xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 #ifdef CONFIG_X86_KERNEL_IBT
51 #define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
52 #else
53 #define EMIT_ENDBR()
54 #endif
55 
56 static bool is_imm8(int value)
57 {
58 	return value <= 127 && value >= -128;
59 }
60 
61 /*
62  * Let us limit the positive offset to be <= 123.
63  * This is to ensure eventual jit convergence For the following patterns:
64  * ...
65  * pass4, final_proglen=4391:
66  *   ...
67  *   20e:    48 85 ff                test   rdi,rdi
68  *   211:    74 7d                   je     0x290
69  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
70  *   ...
71  *   289:    48 85 ff                test   rdi,rdi
72  *   28c:    74 17                   je     0x2a5
73  *   28e:    e9 7f ff ff ff          jmp    0x212
74  *   293:    bf 03 00 00 00          mov    edi,0x3
75  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
76  * and insn at 0x28e is 5-byte jmp insn with offset -129.
77  *
78  * pass5, final_proglen=4392:
79  *   ...
80  *   20e:    48 85 ff                test   rdi,rdi
81  *   211:    0f 84 80 00 00 00       je     0x297
82  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
83  *   ...
84  *   28d:    48 85 ff                test   rdi,rdi
85  *   290:    74 1a                   je     0x2ac
86  *   292:    eb 84                   jmp    0x218
87  *   294:    bf 03 00 00 00          mov    edi,0x3
88  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
89  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
90  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
91  * -124.
92  *
93  * pass6 will repeat the same code as in pass4 and this will prevent
94  * eventual convergence.
95  *
96  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
97  * cycle in the above. In the above example je offset <= 0x7c should work.
98  *
99  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
100  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
101  * avoid no convergence issue.
102  *
103  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
104  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
105  */
106 static bool is_imm8_jmp_offset(int value)
107 {
108 	return value <= 123 && value >= -128;
109 }
110 
111 static bool is_simm32(s64 value)
112 {
113 	return value == (s64)(s32)value;
114 }
115 
116 static bool is_uimm32(u64 value)
117 {
118 	return value == (u64)(u32)value;
119 }
120 
121 /* mov dst, src */
122 #define EMIT_mov(DST, SRC)								 \
123 	do {										 \
124 		if (DST != SRC)								 \
125 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
126 	} while (0)
127 
128 static int bpf_size_to_x86_bytes(int bpf_size)
129 {
130 	if (bpf_size == BPF_W)
131 		return 4;
132 	else if (bpf_size == BPF_H)
133 		return 2;
134 	else if (bpf_size == BPF_B)
135 		return 1;
136 	else if (bpf_size == BPF_DW)
137 		return 4; /* imm32 */
138 	else
139 		return 0;
140 }
141 
142 /*
143  * List of x86 cond jumps opcodes (. + s8)
144  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
145  */
146 #define X86_JB  0x72
147 #define X86_JAE 0x73
148 #define X86_JE  0x74
149 #define X86_JNE 0x75
150 #define X86_JBE 0x76
151 #define X86_JA  0x77
152 #define X86_JL  0x7C
153 #define X86_JGE 0x7D
154 #define X86_JLE 0x7E
155 #define X86_JG  0x7F
156 
157 /* Pick a register outside of BPF range for JIT internal work */
158 #define AUX_REG (MAX_BPF_JIT_REG + 1)
159 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
160 
161 /*
162  * The following table maps BPF registers to x86-64 registers.
163  *
164  * x86-64 register R12 is unused, since if used as base address
165  * register in load/store instructions, it always needs an
166  * extra byte of encoding and is callee saved.
167  *
168  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
169  * trampoline. x86-64 register R10 is used for blinding (if enabled).
170  */
171 static const int reg2hex[] = {
172 	[BPF_REG_0] = 0,  /* RAX */
173 	[BPF_REG_1] = 7,  /* RDI */
174 	[BPF_REG_2] = 6,  /* RSI */
175 	[BPF_REG_3] = 2,  /* RDX */
176 	[BPF_REG_4] = 1,  /* RCX */
177 	[BPF_REG_5] = 0,  /* R8  */
178 	[BPF_REG_6] = 3,  /* RBX callee saved */
179 	[BPF_REG_7] = 5,  /* R13 callee saved */
180 	[BPF_REG_8] = 6,  /* R14 callee saved */
181 	[BPF_REG_9] = 7,  /* R15 callee saved */
182 	[BPF_REG_FP] = 5, /* RBP readonly */
183 	[BPF_REG_AX] = 2, /* R10 temp register */
184 	[AUX_REG] = 3,    /* R11 temp register */
185 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
186 };
187 
188 static const int reg2pt_regs[] = {
189 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
190 	[BPF_REG_1] = offsetof(struct pt_regs, di),
191 	[BPF_REG_2] = offsetof(struct pt_regs, si),
192 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
193 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
194 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
195 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
196 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
197 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
198 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
199 };
200 
201 /*
202  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
203  * which need extra byte of encoding.
204  * rax,rcx,...,rbp have simpler encoding
205  */
206 static bool is_ereg(u32 reg)
207 {
208 	return (1 << reg) & (BIT(BPF_REG_5) |
209 			     BIT(AUX_REG) |
210 			     BIT(BPF_REG_7) |
211 			     BIT(BPF_REG_8) |
212 			     BIT(BPF_REG_9) |
213 			     BIT(X86_REG_R9) |
214 			     BIT(BPF_REG_AX));
215 }
216 
217 /*
218  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
219  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
220  * of encoding. al,cl,dl,bl have simpler encoding.
221  */
222 static bool is_ereg_8l(u32 reg)
223 {
224 	return is_ereg(reg) ||
225 	    (1 << reg) & (BIT(BPF_REG_1) |
226 			  BIT(BPF_REG_2) |
227 			  BIT(BPF_REG_FP));
228 }
229 
230 static bool is_axreg(u32 reg)
231 {
232 	return reg == BPF_REG_0;
233 }
234 
235 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
236 static u8 add_1mod(u8 byte, u32 reg)
237 {
238 	if (is_ereg(reg))
239 		byte |= 1;
240 	return byte;
241 }
242 
243 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
244 {
245 	if (is_ereg(r1))
246 		byte |= 1;
247 	if (is_ereg(r2))
248 		byte |= 4;
249 	return byte;
250 }
251 
252 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
253 static u8 add_1reg(u8 byte, u32 dst_reg)
254 {
255 	return byte + reg2hex[dst_reg];
256 }
257 
258 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
259 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
260 {
261 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
262 }
263 
264 /* Some 1-byte opcodes for binary ALU operations */
265 static u8 simple_alu_opcodes[] = {
266 	[BPF_ADD] = 0x01,
267 	[BPF_SUB] = 0x29,
268 	[BPF_AND] = 0x21,
269 	[BPF_OR] = 0x09,
270 	[BPF_XOR] = 0x31,
271 	[BPF_LSH] = 0xE0,
272 	[BPF_RSH] = 0xE8,
273 	[BPF_ARSH] = 0xF8,
274 };
275 
276 static void jit_fill_hole(void *area, unsigned int size)
277 {
278 	/* Fill whole space with INT3 instructions */
279 	memset(area, 0xcc, size);
280 }
281 
282 int bpf_arch_text_invalidate(void *dst, size_t len)
283 {
284 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
285 }
286 
287 struct jit_context {
288 	int cleanup_addr; /* Epilogue code offset */
289 
290 	/*
291 	 * Program specific offsets of labels in the code; these rely on the
292 	 * JIT doing at least 2 passes, recording the position on the first
293 	 * pass, only to generate the correct offset on the second pass.
294 	 */
295 	int tail_call_direct_label;
296 	int tail_call_indirect_label;
297 };
298 
299 /* Maximum number of bytes emitted while JITing one eBPF insn */
300 #define BPF_MAX_INSN_SIZE	128
301 #define BPF_INSN_SAFETY		64
302 
303 /* Number of bytes emit_patch() needs to generate instructions */
304 #define X86_PATCH_SIZE		5
305 /* Number of bytes that will be skipped on tailcall */
306 #define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
307 
308 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
309 {
310 	u8 *prog = *pprog;
311 
312 	if (callee_regs_used[0])
313 		EMIT1(0x53);         /* push rbx */
314 	if (callee_regs_used[1])
315 		EMIT2(0x41, 0x55);   /* push r13 */
316 	if (callee_regs_used[2])
317 		EMIT2(0x41, 0x56);   /* push r14 */
318 	if (callee_regs_used[3])
319 		EMIT2(0x41, 0x57);   /* push r15 */
320 	*pprog = prog;
321 }
322 
323 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
324 {
325 	u8 *prog = *pprog;
326 
327 	if (callee_regs_used[3])
328 		EMIT2(0x41, 0x5F);   /* pop r15 */
329 	if (callee_regs_used[2])
330 		EMIT2(0x41, 0x5E);   /* pop r14 */
331 	if (callee_regs_used[1])
332 		EMIT2(0x41, 0x5D);   /* pop r13 */
333 	if (callee_regs_used[0])
334 		EMIT1(0x5B);         /* pop rbx */
335 	*pprog = prog;
336 }
337 
338 /*
339  * Emit x86-64 prologue code for BPF program.
340  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
341  * while jumping to another program
342  */
343 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
344 			  bool tail_call_reachable, bool is_subprog)
345 {
346 	u8 *prog = *pprog;
347 
348 	/* BPF trampoline can be made to work without these nops,
349 	 * but let's waste 5 bytes for now and optimize later
350 	 */
351 	EMIT_ENDBR();
352 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
353 	prog += X86_PATCH_SIZE;
354 	if (!ebpf_from_cbpf) {
355 		if (tail_call_reachable && !is_subprog)
356 			EMIT2(0x31, 0xC0); /* xor eax, eax */
357 		else
358 			EMIT2(0x66, 0x90); /* nop2 */
359 	}
360 	EMIT1(0x55);             /* push rbp */
361 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
362 
363 	/* X86_TAIL_CALL_OFFSET is here */
364 	EMIT_ENDBR();
365 
366 	/* sub rsp, rounded_stack_depth */
367 	if (stack_depth)
368 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
369 	if (tail_call_reachable)
370 		EMIT1(0x50);         /* push rax */
371 	*pprog = prog;
372 }
373 
374 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
375 {
376 	u8 *prog = *pprog;
377 	s64 offset;
378 
379 	offset = func - (ip + X86_PATCH_SIZE);
380 	if (!is_simm32(offset)) {
381 		pr_err("Target call %p is out of range\n", func);
382 		return -ERANGE;
383 	}
384 	EMIT1_off32(opcode, offset);
385 	*pprog = prog;
386 	return 0;
387 }
388 
389 static int emit_call(u8 **pprog, void *func, void *ip)
390 {
391 	return emit_patch(pprog, func, ip, 0xE8);
392 }
393 
394 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
395 {
396 	OPTIMIZER_HIDE_VAR(func);
397 	ip += x86_call_depth_emit_accounting(pprog, func);
398 	return emit_patch(pprog, func, ip, 0xE8);
399 }
400 
401 static int emit_jump(u8 **pprog, void *func, void *ip)
402 {
403 	return emit_patch(pprog, func, ip, 0xE9);
404 }
405 
406 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
407 				void *old_addr, void *new_addr)
408 {
409 	const u8 *nop_insn = x86_nops[5];
410 	u8 old_insn[X86_PATCH_SIZE];
411 	u8 new_insn[X86_PATCH_SIZE];
412 	u8 *prog;
413 	int ret;
414 
415 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
416 	if (old_addr) {
417 		prog = old_insn;
418 		ret = t == BPF_MOD_CALL ?
