; 2115 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 2116 } else { 2117 EMIT2(X86_JG, 0); 2118 } 2119 jg_reloc = prog; 2120 2121 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 2122 progs); 2123 if (err) 2124 return err; 2125 2126 /* From Intel 64 and IA-32 Architectures Optimization 2127 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 2128 * Coding Rule 11: All branch targets should be 16-byte 2129 * aligned. 2130 */ 2131 emit_align(&prog, 16); 2132 jg_offset = prog - jg_reloc; 2133 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 2134 2135 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 2136 b, progs); 2137 if (err) 2138 return err; 2139 2140 *pprog = prog; 2141 return 0; 2142 } 2143 2144 static int cmp_ips(const void *a, const void *b) 2145 { 2146 const s64 *ipa = a; 2147 const s64 *ipb = b; 2148 2149 if (*ipa > *ipb) 2150 return 1; 2151 if (*ipa < *ipb) 2152 return -1; 2153 return 0; 2154 } 2155 2156 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs) 2157 { 2158 u8 *prog = image; 2159 2160 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 2161 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs); 2162 } 2163 2164 struct x64_jit_data { 2165 struct bpf_binary_header *header; 2166 int *addrs; 2167 u8 *image; 2168 int proglen; 2169 struct jit_context ctx; 2170 }; 2171 2172 #define MAX_PASSES 20 2173 #define PADDING_PASSES (MAX_PASSES - 5) 2174 2175 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2176 { 2177 struct bpf_binary_header *header = NULL; 2178 struct bpf_prog *tmp, *orig_prog = prog; 2179 struct x64_jit_data *jit_data; 2180 int proglen, oldproglen = 0; 2181 struct jit_context ctx = {}; 2182 bool tmp_blinded = false; 2183 bool extra_pass = false; 2184 bool padding = false; 2185 u8 *image = NULL; 2186 int *addrs; 2187 int pass; 2188 int i; 2189 2190 if (!prog->jit_requested) 2191 return orig_prog; 2192 2193 tmp = bpf_jit_blind_constants(prog); 2194 /* 2195 * If blinding was requested and we failed during blinding, 2196 * we must fall back to the interpreter. 2197 */ 2198 if (IS_ERR(tmp)) 2199 return orig_prog; 2200 if (tmp != prog) { 2201 tmp_blinded = true; 2202 prog = tmp; 2203 } 2204 2205 jit_data = prog->aux->jit_data; 2206 if (!jit_data) { 2207 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 2208 if (!jit_data) { 2209 prog = orig_prog; 2210 goto out; 2211 } 2212 prog->aux->jit_data = jit_data; 2213 } 2214 addrs = jit_data->addrs; 2215 if (addrs) { 2216 ctx = jit_data->ctx; 2217 oldproglen = jit_data->proglen; 2218 image = jit_data->image; 2219 header = jit_data->header; 2220 extra_pass = true; 2221 padding = true; 2222 goto skip_init_addrs; 2223 } 2224 addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 2225 if (!addrs) { 2226 prog = orig_prog; 2227 goto out_addrs; 2228 } 2229 2230 /* 2231 * Before first pass, make a rough estimation of addrs[] 2232 * each BPF instruction is translated to less than 64 bytes 2233 */ 2234 for (proglen = 0, i = 0; i <= prog->len; i++) { 2235 proglen += 64; 2236 addrs[i] = proglen; 2237 } 2238 ctx.cleanup_addr = proglen; 2239 skip_init_addrs: 2240 2241 /* 2242 * JITed image shrinks with every pass and the loop iterates 2243 * until the image stops shrinking. Very large BPF programs 2244 * may converge on the last pass. In such case do one more 2245 * pass to emit the final image. 2246 */ 2247 for (pass = 0; pass < MAX_PASSES || image; pass++) { 2248 if (!padding && pass >= PADDING_PASSES) 2249 padding = true; 2250 proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding); 2251 if (proglen <= 0) { 2252 out_image: 2253 image = NULL; 2254 if (header) 2255 bpf_jit_binary_free(header); 2256 prog = orig_prog; 2257 goto out_addrs; 2258 } 2259 if (image) { 2260 if (proglen != oldproglen) { 2261 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 2262 proglen, oldproglen); 2263 goto out_image; 2264 } 2265 break; 2266 } 2267 if (proglen == oldproglen) { 2268 /* 2269 * The number of entries in extable is the number of BPF_LDX 2270 * insns that access kernel memory via "pointer to BTF type". 2271 * The verifier changed their opcode from LDX|MEM|size 2272 * to LDX|PROBE_MEM|size to make JITing easier. 2273 */ 2274 u32 align = __alignof__(struct exception_table_entry); 2275 u32 extable_size = prog->aux->num_exentries * 2276 sizeof(struct exception_table_entry); 2277 2278 /* allocate module memory for x86 insns and extable */ 2279 header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size, 2280 &image, align, jit_fill_hole); 2281 if (!header) { 2282 prog = orig_prog; 2283 goto out_addrs; 2284 } 2285 prog->aux->extable = (void *) image + roundup(proglen, align); 2286 } 2287 oldproglen = proglen; 2288 cond_resched(); 2289 } 2290 2291 if (bpf_jit_enable > 1) 2292 bpf_jit_dump(prog->len, proglen, pass + 1, image); 2293 2294 if (image) { 2295 if (!prog->is_func || extra_pass) { 2296 bpf_tail_call_direct_fixup(prog); 2297 bpf_jit_binary_lock_ro(header); 2298 } else { 2299 jit_data->addrs = addrs; 2300 jit_data->ctx = ctx; 2301 jit_data->proglen = proglen; 2302 jit_data->image = image; 2303 jit_data->header = header; 2304 } 2305 prog->bpf_func = (void *)image; 2306 prog->jited = 1; 2307 prog->jited_len = proglen; 2308 } else { 2309 prog = orig_prog; 2310 } 2311 2312 if (!image || !prog->is_func || extra_pass) { 2313 if (image) 2314 bpf_prog_fill_jited_linfo(prog, addrs + 1); 2315 out_addrs: 2316 kfree(addrs); 2317 kfree(jit_data); 2318 prog->aux->jit_data = NULL; 2319 } 2320 out: 2321 if (tmp_blinded) 2322 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2323 tmp : orig_prog); 2324 return prog; 2325 } 2326