419 		      emit_call(&prog, old_addr, ip) :
420 		      emit_jump(&prog, old_addr, ip);
421 		if (ret)
422 			return ret;
423 	}
424 
425 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
426 	if (new_addr) {
427 		prog = new_insn;
428 		ret = t == BPF_MOD_CALL ?
429 		      emit_call(&prog, new_addr, ip) :
430 		      emit_jump(&prog, new_addr, ip);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	ret = -EBUSY;
436 	mutex_lock(&text_mutex);
437 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
438 		goto out;
439 	ret = 1;
440 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
441 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
442 		ret = 0;
443 	}
444 out:
445 	mutex_unlock(&text_mutex);
446 	return ret;
447 }
448 
449 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
450 		       void *old_addr, void *new_addr)
451 {
452 	if (!is_kernel_text((long)ip) &&
453 	    !is_bpf_text_address((long)ip))
454 		/* BPF poking in modules is not supported */
455 		return -EINVAL;
456 
457 	/*
458 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
459 	 * with an ENDBR instruction.
460 	 */
461 	if (is_endbr(*(u32 *)ip))
462 		ip += ENDBR_INSN_SIZE;
463 
464 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
465 }
466 
467 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
468 
469 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
470 {
471 	u8 *prog = *pprog;
472 
473 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
474 		EMIT_LFENCE();
475 		EMIT2(0xFF, 0xE0 + reg);
476 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
477 		OPTIMIZER_HIDE_VAR(reg);
478 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
479 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
480 		else
481 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
482 	} else {
483 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
484 		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
485 			EMIT1(0xCC);		/* int3 */
486 	}
487 
488 	*pprog = prog;
489 }
490 
491 static void emit_return(u8 **pprog, u8 *ip)
492 {
493 	u8 *prog = *pprog;
494 
495 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
496 		emit_jump(&prog, x86_return_thunk, ip);
497 	} else {
498 		EMIT1(0xC3);		/* ret */
499 		if (IS_ENABLED(CONFIG_SLS))
500 			EMIT1(0xCC);	/* int3 */
501 	}
502 
503 	*pprog = prog;
504 }
505 
506 /*
507  * Generate the following code:
508  *
509  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
510  *   if (index >= array->map.max_entries)
511  *     goto out;
512  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
513  *     goto out;
514  *   prog = array->ptrs[index];
515  *   if (prog == NULL)
516  *     goto out;
517  *   goto *(prog->bpf_func + prologue_size);
518  * out:
519  */
520 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
521 					u32 stack_depth, u8 *ip,
522 					struct jit_context *ctx)
523 {
524 	int tcc_off = -4 - round_up(stack_depth, 8);
525 	u8 *prog = *pprog, *start = *pprog;
526 	int offset;
527 
528 	/*
529 	 * rdi - pointer to ctx
530 	 * rsi - pointer to bpf_array
531 	 * rdx - index in bpf_array
532 	 */
533 
534 	/*
535 	 * if (index >= array->map.max_entries)
536 	 *	goto out;
537 	 */
538 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
539 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
540 	      offsetof(struct bpf_array, map.max_entries));
541 
542 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
543 	EMIT2(X86_JBE, offset);                   /* jbe out */
544 
545 	/*
546 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
547 	 *	goto out;
548 	 */
549 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
550 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
551 
552 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
553 	EMIT2(X86_JAE, offset);                   /* jae out */
554 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
555 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
556 
557 	/* prog = array->ptrs[index]; */
558 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
559 		    offsetof(struct bpf_array, ptrs));
560 
561 	/*
562 	 * if (prog == NULL)
563 	 *	goto out;
564 	 */
565 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
566 
567 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
568 	EMIT2(X86_JE, offset);                    /* je out */
569 
570 	pop_callee_regs(&prog, callee_regs_used);
571 
572 	EMIT1(0x58);                              /* pop rax */
573 	if (stack_depth)
574 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
575 			    round_up(stack_depth, 8));
576 
577 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
578 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
579 	      offsetof(struct bpf_prog, bpf_func));
580 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
581 	      X86_TAIL_CALL_OFFSET);
582 	/*
583 	 * Now we're ready to jump into next BPF program
584 	 * rdi == ctx (1st arg)
585 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
586 	 */
587 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
588 
589 	/* out: */
590 	ctx->tail_call_indirect_label = prog - start;
591 	*pprog = prog;
592 }
593 
594 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
595 				      u8 **pprog, u8 *ip,
596 				      bool *callee_regs_used, u32 stack_depth,
597 				      struct jit_context *ctx)
598 {
599 	int tcc_off = -4 - round_up(stack_depth, 8);
600 	u8 *prog = *pprog, *start = *pprog;
601 	int offset;
602 
603 	/*
604 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
605 	 *	goto out;
606 	 */
607 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
608 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
609 
610 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
611 	EMIT2(X86_JAE, offset);                       /* jae out */
612 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
613 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
614 
615 	poke->tailcall_bypass = ip + (prog - start);
616 	poke->adj_off = X86_TAIL_CALL_OFFSET;
617 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
618 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
619 
620 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
621 		  poke->tailcall_bypass);
622 
623 	pop_callee_regs(&prog, callee_regs_used);
624 	EMIT1(0x58);                                  /* pop rax */
625 	if (stack_depth)
626 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
627 
628 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
629 	prog += X86_PATCH_SIZE;
630 
631 	/* out: */
632 	ctx->tail_call_direct_label = prog - start;
633 
634 	*pprog = prog;
635 }
636 
637 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
638 {
639 	struct bpf_jit_poke_descriptor *poke;
640 	struct bpf_array *array;
641 	struct bpf_prog *target;
642 	int i, ret;
643 
644 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
645 		poke = &prog->aux->poke_tab[i];
646 		if (poke->aux && poke->aux != prog->aux)
647 			continue;
648 
649 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
650 
651 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
652 			continue;
653 
654 		array = container_of(poke->tail_call.map, struct bpf_array, map);
655 		mutex_lock(&array->aux->poke_mutex);
656 		target = array->ptrs[poke->tail_call.key];
657 		if (target) {
658 			ret = __bpf_arch_text_poke(poke->tailcall_target,
659 						   BPF_MOD_JUMP, NULL,
660 						   (u8 *)target->bpf_func +
661 						   poke->adj_off);
662 			BUG_ON(ret < 0);
663 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
664 						   BPF_MOD_JUMP,
665 						   (u8 *)poke->tailcall_target +
666 						   X86_PATCH_SIZE, NULL);
667 			BUG_ON(ret < 0);
668 		}
669 		WRITE_ONCE(poke->tailcall_target_stable, true);
670 		mutex_unlock(&array->aux->poke_mutex);
671 	}
672 }
673 
674 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
675 			   u32 dst_reg, const u32 imm32)
676 {
677 	u8 *prog = *pprog;
678 	u8 b1, b2, b3;
679 
680 	/*
681 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
682 	 * (which zero-extends imm32) to save 2 bytes.
683 	 */
684 	if (sign_propagate && (s32)imm32 < 0) {
685 		/* 'mov %rax, imm32' sign extends imm32 */
686 		b1 = add_1mod(0x48, dst_reg);
687 		b2 = 0xC7;
688 		b3 = 0xC0;
689 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
690 		goto done;
691 	}
692 
693 	/*
694 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
695 	 * to save 3 bytes.
696 	 */
697 	if (imm32 == 0) {
698 		if (is_ereg(dst_reg))
699 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
700 		b2 = 0x31; /* xor */
701 		b3 = 0xC0;
702 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
703 		goto done;
704 	}
705 
706 	/* mov %eax, imm32 */
707 	if (is_ereg(dst_reg))
708 		EMIT1(add_1mod(0x40, dst_reg));
709 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
710 done:
711 	*pprog = prog;
712 }
713 
714 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
715 			   const u32 imm32_hi, const u32 imm32_lo)
716 {
717 	u8 *prog = *pprog;
718 
719 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
720 		/*
721 		 * For emitting plain u32, where sign bit must not be
722 		 * propagated LLVM tends to load imm64 over mov32
723 		 * directly, so save couple of bytes by just doing
724 		 * 'mov %eax, imm32' instead.
725 		 */
726 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
727 	} else {
728 		/* movabsq rax, imm64 */
729 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
730 		EMIT(imm32_lo, 4);
731 		EMIT(imm32_hi, 4);
732 	}
733 
734 	*pprog = prog;
735 }
736 
737 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
738 {
739 	u8 *prog = *pprog;
740 
741 	if (is64) {
742 		/* mov dst, src */
743 		EMIT_mov(dst_reg, src_reg);
744 	} else {
745 		/* mov32 dst, src */
746 		if (is_ereg(dst_reg) || is_ereg(src_reg))
747 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
748 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
749 	}
750 
751 	*pprog = prog;
752 }
753 
754 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
755 			   u32 src_reg)
756 {
757 	u8 *prog = *pprog;
758 
759 	if (is64) {
760 		/* movs[b,w,l]q dst, src */
761 		if (num_bits == 8)
762 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
763 			      add_2reg(0xC0, src_reg, dst_reg));
764 		else if (num_bits == 16)
765 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
766 			      add_2reg(0xC0, src_reg, dst_reg));
767 		else if (num_bits == 32)
768 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
769 			      add_2reg(0xC0, src_reg, dst_reg));
770 	} else {
771 		/* movs[b,w]l dst, src */
772 		if (num_bits == 8) {
773 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
774 			      add_2reg(0xC0, src_reg, dst_reg));
775 		} else if (num_bits == 16) {
776 			if (is_ereg(dst_reg) || is_ereg(src_reg))
777 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
778 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
779 			      add_2reg(0xC0, src_reg, dst_reg));
780 		}
781 	}
782 
783 	*pprog = prog;
784 }
785 
786 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
787 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
788 {
789 	u8 *prog = *pprog;
790 
791 	if (is_imm8(off)) {
792 		/* 1-byte signed displacement.
793 		 *
794 		 * If off == 0 we could skip this and save one extra byte, but
795 		 * special case of x86 R13 which always needs an offset is not
796 		 * worth the hassle
797 		 */
798 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
799 	} else {
800 		/* 4-byte signed displacement */
801 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
802 	}
803 	*pprog = prog;
804 }
805 
806 /*
807  * Emit a REX byte if it will be necessary to address these registers
808  */
809 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
810 {
811 	u8 *prog = *pprog;
812 
813 	if (is64)
814 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
815 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
816 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
817 	*pprog = prog;
818 }
819 
820 /*
821  * Similar version of maybe_emit_mod() for a single register
822  */
823 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
824 {
825 	u8 *prog = *pprog;
826 
827 	if (is64)
828 		EMIT1(add_1mod(0x48, reg));
829 	else if (is_ereg(reg))
830 		EMIT1(add_1mod(0x40, reg));
831 	*pprog = prog;
832 }
833 
834 /* LDX: dst_reg = *(u8*)(src_reg + off) */
835 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
836 {
837 	u8 *prog = *pprog;
838 
839 	switch (size) {
840 	case BPF_B:
841 		/* Emit 'movzx rax, byte ptr [rax + off]' */
842 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
843 		break;
844 	case BPF_H:
845 		/* Emit 'movzx rax, word ptr [rax + off]' */
846 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
847 		break;
848 	case BPF_W:
849 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
850 		if (is_ereg(dst_reg) || is_ereg(src_reg))
851 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
852 		else
853 			EMIT1(0x8B);
854 		break;
855 	case BPF_DW:
856 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
857 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
858 		break;
859 	}
860 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
861 	*pprog = prog;
862 }
863 
864 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
865 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
866 {
867 	u8 *prog = *pprog;
868 
869 	switch (size) {
870 	case BPF_B:
871 		/* Emit 'movsx rax, byte ptr [rax + off]' */
872 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
873 		break;
874 	case BPF_H:
875 		/* Emit 'movsx rax, word ptr [rax + off]' */
876 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
877 		break;
878 	case BPF_W:
879 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
880 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
881 		break;
882 	}
883 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
884 	*pprog = prog;
885 }
886 
887 /* STX: *(u8*)(dst_reg + off) = src_reg */
888 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
889 {
890 	u8 *prog = *pprog;
891 
892 	switch (size) {
893 	case BPF_B:
894 		/* Emit 'mov byte ptr [rax + off], al' */
895 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
896 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
897 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
898 		else
899 			EMIT1(0x88);
900 		break;
901 	case BPF_H:
902 		if (is_ereg(dst_reg) || is_ereg(src_reg))
903 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
904 		else
905 			EMIT2(0x66, 0x89);
906 		break;
907 	case BPF_W:
908 		if (is_ereg(dst_reg) || is_ereg(src_reg))
909 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
910 		else
911 			EMIT1(0x89);
912 		break;
913 	case BPF_DW:
914 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
915 		break;
916 	}
917 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
918 	*pprog = prog;
919 }
920 
921 static int emit_atomic(u8 **pprog, u8 atomic_op,
922 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
923 {
924 	u8 *prog = *pprog;
925 
926 	EMIT1(0xF0); /* lock prefix */
927 
928 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
929 
930 	/* emit opcode */
931 	switch (atomic_op) {
932 	case BPF_ADD:
933 	case BPF_AND:
934 	case BPF_OR:
935 	case BPF_XOR:
936 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
937 		EMIT1(simple_alu_opcodes[atomic_op]);
938 		break;
939 	case BPF_ADD | BPF_FETCH:
940 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
941 		EMIT2(0x0F, 0xC1);
942 		break;
943 	case BPF_XCHG:
944 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
945 		EMIT1(0x87);
946 		break;
947 	case BPF_CMPXCHG:
948 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
949 		EMIT2(0x0F, 0xB1);
950 		break;
951 	default:
952 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
953 		return -EFAULT;
954 	}
955 
956 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
957 
958 	*pprog = prog;
959 	return 0;
960 }
961 
962 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
963 {
964 	u32 reg = x->fixup >> 8;
965 
966 	/* jump over faulting load and clear dest register */
967 	*(unsigned long *)((void *)regs + reg) = 0;
968 	regs->ip += x->fixup & 0xff;
969 	return true;
970 }
971 
972 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
973 			     bool *regs_used, bool *tail_call_seen)
974 {
975 	int i;
976 
977 	for (i = 1; i <= insn_cnt; i++, insn++) {
978 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
979 			*tail_call_seen = true;
980 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
981 			regs_used[0] = true;
982 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
983 			regs_used[1] = true;
984 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
985 			regs_used[2] = true;
986 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
987 			regs_used[3] = true;
988 	}
989 }
990 
991 static void emit_nops(u8 **pprog, int len)
992 {
993 	u8 *prog = *pprog;
994 	int i, noplen;
995 
996 	while (len > 0) {
997 		noplen = len;
998 
999 		if (noplen > ASM_NOP_MAX)
1000 			noplen = ASM_NOP_MAX;
1001 
1002 		for (i = 0; i < noplen; i++)
1003 			EMIT1(x86_nops[noplen][i]);
1004 		len -= noplen;
1005 	}
1006 
1007 	*pprog = prog;
1008 }
1009 
1010 /* emit the 3-byte VEX prefix
1011  *
1012  * r: same as rex.r, extra bit for ModRM reg field
1013  * x: same as rex.x, extra bit for SIB index field
1014  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1015  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1016  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1017  * src_reg2: additional source reg (encoded as BPF reg)
1018  * l: vector length (128 bit or 256 bit) or reserved
1019  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1020  */
1021 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1022 		      bool w, u8 src_reg2, bool l, u8 pp)
1023 {
1024 	u8 *prog = *pprog;
1025 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1026 	u8 b1, b2;
1027 	u8 vvvv = reg2hex[src_reg2];
1028 
1029 	/* reg2hex gives only the lower 3 bit of vvvv */
1030 	if (is_ereg(src_reg2))
1031 		vvvv |= 1 << 3;
1032 
1033 	/*
1034 	 * 2nd byte of 3-byte VEX prefix
1035 	 * ~ means bit inverted encoding
1036 	 *
1037 	 *    7                           0
1038 	 *  +---+---+---+---+---+---+---+---+
1039 	 *  |~R |~X |~B |         m         |
1040 	 *  +---+---+---+---+---+---+---+---+
1041 	 */
1042 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1043 	/*
1044 	 * 3rd byte of 3-byte VEX prefix
1045 	 *
1046 	 *    7                           0
1047 	 *  +---+---+---+---+---+---+---+---+
1048 	 *  | W |     ~vvvv     | L |   pp  |
1049 	 *  +---+---+---+---+---+---+---+---+
1050 	 */
1051 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1052 
1053 	EMIT3(b0, b1, b2);
1054 	*pprog = prog;
1055 }
1056 
1057 /* emit BMI2 shift instruction */
1058 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1059 {
1060 	u8 *prog = *pprog;
1061 	bool r = is_ereg(dst_reg);
1062 	u8 m = 2; /* escape code 0f38 */
1063 
1064 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1065 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1066 	*pprog = prog;
1067 }
1068 
1069 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1070 
1071 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1072 #define RESTORE_TAIL_CALL_CNT(stack)				\
1073 	EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1074 
1075 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1076 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1077 {
1078 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1079 	struct bpf_insn *insn = bpf_prog->insnsi;
1080 	bool callee_regs_used[4] = {};
1081 	int insn_cnt = bpf_prog->len;
1082 	bool tail_call_seen = false;
1083 	bool seen_exit = false;
1084 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1085 	int i, excnt = 0;
1086 	int ilen, proglen = 0;
1087 	u8 *prog = temp;
1088 	int err;
1089 
1090 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1091 			 &tail_call_seen);
1092 
1093 	/* tail call's presence in current prog implies it is reachable */
1094 	tail_call_reachable |= tail_call_seen;
1095 
1096 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1097 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1098 		      bpf_prog->aux->func_idx != 0);
1099 	push_callee_regs(&prog, callee_regs_used);
1100 
1101 	ilen = prog - temp;
1102 	if (rw_image)
1103 		memcpy(rw_image + proglen, temp, ilen);
1104 	proglen += ilen;
1105 	addrs[0] = proglen;
1106 	prog = temp;
1107 
1108 	for (i = 1; i <= insn_cnt; i++, insn++) {
1109 		const s32 imm32 = insn->imm;
1110 		u32 dst_reg = insn->dst_reg;
1111 		u32 src_reg = insn->src_reg;
1112 		u8 b2 = 0, b3 = 0;
1113 		u8 *start_of_ldx;
1114 		s64 jmp_offset;
1115 		s16 insn_off;
1116 		u8 jmp_cond;
1117 		u8 *func;
1118 		int nops;
1119 
1120 		switch (insn->code) {
1121 			/* ALU */
1122 		case BPF_ALU | BPF_ADD | BPF_X:
1123 		case BPF_ALU | BPF_SUB | BPF_X:
1124 		case BPF_ALU | BPF_AND | BPF_X:
1125 		case BPF_ALU | BPF_OR | BPF_X:
1126 		case BPF_ALU | BPF_XOR | BPF_X:
1127 		case BPF_ALU64 | BPF_ADD | BPF_X:
1128 		case BPF_ALU64 | BPF_SUB | BPF_X:
1129 		case BPF_ALU64 | BPF_AND | BPF_X:
1130 		case BPF_ALU64 | BPF_OR | BPF_X:
1131 		case BPF_ALU64 | BPF_XOR | BPF_X:
1132 			maybe_emit_mod(&prog, dst_reg, src_reg,
1133 				       BPF_CLASS(insn->code) == BPF_ALU64);
1134 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1135 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1136 			break;
1137 
1138 		case BPF_ALU64 | BPF_MOV | BPF_X:
1139 		case BPF_ALU | BPF_MOV | BPF_X:
1140 			if (insn->off == 0)
1141 				emit_mov_reg(&prog,
1142 					     BPF_CLASS(insn->code) == BPF_ALU64,
1143 					     dst_reg, src_reg);
1144 			else
1145 				emit_movsx_reg(&prog, insn->off,
1146 					       BPF_CLASS(insn->code) == BPF_ALU64,
1147 					       dst_reg, src_reg);
1148 			break;
1149 
1150 			/* neg dst */
1151 		case BPF_ALU | BPF_NEG:
1152 		case BPF_ALU64 | BPF_NEG:
1153 			maybe_emit_1mod(&prog, dst_reg,
1154 					BPF_CLASS(insn->code) == BPF_ALU64);
1155 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1156 			break;
1157 
1158 		case BPF_ALU | BPF_ADD | BPF_K:
1159 		case BPF_ALU | BPF_SUB | BPF_K:
1160 		case BPF_ALU | BPF_AND | BPF_K:
1161 		case BPF_ALU | BPF_OR | BPF_K:
1162 		case BPF_ALU | BPF_XOR | BPF_K:
1163 		case BPF_ALU64 | BPF_ADD | BPF_K:
1164 		case BPF_ALU64 | BPF_SUB | BPF_K:
1165 		case BPF_ALU64 | BPF_AND | BPF_K:
1166 		case BPF_ALU64 | BPF_OR | BPF_K:
1167 		case BPF_ALU64 | BPF_XOR | BPF_K:
1168 			maybe_emit_1mod(&prog, dst_reg,
1169 					BPF_CLASS(insn->code) == BPF_ALU64);
1170 
1171 			/*
1172 			 * b3 holds 'normal' opcode, b2 short form only valid
1173 			 * in case dst is eax/rax.
1174 			 */
1175 			switch (BPF_OP(insn->code)) {
1176 			case BPF_ADD:
1177 				b3 = 0xC0;
1178 				b2 = 0x05;
1179 				break;
1180 			case BPF_SUB:
1181 				b3 = 0xE8;
1182 				b2 = 0x2D;
1183 				break;
1184 			case BPF_AND:
1185 				b3 = 0xE0;
1186 				b2 = 0x25;
1187 				break;
1188 			case BPF_OR:
1189 				b3 = 0xC8;
1190 				b2 = 0x0D;
1191 				break;
1192 			case BPF_XOR:
1193 				b3 = 0xF0;
1194 				b2 = 0x35;
1195 				break;
1196 			}
1197 
1198 			if (is_imm8(imm32))
1199 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1200 			else if (is_axreg(dst_reg))
1201 				EMIT1_off32(b2, imm32);
1202 			else
1203 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1204 			break;
1205 
1206 		case BPF_ALU64 | BPF_MOV | BPF_K:
1207 		case BPF_ALU | BPF_MOV | BPF_K:
1208 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1209 				       dst_reg, imm32);
1210 			break;
1211 
1212 		case BPF_LD | BPF_IMM | BPF_DW:
1213 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1214 			insn++;
1215 			i++;
1216 			break;
1217 
1218 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1219 		case BPF_ALU | BPF_MOD | BPF_X:
1220 		case BPF_ALU | BPF_DIV | BPF_X:
1221 		case BPF_ALU | BPF_MOD | BPF_K:
1222 		case BPF_ALU | BPF_DIV | BPF_K:
1223 		case BPF_ALU64 | BPF_MOD | BPF_X:
1224 		case BPF_ALU64 | BPF_DIV | BPF_X:
1225 		case BPF_ALU64 | BPF_MOD | BPF_K:
1226 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1227 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1228 
1229 			if (dst_reg != BPF_REG_0)
1230 				EMIT1(0x50); /* push rax */
1231 			if (dst_reg != BPF_REG_3)
1232 				EMIT1(0x52); /* push rdx */
1233 
1234 			if (BPF_SRC(insn->code) == BPF_X) {
1235 				if (src_reg == BPF_REG_0 ||
1236 				    src_reg == BPF_REG_3) {
1237 					/* mov r11, src_reg */
1238 					EMIT_mov(AUX_REG, src_reg);
1239 					src_reg = AUX_REG;
1240 				}
1241 			} else {
1242 				/* mov r11, imm32 */
1243 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1244 				src_reg = AUX_REG;
1245 			}
1246 
1247 			if (dst_reg != BPF_REG_0)
1248 				/* mov rax, dst_reg */
1249 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1250 
1251 			if (insn->off == 0) {
1252 				/*
1253 				 * xor edx, edx
1254 				 * equivalent to 'xor rdx, rdx', but one byte less
1255 				 */
1256 				EMIT2(0x31, 0xd2);
1257 
1258 				/* div src_reg */
1259 				maybe_emit_1mod(&prog, src_reg, is64);
1260 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1261 			} else {
1262 				if (BPF_CLASS(insn->code) == BPF_ALU)
1263 					EMIT1(0x99); /* cdq */
1264 				else
1265 					EMIT2(0x48, 0x99); /* cqo */
1266 
1267 				/* idiv src_reg */
1268 				maybe_emit_1mod(&prog, src_reg, is64);
1269 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1270 			}
1271 
1272 			if (BPF_OP(insn->code) == BPF_MOD &&
1273 			    dst_reg != BPF_REG_3)
1274 				/* mov dst_reg, rdx */
1275 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1276 			else if (BPF_OP(insn->code) == BPF_DIV &&
1277 				 dst_reg != BPF_REG_0)
1278 				/* mov dst_reg, rax */
1279 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1280 
1281 			if (dst_reg != BPF_REG_3)
1282 				EMIT1(0x5A); /* pop rdx */
1283 			if (dst_reg != BPF_REG_0)
1284 				EMIT1(0x58); /* pop rax */
1285 			break;
1286 		}
1287 
1288 		case BPF_ALU | BPF_MUL | BPF_K:
1289 		case BPF_ALU64 | BPF_MUL | BPF_K:
1290 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1291 				       BPF_CLASS(insn->code) == BPF_ALU64);
1292 
1293 			if (is_imm8(imm32))
1294 				/* imul dst_reg, dst_reg, imm8 */
1295 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1296 				      imm32);
1297 			else
1298 				/* imul dst_reg, dst_reg, imm32 */
1299 				EMIT2_off32(0x69,
1300 					    add_2reg(0xC0, dst_reg, dst_reg),
1301 					    imm32);
1302 			break;
1303 
1304 		case BPF_ALU | BPF_MUL | BPF_X:
1305 		case BPF_ALU64 | BPF_MUL | BPF_X:
1306 			maybe_emit_mod(&prog, src_reg, dst_reg,
1307 				       BPF_CLASS(insn->code) == BPF_ALU64);
1308 
1309 			/* imul dst_reg, src_reg */
1310 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1311 			break;
1312 
1313 			/* Shifts */
1314 		case BPF_ALU | BPF_LSH | BPF_K:
1315 		case BPF_ALU | BPF_RSH | BPF_K:
1316 		case BPF_ALU | BPF_ARSH | BPF_K:
1317 		case BPF_ALU64 | BPF_LSH | BPF_K:
1318 		case BPF_ALU64 | BPF_RSH | BPF_K:
1319 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1320 			maybe_emit_1mod(&prog, dst_reg,
1321 					BPF_CLASS(insn->code) == BPF_ALU64);
1322 
1323 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1324 			if (imm32 == 1)
1325 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1326 			else
1327 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1328 			break;
1329 
1330 		case BPF_ALU | BPF_LSH | BPF_X:
1331 		case BPF_ALU | BPF_RSH | BPF_X:
1332 		case BPF_ALU | BPF_ARSH | BPF_X:
1333 		case BPF_ALU64 | BPF_LSH | BPF_X:
1334 		case BPF_ALU64 | BPF_RSH | BPF_X:
1335 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1336 			/* BMI2 shifts aren't better when shift count is already in rcx */
1337 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1338 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1339 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1340 				u8 op;
1341 
1342 				switch (BPF_OP(insn->code)) {
1343 				case BPF_LSH:
1344 					op = 1; /* prefix 0x66 */
1345 					break;
1346 				case BPF_RSH:
1347 					op = 3; /* prefix 0xf2 */
1348 					break;
1349 				case BPF_ARSH:
1350 					op = 2; /* prefix 0xf3 */
1351 					break;
1352 				}
1353 
1354 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1355 
1356 				break;
1357 			}
1358 
1359 			if (src_reg != BPF_REG_4) { /* common case */
1360 				/* Check for bad case when dst_reg == rcx */
1361 				if (dst_reg == BPF_REG_4) {
1362 					/* mov r11, dst_reg */
1363 					EMIT_mov(AUX_REG, dst_reg);
1364 					dst_reg = AUX_REG;
1365 				} else {
1366 					EMIT1(0x51); /* push rcx */
1367 				}
1368 				/* mov rcx, src_reg */
1369 				EMIT_mov(BPF_REG_4, src_reg);
1370 			}
1371 
1372 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1373 			maybe_emit_1mod(&prog, dst_reg,
1374 					BPF_CLASS(insn->code) == BPF_ALU64);
1375 
1376 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1377 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1378 
1379 			if (src_reg != BPF_REG_4) {
1380 				if (insn->dst_reg == BPF_REG_4)
1381 					/* mov dst_reg, r11 */
1382 					EMIT_mov(insn->dst_reg, AUX_REG);
1383 				else
1384 					EMIT1(0x59); /* pop rcx */
1385 			}
1386 
1387 			break;
1388 
1389 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1390 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1391 			switch (imm32) {
1392 			case 16:
1393 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1394 				EMIT1(0x66);
1395 				if (is_ereg(dst_reg))
1396 					EMIT1(0x41);
1397 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1398 
1399 				/* Emit 'movzwl eax, ax' */
1400 				if (is_ereg(dst_reg))
1401 					EMIT3(0x45, 0x0F, 0xB7);
1402 				else
1403 					EMIT2(0x0F, 0xB7);
1404 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1405 				break;
1406 			case 32:
1407 				/* Emit 'bswap eax' to swap lower 4 bytes */
1408 				if (is_ereg(dst_reg))
1409 					EMIT2(0x41, 0x0F);
1410 				else
1411 					EMIT1(0x0F);
1412 				EMIT1(add_1reg(0xC8, dst_reg));
1413 				break;
1414 			case 64:
1415 				/* Emit 'bswap rax' to swap 8 bytes */
1416 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1417 				      add_1reg(0xC8, dst_reg));
1418 				break;
1419 			}
1420 			break;
1421 
1422 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1423 			switch (imm32) {
1424 			case 16:
1425 				/*
1426 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1427 				 * into 64 bit
1428 				 */
1429 				if (is_ereg(dst_reg))
1430 					EMIT3(0x45, 0x0F, 0xB7);
1431 				else
1432 					EMIT2(0x0F, 0xB7);
1433 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1434 				break;
1435 			case 32:
1436 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1437 				if (is_ereg(dst_reg))
1438 					EMIT1(0x45);
1439 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1440 				break;
1441 			case 64:
1442 				/* nop */
1443 				break;
1444 			}
1445 			break;
1446 
1447 			/* speculation barrier */
1448 		case BPF_ST | BPF_NOSPEC:
1449 			EMIT_LFENCE();
1450 			break;
1451 
1452 			/* ST: *(u8*)(dst_reg + off) = imm */
1453 		case BPF_ST | BPF_MEM | BPF_B:
1454 			if (is_ereg(dst_reg))
1455 				EMIT2(0x41, 0xC6);
1456 			else
1457 				EMIT1(0xC6);
1458 			goto st;
1459 		case BPF_ST | BPF_MEM | BPF_H:
1460 			if (is_ereg(dst_reg))
1461 				EMIT3(0x66, 0x41, 0xC7);
1462 			else
1463 				EMIT2(0x66, 0xC7);
1464 			goto st;
1465 		case BPF_ST | BPF_MEM | BPF_W:
1466 			if (is_ereg(dst_reg))
1467 				EMIT2(0x41, 0xC7);
1468 			else
1469 				EMIT1(0xC7);
1470 			goto st;
1471 		case BPF_ST | BPF_MEM | BPF_DW:
1472 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1473 
1474 st:			if (is_imm8(insn->off))
1475 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1476 			else
1477 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1478 
1479 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1480 			break;
1481 
1482 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1483 		case BPF_STX | BPF_MEM | BPF_B:
1484 		case BPF_STX | BPF_MEM | BPF_H:
1485 		case BPF_STX | BPF_MEM | BPF_W:
1486 		case BPF_STX | BPF_MEM | BPF_DW:
1487 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1488 			break;
1489 
1490 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1491 		case BPF_LDX | BPF_MEM | BPF_B:
1492 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1493 		case BPF_LDX | BPF_MEM | BPF_H:
1494 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1495 		case BPF_LDX | BPF_MEM | BPF_W:
1496 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1497 		case BPF_LDX | BPF_MEM | BPF_DW:
1498 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1499 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1500 		case BPF_LDX | BPF_MEMSX | BPF_B:
1501 		case BPF_LDX | BPF_MEMSX | BPF_H:
1502 		case BPF_LDX | BPF_MEMSX | BPF_W:
1503 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1504 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1505 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1506 			insn_off = insn->off;
1507 
1508 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1509 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1510 				/* Conservatively check that src_reg + insn->off is a kernel address:
1511 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
1512 				 *   and
1513 				 *   src_reg + insn->off < VSYSCALL_ADDR
1514 				 */
1515 
1516 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
1517 				u8 *end_of_jmp;
1518 
1519 				/* movabsq r10, VSYSCALL_ADDR */
1520 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
1521 					       (u32)(long)VSYSCALL_ADDR);
1522 
1523 				/* mov src_reg, r11 */
1524 				EMIT_mov(AUX_REG, src_reg);
1525 
1526 				if (insn->off) {
1527 					/* add r11, insn->off */
1528 					maybe_emit_1mod(&prog, AUX_REG, true);
1529 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1530 				}
1531 
1532 				/* sub r11, r10 */
1533 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1534 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1535 
1536 				/* movabsq r10, limit */
1537 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
1538 					       (u32)(long)limit);
1539 
1540 				/* cmp r10, r11 */
1541 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1542 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1543 
1544 				/* if unsigned '>', goto load */
1545 				EMIT2(X86_JA, 0);
1546 				end_of_jmp = prog;
1547 
1548 				/* xor dst_reg, dst_reg */
1549 				emit_mov_imm32(&prog, false, dst_reg, 0);
1550 				/* jmp byte_after_ldx */
1551 				EMIT2(0xEB, 0);
1552 
1553 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1554 				start_of_ldx = prog;
1555 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1556 			}
1557 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1558 			    BPF_MODE(insn->code) == BPF_MEMSX)
1559 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1560 			else
1561 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1562 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1563 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1564 				struct exception_table_entry *ex;
1565 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1566 				s64 delta;
1567 
1568 				/* populate jmp_offset for JMP above */
1569 				start_of_ldx[-1] = prog - start_of_ldx;
1570 
1571 				if (!bpf_prog->aux->extable)
1572 					break;
1573 
1574 				if (excnt >= bpf_prog->aux->num_exentries) {
1575 					pr_err("ex gen bug\n");
1576 					return -EFAULT;
1577 				}
1578 				ex = &bpf_prog->aux->extable[excnt++];
1579 
1580 				delta = _insn - (u8 *)&ex->insn;
1581 				if (!is_simm32(delta)) {
1582 					pr_err("extable->insn doesn't fit into 32-bit\n");
1583 					return -EFAULT;
1584 				}
1585 				/* switch ex to rw buffer for writes */
1586 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1587 
1588 				ex->insn = delta;
1589 
1590 				ex->data = EX_TYPE_BPF;
1591 
1592 				if (dst_reg > BPF_REG_9) {
1593 					pr_err("verifier error\n");
1594 					return -EFAULT;
1595 				}
1596 				/*
1597 				 * Compute size of x86 insn and its target dest x86 register.
1598 				 * ex_handler_bpf() will use lower 8 bits to adjust
1599 				 * pt_regs->ip to jump over this x86 instruction
1600 				 * and upper bits to figure out which pt_regs to zero out.
1601 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1602 				 * of 4 bytes will be ignored and rbx will be zero inited.
1603 				 */
1604 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1605 			}
1606 			break;
1607 
1608 		case BPF_STX | BPF_ATOMIC | BPF_W:
1609 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1610 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1611 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1612 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1613 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1614 				u32 real_src_reg = src_reg;
1615 				u32 real_dst_reg = dst_reg;
1616 				u8 *branch_target;
1617 
1618 				/*
1619 				 * Can't be implemented with a single x86 insn.
1620 				 * Need to do a CMPXCHG loop.
1621 				 */
1622 
1623 				/* Will need RAX as a CMPXCHG operand so save R0 */
1624 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1625 				if (src_reg == BPF_REG_0)
1626 					real_src_reg = BPF_REG_AX;
1627 				if (dst_reg == BPF_REG_0)
1628 					real_dst_reg = BPF_REG_AX;
1629 
1630 				branch_target = prog;
1631 				/* Load old value */
1632 				emit_ldx(&prog, BPF_SIZE(insn->code),
1633 					 BPF_REG_0, real_dst_reg, insn->off);
1634 				/*
1635 				 * Perform the (commutative) operation locally,
1636 				 * put the result in the AUX_REG.
1637 				 */
1638 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1639 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1640 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1641 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1642 				/* Attempt to swap in new value */
1643 				err = emit_atomic(&prog, BPF_CMPXCHG,
1644 						  real_dst_reg, AUX_REG,
1645 						  insn->off,
1646 						  BPF_SIZE(insn->code));
1647 				if (WARN_ON(err))
1648 					return err;
1649 				/*
1650 				 * ZF tells us whether we won the race. If it's
1651 				 * cleared we need to try again.
1652 				 */
1653 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1654 				/* Return the pre-modification value */
1655 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1656 				/* Restore R0 after clobbering RAX */
1657 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1658 				break;
1659 			}
1660 
1661 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1662 					  insn->off, BPF_SIZE(insn->code));
1663 			if (err)
1664 				return err;
1665 			break;
1666 
1667 			/* call */
1668 		case BPF_JMP | BPF_CALL: {
1669 			int offs;
1670 
1671 			func = (u8 *) __bpf_call_base + imm32;
1672 			if (tail_call_reachable) {
1673 				RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1674 				if (!imm32)
1675 					return -EINVAL;
1676 				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1677 			} else {
1678 				if (!imm32)
1679 					return -EINVAL;
1680 				offs = x86_call_depth_emit_accounting(&prog, func);
1681 			}
1682 			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1683 				return -EINVAL;
1684 			break;
1685 		}
1686 
1687 		case BPF_JMP | BPF_TAIL_CALL:
1688 			if (imm32)
1689 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1690 							  &prog, image + addrs[i - 1],
1691 							  callee_regs_used,
1692 							  bpf_prog->aux->stack_depth,
1693 							  ctx);
1694 			else
1695 				emit_bpf_tail_call_indirect(&prog,
1696 							    callee_regs_used,
1697 							    bpf_prog->aux->stack_depth,
1698 							    image + addrs[i - 1],
1699 							    ctx);
1700 			break;
1701 
1702 			/* cond jump */
1703 		case BPF_JMP | BPF_JEQ | BPF_X:
1704 		case BPF_JMP | BPF_JNE | BPF_X:
1705 		case BPF_JMP | BPF_JGT | BPF_X:
1706 		case BPF_JMP | BPF_JLT | BPF_X:
1707 		case BPF_JMP | BPF_JGE | BPF_X:
1708 		case BPF_JMP | BPF_JLE | BPF_X:
1709 		case BPF_JMP | BPF_JSGT | BPF_X:
1710 		case BPF_JMP | BPF_JSLT | BPF_X:
1711 		case BPF_JMP | BPF_JSGE | BPF_X:
1712 		case BPF_JMP | BPF_JSLE | BPF_X:
1713 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1714 		case BPF_JMP32 | BPF_JNE | BPF_X:
1715 		case BPF_JMP32 | BPF_JGT | BPF_X:
1716 		case BPF_JMP32 | BPF_JLT | BPF_X:
1717 		case BPF_JMP32 | BPF_JGE | BPF_X:
1718 		case BPF_JMP32 | BPF_JLE | BPF_X:
1719 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1720 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1721 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1722 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1723 			/* cmp dst_reg, src_reg */
1724 			maybe_emit_mod(&prog, dst_reg, src_reg,
1725 				       BPF_CLASS(insn->code) == BPF_JMP);
1726 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1727 			goto emit_cond_jmp;
1728 
1729 		case BPF_JMP | BPF_JSET | BPF_X:
1730 		case BPF_JMP32 | BPF_JSET | BPF_X:
1731 			/* test dst_reg, src_reg */
1732 			maybe_emit_mod(&prog, dst_reg, src_reg,
1733 				       BPF_CLASS(insn->code) == BPF_JMP);
1734 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1735 			goto emit_cond_jmp;
1736 
1737 		case BPF_JMP | BPF_JSET | BPF_K:
1738 		case BPF_JMP32 | BPF_JSET | BPF_K:
1739 			/* test dst_reg, imm32 */
1740 			maybe_emit_1mod(&prog, dst_reg,
1741 					BPF_CLASS(insn->code) == BPF_JMP);
1742 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1743 			goto emit_cond_jmp;
1744 
1745 		case BPF_JMP | BPF_JEQ | BPF_K:
1746 		case BPF_JMP | BPF_JNE | BPF_K:
1747 		case BPF_JMP | BPF_JGT | BPF_K:
1748 		case BPF_JMP | BPF_JLT | BPF_K:
1749 		case BPF_JMP | BPF_JGE | BPF_K:
1750 		case BPF_JMP | BPF_JLE | BPF_K:
1751 		case BPF_JMP | BPF_JSGT | BPF_K:
1752 		case BPF_JMP | BPF_JSLT | BPF_K:
1753 		case BPF_JMP | BPF_JSGE | BPF_K:
1754 		case BPF_JMP | BPF_JSLE | BPF_K:
1755 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1756 		case BPF_JMP32 | BPF_JNE | BPF_K:
1757 		case BPF_JMP32 | BPF_JGT | BPF_K:
1758 		case BPF_JMP32 | BPF_JLT | BPF_K:
1759 		case BPF_JMP32 | BPF_JGE | BPF_K:
1760 		case BPF_JMP32 | BPF_JLE | BPF_K:
1761 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1762 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1763 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1764 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1765 			/* test dst_reg, dst_reg to save one extra byte */
1766 			if (imm32 == 0) {
1767 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1768 					       BPF_CLASS(insn->code) == BPF_JMP);
1769 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1770 				goto emit_cond_jmp;
1771 			}
1772 
1773 			/* cmp dst_reg, imm8/32 */
1774 			maybe_emit_1mod(&prog, dst_reg,
1775 					BPF_CLASS(insn->code) == BPF_JMP);
1776 
1777 			if (is_imm8(imm32))
1778 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1779 			else
1780 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1781 
1782 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1783 			switch (BPF_OP(insn->code)) {
1784 			case BPF_JEQ:
1785 				jmp_cond = X86_JE;
1786 				break;
1787 			case BPF_JSET:
1788 			case BPF_JNE:
1789 				jmp_cond = X86_JNE;
1790 				break;
1791 			case BPF_JGT:
1792 				/* GT is unsigned '>', JA in x86 */
1793 				jmp_cond = X86_JA;
1794 				break;
1795 			case BPF_JLT:
1796 				/* LT is unsigned '<', JB in x86 */
1797 				jmp_cond = X86_JB;
1798 				break;
1799 			case BPF_JGE:
1800 				/* GE is unsigned '>=', JAE in x86 */
1801 				jmp_cond = X86_JAE;
1802 				break;
1803 			case BPF_JLE:
1804 				/* LE is unsigned '<=', JBE in x86 */
1805 				jmp_cond = X86_JBE;
1806 				break;
1807 			case BPF_JSGT:
1808 				/* Signed '>', GT in x86 */
1809 				jmp_cond = X86_JG;
1810 				break;
1811 			case BPF_JSLT:
1812 				/* Signed '<', LT in x86 */
1813 				jmp_cond = X86_JL;
1814 				break;
1815 			case BPF_JSGE:
1816 				/* Signed '>=', GE in x86 */
1817 				jmp_cond = X86_JGE;
1818 				break;
1819 			case BPF_JSLE:
1820 				/* Signed '<=', LE in x86 */
1821 				jmp_cond = X86_JLE;
1822 				break;
1823 			default: /* to silence GCC warning */
1824 				return -EFAULT;
1825 			}
1826 			jmp_offset = addrs[i + insn->off] - addrs[i];
1827 			if (is_imm8_jmp_offset(jmp_offset)) {
1828 				if (jmp_padding) {
1829 					/* To keep the jmp_offset valid, the extra bytes are
1830 					 * padded before the jump insn, so we subtract the
1831 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1832 					 *
1833 					 * If the previous pass already emits an imm8
1834 					 * jmp_cond, then this BPF insn won't shrink, so
1835 					 * "nops" is 0.
1836 					 *
1837 					 * On the other hand, if the previous pass emits an
1838 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1839 					 * keep the image from shrinking further.
1840 					 *
1841 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1842 					 *     is 2 bytes, so the size difference is 4 bytes.
1843 					 */
1844 					nops = INSN_SZ_DIFF - 2;
1845 					if (nops != 0 && nops != 4) {
1846 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1847 						       nops);
1848 						return -EFAULT;
1849 					}
1850 					emit_nops(&prog, nops);
1851 				}
1852 				EMIT2(jmp_cond, jmp_offset);
1853 			} else if (is_simm32(jmp_offset)) {
1854 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1855 			} else {
1856 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1857 				return -EFAULT;
1858 			}
1859 
1860 			break;
1861 
1862 		case BPF_JMP | BPF_JA:
1863 		case BPF_JMP32 | BPF_JA:
1864 			if (BPF_CLASS(insn->code) == BPF_JMP) {
1865 				if (insn->off == -1)
1866 					/* -1 jmp instructions will always jump
1867 					 * backwards two bytes. Explicitly handling
1868 					 * this case avoids wasting too many passes
1869 					 * when there are long sequences of replaced
1870 					 * dead code.
1871 					 */
1872 					jmp_offset = -2;
1873 				else
1874 					jmp_offset = addrs[i + insn->off] - addrs[i];
1875 			} else {
1876 				if (insn->imm == -1)
1877 					jmp_offset = -2;
1878 				else
1879 					jmp_offset = addrs[i + insn->imm] - addrs[i];
1880 			}
1881 
1882 			if (!jmp_offset) {
1883 				/*
1884 				 * If jmp_padding is enabled, the extra nops will
1885 				 * be inserted. Otherwise, optimize out nop jumps.
1886 				 */
1887 				if (jmp_padding) {
1888 					/* There are 3 possible conditions.
1889 					 * (1) This BPF_JA is already optimized out in
1890 					 *     the previous run, so there is no need
1891 					 *     to pad any extra byte (0 byte).
1892 					 * (2) The previous pass emits an imm8 jmp,
1893 					 *     so we pad 2 bytes to match the previous
1894 					 *     insn size.
1895 					 * (3) Similarly, the previous pass emits an
1896 					 *     imm32 jmp, and 5 bytes is padded.
1897 					 */
1898 					nops = INSN_SZ_DIFF;
1899 					if (nops != 0 && nops != 2 && nops != 5) {
1900 						pr_err("unexpected nop jump padding: %d bytes\n",
1901 						       nops);
1902 						return -EFAULT;
1903 					}
1904 					emit_nops(&prog, nops);
1905 				}
1906 				break;
1907 			}
1908 emit_jmp:
1909 			if (is_imm8_jmp_offset(jmp_offset)) {
1910 				if (jmp_padding) {
1911 					/* To avoid breaking jmp_offset, the extra bytes
1912 					 * are padded before the actual jmp insn, so
1913 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1914 					 *
1915 					 * If the previous pass already emits an imm8
1916 					 * jmp, there is nothing to pad (0 byte).
1917 					 *
1918 					 * If it emits an imm32 jmp (5 bytes) previously
1919 					 * and now an imm8 jmp (2 bytes), then we pad
1920 					 * (5 - 2 = 3) bytes to stop the image from
1921 					 * shrinking further.
1922 					 */
1923 					nops = INSN_SZ_DIFF - 2;
1924 					if (nops != 0 && nops != 3) {
1925 						pr_err("unexpected jump padding: %d bytes\n",
1926 						       nops);
1927 						return -EFAULT;
1928 					}
1929 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1930 				}
1931 				EMIT2(0xEB, jmp_offset);
1932 			} else if (is_simm32(jmp_offset)) {
1933 				EMIT1_off32(0xE9, jmp_offset);
1934 			} else {
1935 				pr_err("jmp gen bug %llx\n", jmp_offset);
1936 				return -EFAULT;
1937 			}
1938 			break;
1939 
1940 		case BPF_JMP | BPF_EXIT:
1941 			if (seen_exit) {
1942 				jmp_offset = ctx->cleanup_addr - addrs[i];
1943 				goto emit_jmp;
1944 			}
1945 			seen_exit = true;
1946 			/* Update cleanup_addr */
1947 			ctx->cleanup_addr = proglen;
1948 			pop_callee_regs(&prog, callee_regs_used);
1949 			EMIT1(0xC9);         /* leave */
1950 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1951 			break;
1952 
1953 		default:
1954 			/*
1955 			 * By design x86-64 JIT should support all BPF instructions.
1956 			 * This error will be seen if new instruction was added
1957 			 * to the interpreter, but not to the JIT, or if there is
1958 			 * junk in bpf_prog.
1959 			 */
1960 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1961 			return -EINVAL;
1962 		}
1963 
1964 		ilen = prog - temp;
1965 		if (ilen > BPF_MAX_INSN_SIZE) {
1966 			pr_err("bpf_jit: fatal insn size error\n");
1967 			return -EFAULT;
1968 		}
1969 
1970 		if (image) {
1971 			/*
1972 			 * When populating the image, assert that:
1973 			 *
1974 			 *  i) We do not write beyond the allocated space, and
1975 			 * ii) addrs[i] did not change from the prior run, in order
1976 			 *     to validate assumptions made for computing branch
1977 			 *     displacements.
1978 			 */
1979 			if (unlikely(proglen + ilen > oldproglen ||
1980 				     proglen + ilen != addrs[i])) {
1981 				pr_err("bpf_jit: fatal error\n");
1982 				return -EFAULT;
1983 			}
1984 			memcpy(rw_image + proglen, temp, ilen);
1985 		}
1986 		proglen += ilen;
1987 		addrs[i] = proglen;
1988 		prog = temp;
1989 	}
1990 
1991 	if (image && excnt != bpf_prog->aux->num_exentries) {
1992 		pr_err("extable is not populated\n");
1993 		return -EFAULT;
1994 	}
1995 	return proglen;
1996 }
1997 
1998 static void clean_stack_garbage(const struct btf_func_model *m,
1999 				u8 **pprog, int nr_stack_slots,
2000 				int stack_size)
2001 {
2002 	int arg_size, off;
2003 	u8 *prog;
2004 
2005 	/* Generally speaking, the compiler will pass the arguments
2006 	 * on-stack with "push" instruction, which will take 8-byte
2007 	 * on the stack. In this case, there won't be garbage values
2008 	 * while we copy the arguments from origin stack frame to current
2009 	 * in BPF_DW.
2010 	 *
2011 	 * However, sometimes the compiler will only allocate 4-byte on
2012 	 * the stack for the arguments. For now, this case will only
2013 	 * happen if there is only one argument on-stack and its size
2014 	 * not more than 4 byte. In this case, there will be garbage
2015 	 * values on the upper 4-byte where we store the argument on
2016 	 * current stack frame.
2017 	 *
2018 	 * arguments on origin stack:
2019 	 *
2020 	 * stack_arg_1(4-byte) xxx(4-byte)
2021 	 *
2022 	 * what we copy:
2023 	 *
2024 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2025 	 *
2026 	 * and the xxx is the garbage values which we should clean here.
2027 	 */
2028 	if (nr_stack_slots != 1)
2029 		return;
2030 
2031 	/* the size of the last argument */
2032 	arg_size = m->arg_size[m->nr_args - 1];
2033 	if (arg_size <= 4) {
2034 		off = -(stack_size - 4);
2035 		prog = *pprog;
2036 		/* mov DWORD PTR [rbp + off], 0 */
2037 		if (!is_imm8(off))
2038 			EMIT2_off32(0xC7, 0x85, off);
2039 		else
2040 			EMIT3(0xC7, 0x45, off);
2041 		EMIT(0, 4);
2042 		*pprog = prog;
2043 	}
2044 }
2045 
2046 /* get the count of the regs that are used to pass arguments */
2047 static int get_nr_used_regs(const struct btf_func_model *m)
2048 {
2049 	int i, arg_regs, nr_used_regs = 0;
2050 
2051 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2052 		arg_regs = (m->arg_size[i] + 7) / 8;
2053 		if (nr_used_regs + arg_regs <= 6)
2054 			nr_used_regs += arg_regs;
2055 
2056 		if (nr_used_regs >= 6)
2057 			break;
2058 	}
2059 
2060 	return nr_used_regs;
2061 }
2062 
2063 static void save_args(const struct btf_func_model *m, u8 **prog,
2064 		      int stack_size, bool for_call_origin)
2065 {
2066 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2067 	int i, j;
2068 
2069 	/* Store function arguments to stack.
2070 	 * For a function that accepts two pointers the sequence will be:
2071 	 * mov QWORD PTR [rbp-0x10],rdi
2072 	 * mov QWORD PTR [rbp-0x8],rsi
2073 	 */
2074 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2075 		arg_regs = (m->arg_size[i] + 7) / 8;
2076 
2077 		/* According to the research of Yonghong, struct members
2078 		 * should be all in register or all on the stack.
2079 		 * Meanwhile, the compiler will pass the argument on regs
2080 		 * if the remaining regs can hold the argument.
2081 		 *
2082 		 * Disorder of the args can happen. For example:
2083 		 *
2084 		 * struct foo_struct {
2085 		 *     long a;
2086 		 *     int b;
2087 		 * };
2088 		 * int foo(char, char, char, char, char, struct foo_struct,
2089 		 *         char);
2090 		 *
2091 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2092 		 * by stack.
2093 		 */
2094 		if (nr_regs + arg_regs > 6) {
2095 			/* copy function arguments from origin stack frame
2096 			 * into current stack frame.
2097 			 *
2098 			 * The starting address of the arguments on-stack
2099 			 * is:
2100 			 *   rbp + 8(push rbp) +
2101 			 *   8(return addr of origin call) +
2102 			 *   8(return addr of the caller)
2103 			 * which means: rbp + 24
2104 			 */
2105 			for (j = 0; j < arg_regs; j++) {
2106 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2107 					 nr_stack_slots * 8 + 0x18);
2108 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2109 					 -stack_size);
2110 
2111 				if (!nr_stack_slots)
2112 					first_off = stack_size;
2113 				stack_size -= 8;
2114 				nr_stack_slots++;
2115 			}
2116 		} else {
2117 			/* Only copy the arguments on-stack to current
2118 			 * 'stack_size' and ignore the regs, used to
2119 			 * prepare the arguments on-stack for orign call.
2120 			 */
2121 			if (for_call_origin) {
2122 				nr_regs += arg_regs;
2123 				continue;
2124 			}
2125 
2126 			/* copy the arguments from regs into stack */
2127 			for (j = 0; j < arg_regs; j++) {
2128 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2129 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2130 					 -stack_size);
2131 				stack_size -= 8;
2132 				nr_regs++;
2133 			}
2134 		}
2135 	}
2136 
2137 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2138 }
2139 
2140 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2141 			 int stack_size)
2142 {
2143 	int i, j, arg_regs, nr_regs = 0;
2144 
2145 	/* Restore function arguments from stack.
2146 	 * For a function that accepts two pointers the sequence will be:
2147 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2148 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2149 	 *
2150 	 * The logic here is similar to what we do in save_args()
2151 	 */
2152 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2153 		arg_regs = (m->arg_size[i] + 7) / 8;
2154 		if (nr_regs + arg_regs <= 6) {
2155 			for (j = 0; j < arg_regs; j++) {
2156 				emit_ldx(prog, BPF_DW,
2157 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2158 					 BPF_REG_FP,
2159 					 -stack_size);
2160 				stack_size -= 8;
2161 				nr_regs++;
2162 			}
2163 		} else {
2164 			stack_size -= 8 * arg_regs;
2165 		}
2166 
2167 		if (nr_regs >= 6)
2168 			break;
2169 	}
2170 }
2171 
2172 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2173 			   struct bpf_tramp_link *l, int stack_size,
2174 			   int run_ctx_off, bool save_ret)
2175 {
2176 	u8 *prog = *pprog;
2177 	u8 *jmp_insn;
2178 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2179 	struct bpf_prog *p = l->link.prog;
2180 	u64 cookie = l->cookie;
2181 
2182 	/* mov rdi, cookie */
2183 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2184 
2185 	/* Prepare struct bpf_tramp_run_ctx.
2186 	 *
2187 	 * bpf_tramp_run_ctx is already preserved by
2188 	 * arch_prepare_bpf_trampoline().
2189 	 *
2190 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2191 	 */
2192 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2193 
2194 	/* arg1: mov rdi, progs[i] */
2195 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2196 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2197 	if (!is_imm8(-run_ctx_off))
2198 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2199 	else
2200 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2201 
2202 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2203 		return -EINVAL;
2204 	/* remember prog start time returned by __bpf_prog_enter */
2205 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2206 
2207 	/* if (__bpf_prog_enter*(prog) == 0)
2208 	 *	goto skip_exec_of_prog;
2209 	 */
2210 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2211 	/* emit 2 nops that will be replaced with JE insn */
2212 	jmp_insn = prog;
2213 	emit_nops(&prog, 2);
2214 
2215 	/* arg1: lea rdi, [rbp - stack_size] */
2216 	if (!is_imm8(-stack_size))
2217 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2218 	else
2219 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2220 	/* arg2: progs[i]->insnsi for interpreter */
2221 	if (!p->jited)
2222 		emit_mov_imm64(&prog, BPF_REG_2,
2223 			       (long) p->insnsi >> 32,
2224 			       (u32) (long) p->insnsi);
2225 	/* call JITed bpf program or interpreter */
2226 	if (emit_rsb_call(&prog, p->bpf_func, prog))
2227 		return -EINVAL;
2228 
2229 	/*
2230 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2231 	 * of the previous call which is then passed on the stack to
2232 	 * the next BPF program.
2233 	 *
2234 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2235 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2236 	 */
2237 	if (save_ret)
2238 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2239 
2240 	/* replace 2 nops with JE insn, since jmp target is known */
2241 	jmp_insn[0] = X86_JE;
2242 	jmp_insn[1] = prog - jmp_insn - 2;
2243 
2244 	/* arg1: mov rdi, progs[i] */
2245 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2246 	/* arg2: mov rsi, rbx <- start time in nsec */
2247 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2248 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2249 	if (!is_imm8(-run_ctx_off))
2250 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2251 	else
2252 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2253 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2254 		return -EINVAL;
2255 
2256 	*pprog = prog;
2257 	return 0;
2258 }
2259 
2260 static void emit_align(u8 **pprog, u32 align)
2261 {
2262 	u8 *target, *prog = *pprog;
2263 
2264 	target = PTR_ALIGN(prog, align);
2265 	if (target != prog)
2266 		emit_nops(&prog, target - prog);
2267 
2268 	*pprog = prog;
2269 }
2270 
2271 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2272 {
2273 	u8 *prog = *pprog;
2274 	s64 offset;
2275 
2276 	offset = func - (ip + 2 + 4);
2277 	if (!is_simm32(offset)) {
2278 		pr_err("Target %p is out of range\n", func);
2279 		return -EINVAL;
2280 	}
2281 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2282 	*pprog = prog;
2283 	return 0;
2284 }
2285 
2286 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2287 		      struct bpf_tramp_links *tl, int stack_size,
2288 		      int run_ctx_off, bool save_ret)
2289 {
2290 	int i;
2291 	u8 *prog = *pprog;
2292 
2293 	for (i = 0; i < tl->nr_links; i++) {
2294 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2295 				    run_ctx_off, save_ret))
2296 			return -EINVAL;
2297 	}
2298 	*pprog = prog;
2299 	return 0;
2300 }
2301 
2302 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2303 			      struct bpf_tramp_links *tl, int stack_size,
2304 			      int run_ctx_off, u8 **branches)
2305 {
2306 	u8 *prog = *pprog;
2307 	int i;
2308 
2309 	/* The first fmod_ret program will receive a garbage return value.
2310 	 * Set this to 0 to avoid confusing the program.
2311 	 */
2312 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2313 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2314 	for (i = 0; i < tl->nr_links; i++) {
2315 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2316 			return -EINVAL;
2317 
2318 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2319 		 * if (*(u64 *)(rbp - 8) !=  0)
2320 		 *	goto do_fexit;
2321 		 */
2322 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2323 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2324 
2325 		/* Save the location of the branch and Generate 6 nops
2326 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2327 		 * are replaced with a conditional jump once do_fexit (i.e. the
2328 		 * start of the fexit invocation) is finalized.
2329 		 */
2330 		branches[i] = prog;
2331 		emit_nops(&prog, 4 + 2);
2332 	}
2333 
2334 	*pprog = prog;
2335 	return 0;
2336 }
2337 
2338 /* Example:
2339  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2340  * its 'struct btf_func_model' will be nr_args=2
2341  * The assembly code when eth_type_trans is executing after trampoline:
2342  *
2343  * push rbp
2344  * mov rbp, rsp
2345  * sub rsp, 16                     // space for skb and dev
2346  * push rbx                        // temp regs to pass start time
2347  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2348  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2349  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2350  * mov rbx, rax                    // remember start time in bpf stats are enabled
2351  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2352  * call addr_of_jited_FENTRY_prog
2353  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2354  * mov rsi, rbx                    // prog start time
2355  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2356  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2357  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2358  * pop rbx
2359  * leave
2360  * ret
2361  *
2362  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2363  * replaced with 'call generated_bpf_trampoline'. When it returns
2364  * eth_type_trans will continue executing with original skb and dev pointers.
2365  *
2366  * The assembly code when eth_type_trans is called from trampoline:
2367  *
2368  * push rbp
2369  * mov rbp, rsp
2370  * sub rsp, 24                     // space for skb, dev, return value
2371  * push rbx                        // temp regs to pass start time
2372  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2373  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2374  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2375  * mov rbx, rax                    // remember start time if bpf stats are enabled
2376  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2377  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2378  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2379  * mov rsi, rbx                    // prog start time
2380  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2381  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2382  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2383  * call eth_type_trans+5           // execute body of eth_type_trans
2384  * mov qword ptr [rbp - 8], rax    // save return value
2385  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2386  * mov rbx, rax                    // remember start time in bpf stats are enabled
2387  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2388  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2389  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2390  * mov rsi, rbx                    // prog start time
2391  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2392  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2393  * pop rbx
2394  * leave
2395  * add rsp, 8                      // skip eth_type_trans's frame
2396  * ret                             // return to its caller
2397  */
2398 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2399 				const struct btf_func_model *m, u32 flags,
2400 				struct bpf_tramp_links *tlinks,
2401 				void *func_addr)
2402 {
2403 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2404 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2405 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2406 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2407 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2408 	void *orig_call = func_addr;
2409 	u8 **branches = NULL;
2410 	u8 *prog;
2411 	bool save_ret;
2412 
2413 	/* extra registers for struct arguments */
2414 	for (i = 0; i < m->nr_args; i++)
2415 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2416 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2417 
2418 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2419 	 * are passed through regs, the remains are through stack.
2420 	 */
2421 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2422 		return -ENOTSUPP;
2423 
2424 	/* Generated trampoline stack layout:
2425 	 *
2426 	 * RBP + 8         [ return address  ]
2427 	 * RBP + 0         [ RBP             ]
2428 	 *
2429 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2430 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2431 	 *
2432 	 *                 [ reg_argN        ]  always
2433 	 *                 [ ...             ]
2434 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2435 	 *
2436 	 * RBP - nregs_off [ regs count	     ]  always
2437 	 *
2438 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2439 	 *
2440 	 * RBP - rbx_off   [ rbx value       ]  always
2441 	 *
2442 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2443 	 *
2444 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2445 	 *                     [ ...        ]
2446 	 *                     [ stack_arg2 ]
2447 	 * RBP - arg_stack_off [ stack_arg1 ]
2448 	 * RSP                 [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2449 	 */
2450 
2451 	/* room for return value of orig_call or fentry prog */
2452 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2453 	if (save_ret)
2454 		stack_size += 8;
2455 
2456 	stack_size += nr_regs * 8;
2457 	regs_off = stack_size;
2458 
2459 	/* regs count  */
2460 	stack_size += 8;
2461 	nregs_off = stack_size;
2462 
2463 	if (flags & BPF_TRAMP_F_IP_ARG)
2464 		stack_size += 8; /* room for IP address argument */
2465 
2466 	ip_off = stack_size;
2467 
2468 	stack_size += 8;
2469 	rbx_off = stack_size;
2470 
2471 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2472 	run_ctx_off = stack_size;
2473 
2474 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2475 		/* the space that used to pass arguments on-stack */
2476 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2477 		/* make sure the stack pointer is 16-byte aligned if we
2478 		 * need pass arguments on stack, which means
2479 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2480 		 * should be 16-byte aligned. Following code depend on
2481 		 * that stack_size is already 8-byte aligned.
2482 		 */
2483 		stack_size += (stack_size % 16) ? 0 : 8;
2484 	}
2485 
2486 	arg_stack_off = stack_size;
2487 
2488 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2489 		/* skip patched call instruction and point orig_call to actual
2490 		 * body of the kernel function.
2491 		 */
2492 		if (is_endbr(*(u32 *)orig_call))
2493 			orig_call += ENDBR_INSN_SIZE;
2494 		orig_call += X86_PATCH_SIZE;
2495 	}
2496 
2497 	prog = image;
2498 
2499 	EMIT_ENDBR();
2500 	/*
2501 	 * This is the direct-call trampoline, as such it needs accounting
2502 	 * for the __fentry__ call.
2503 	 */
2504 	x86_call_depth_emit_accounting(&prog, NULL);
2505 	EMIT1(0x55);		 /* push rbp */
2506 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2507 	if (!is_imm8(stack_size))
2508 		/* sub rsp, stack_size */
2509 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2510 	else
2511 		/* sub rsp, stack_size */
2512 		EMIT4(0x48, 0x83, 0xEC, stack_size);
2513 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2514 		EMIT1(0x50);		/* push rax */
2515 	/* mov QWORD PTR [rbp - rbx_off], rbx */
2516 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2517 
2518 	/* Store number of argument registers of the traced function:
2519 	 *   mov rax, nr_regs
2520 	 *   mov QWORD PTR [rbp - nregs_off], rax
2521 	 */
2522 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2523 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2524 
2525 	if (flags & BPF_TRAMP_F_IP_ARG) {
2526 		/* Store IP address of the traced function:
2527 		 * movabsq rax, func_addr
2528 		 * mov QWORD PTR [rbp - ip_off], rax
2529 		 */
2530 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2531 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2532 	}
2533 
2534 	save_args(m, &prog, regs_off, false);
2535 
2536 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2537 		/* arg1: mov rdi, im */
2538 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2539 		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2540 			ret = -EINVAL;
2541 			goto cleanup;
2542 		}
2543 	}
2544 
2545 	if (fentry->nr_links)
2546 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2547 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2548 			return -EINVAL;
2549 
2550 	if (fmod_ret->nr_links) {
2551 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2552 				   GFP_KERNEL);
2553 		if (!branches)
2554 			return -ENOMEM;
2555 
2556 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2557 				       run_ctx_off, branches)) {
2558 			ret = -EINVAL;
2559 			goto cleanup;
2560 		}
2561 	}
2562 
2563 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2564 		restore_regs(m, &prog, regs_off);
2565 		save_args(m, &prog, arg_stack_off, true);
2566 
2567 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2568 			/* Before calling the original function, restore the
2569 			 * tail_call_cnt from stack to rax.
2570 			 */
2571 			RESTORE_TAIL_CALL_CNT(stack_size);
2572 
2573 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2574 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2575 			EMIT2(0xff, 0xd3); /* call *rbx */
2576 		} else {
2577 			/* call original function */
2578 			if (emit_rsb_call(&prog, orig_call, prog)) {
2579 				ret = -EINVAL;
2580 				goto cleanup;
2581 			}
2582 		}
2583 		/* remember return value in a stack for bpf prog to access */
2584 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2585 		im->ip_after_call = prog;
2586 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2587 		prog += X86_PATCH_SIZE;
2588 	}
2589 
2590 	if (fmod_ret->nr_links) {
2591 		/* From Intel 64 and IA-32 Architectures Optimization
2592 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2593 		 * Coding Rule 11: All branch targets should be 16-byte
2594 		 * aligned.
2595 		 */
2596 		emit_align(&prog, 16);
2597 		/* Update the branches saved in invoke_bpf_mod_ret with the
2598 		 * aligned address of do_fexit.
2599 		 */
2600 		for (i = 0; i < fmod_ret->nr_links; i++)
2601 			emit_cond_near_jump(&branches[i], prog, branches[i],
2602 					    X86_JNE);
2603 	}
2604 
2605 	if (fexit->nr_links)
2606 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2607 			ret = -EINVAL;
2608 			goto cleanup;
2609 		}
2610 
2611 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2612 		restore_regs(m, &prog, regs_off);
2613 
2614 	/* This needs to be done regardless. If there were fmod_ret programs,
2615 	 * the return value is only updated on the stack and still needs to be
2616 	 * restored to R0.
2617 	 */
2618 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2619 		im->ip_epilogue = prog;
2620 		/* arg1: mov rdi, im */
2621 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2622 		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2623 			ret = -EINVAL;
2624 			goto cleanup;
2625 		}
2626 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2627 		/* Before running the original function, restore the
2628 		 * tail_call_cnt from stack to rax.
2629 		 */
2630 		RESTORE_TAIL_CALL_CNT(stack_size);
2631 
2632 	/* restore return value of orig_call or fentry prog back into RAX */
2633 	if (save_ret)
2634 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2635 
2636 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2637 	EMIT1(0xC9); /* leave */
2638 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2639 		/* skip our return address and return to parent */
2640 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2641 	emit_return(&prog, prog);
2642 	/* Make sure the trampoline generation logic doesn't overflow */
2643 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2644 		ret = -EFAULT;
2645 		goto cleanup;
2646 	}
2647 	ret = prog - (u8 *)image;
2648 
2649 cleanup:
2650 	kfree(branches);
2651 	return ret;
2652 }
2653 
2654 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2655 {
2656 	u8 *jg_reloc, *prog = *pprog;
2657 	int pivot, err, jg_bytes = 1;
2658 	s64 jg_offset;
2659 
2660 	if (a == b) {
2661 		/* Leaf node of recursion, i.e. not a range of indices
2662 		 * anymore.
2663 		 */
2664 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2665 		if (!is_simm32(progs[a]))
2666 			return -1;
2667 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2668 			    progs[a]);
2669 		err = emit_cond_near_jump(&prog,	/* je func */
2670 					  (void *)progs[a], image + (prog - buf),
2671 					  X86_JE);
2672 		if (err)
2673 			return err;
2674 
2675 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2676 
2677 		*pprog = prog;
2678 		return 0;
2679 	}
2680 
2681 	/* Not a leaf node, so we pivot, and recursively descend into
2682 	 * the lower and upper ranges.
2683 	 */
2684 	pivot = (b - a) / 2;
2685 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2686 	if (!is_simm32(progs[a + pivot]))
2687 		return -1;
2688 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2689 
2690 	if (pivot > 2) {				/* jg upper_part */
2691 		/* Require near jump. */
2692 		jg_bytes = 4;
2693 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2694 	} else {
2695 		EMIT2(X86_JG, 0);
2696 	}
2697 	jg_reloc = prog;
2698 
2699 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2700 				  progs, image, buf);
2701 	if (err)
2702 		return err;
2703 
2704 	/* From Intel 64 and IA-32 Architectures Optimization
2705 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2706 	 * Coding Rule 11: All branch targets should be 16-byte
2707 	 * aligned.
2708 	 */
2709 	emit_align(&prog, 16);
2710 	jg_offset = prog - jg_reloc;
2711 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2712 
2713 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2714 				  b, progs, image, buf);
2715 	if (err)
2716 		return err;
2717 
2718 	*pprog = prog;
2719 	return 0;
2720 }
2721 
2722 static int cmp_ips(const void *a, const void *b)
2723 {
2724 	const s64 *ipa = a;
2725 	const s64 *ipb = b;
2726 
2727 	if (*ipa > *ipb)
2728 		return 1;
2729 	if (*ipa < *ipb)
2730 		return -1;
2731 	return 0;
2732 }
2733 
2734 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2735 {
2736 	u8 *prog = buf;
2737 
2738 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2739 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2740 }
2741 
2742 struct x64_jit_data {
2743 	struct bpf_binary_header *rw_header;
2744 	struct bpf_binary_header *header;
2745 	int *addrs;
2746 	u8 *image;
2747 	int proglen;
2748 	struct jit_context ctx;
2749 };
2750 
2751 #define MAX_PASSES 20
2752 #define PADDING_PASSES (MAX_PASSES - 5)
2753 
2754 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2755 {
2756 	struct bpf_binary_header *rw_header = NULL;
2757 	struct bpf_binary_header *header = NULL;
2758 	struct bpf_prog *tmp, *orig_prog = prog;
2759 	struct x64_jit_data *jit_data;
2760 	int proglen, oldproglen = 0;
2761 	struct jit_context ctx = {};
2762 	bool tmp_blinded = false;
2763 	bool extra_pass = false;
2764 	bool padding = false;
2765 	u8 *rw_image = NULL;
2766 	u8 *image = NULL;
2767 	int *addrs;
2768 	int pass;
2769 	int i;
2770 
2771 	if (!prog->jit_requested)
2772 		return orig_prog;
2773 
2774 	tmp = bpf_jit_blind_constants(prog);
2775 	/*
2776 	 * If blinding was requested and we failed during blinding,
2777 	 * we must fall back to the interpreter.
2778 	 */
2779 	if (IS_ERR(tmp))
2780 		return orig_prog;
2781 	if (tmp != prog) {
2782 		tmp_blinded = true;
2783 		prog = tmp;
2784 	}
2785 
2786 	jit_data = prog->aux->jit_data;
2787 	if (!jit_data) {
2788 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2789 		if (!jit_data) {
2790 			prog = orig_prog;
2791 			goto out;
2792 		}
2793 		prog->aux->jit_data = jit_data;
2794 	}
2795 	addrs = jit_data->addrs;
2796 	if (addrs) {
2797 		ctx = jit_data->ctx;
2798 		oldproglen = jit_data->proglen;
2799 		image = jit_data->image;
2800 		header = jit_data->header;
2801 		rw_header = jit_data->rw_header;
2802 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2803 		extra_pass = true;
2804 		padding = true;
2805 		goto skip_init_addrs;
2806 	}
2807 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2808 	if (!addrs) {
2809 		prog = orig_prog;
2810 		goto out_addrs;
2811 	}
2812 
2813 	/*
2814 	 * Before first pass, make a rough estimation of addrs[]
2815 	 * each BPF instruction is translated to less than 64 bytes
2816 	 */
2817 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2818 		proglen += 64;
2819 		addrs[i] = proglen;
2820 	}
2821 	ctx.cleanup_addr = proglen;
2822 skip_init_addrs:
2823 
2824 	/*
2825 	 * JITed image shrinks with every pass and the loop iterates
2826 	 * until the image stops shrinking. Very large BPF programs
2827 	 * may converge on the last pass. In such case do one more
2828 	 * pass to emit the final image.
2829 	 */
2830 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2831 		if (!padding && pass >= PADDING_PASSES)
2832 			padding = true;
2833 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2834 		if (proglen <= 0) {
2835 out_image:
2836 			image = NULL;
2837 			if (header) {
2838 				bpf_arch_text_copy(&header->size, &rw_header->size,
2839 						   sizeof(rw_header->size));
2840 				bpf_jit_binary_pack_free(header, rw_header);
2841 			}
2842 			/* Fall back to interpreter mode */
2843 			prog = orig_prog;
2844 			if (extra_pass) {
2845 				prog->bpf_func = NULL;
2846 				prog->jited = 0;
2847 				prog->jited_len = 0;
2848 			}
2849 			goto out_addrs;
2850 		}
2851 		if (image) {
2852 			if (proglen != oldproglen) {
2853 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2854 				       proglen, oldproglen);
2855 				goto out_image;
2856 			}
2857 			break;
2858 		}
2859 		if (proglen == oldproglen) {
2860 			/*
2861 			 * The number of entries in extable is the number of BPF_LDX
2862 			 * insns that access kernel memory via "pointer to BTF type".
2863 			 * The verifier changed their opcode from LDX|MEM|size
2864 			 * to LDX|PROBE_MEM|size to make JITing easier.
2865 			 */
2866 			u32 align = __alignof__(struct exception_table_entry);
2867 			u32 extable_size = prog->aux->num_exentries *
2868 				sizeof(struct exception_table_entry);
2869 
2870 			/* allocate module memory for x86 insns and extable */
2871 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2872 							   &image, align, &rw_header, &rw_image,
2873 							   jit_fill_hole);
2874 			if (!header) {
2875 				prog = orig_prog;
2876 				goto out_addrs;
2877 			}
2878 			prog->aux->extable = (void *) image + roundup(proglen, align);
2879 		}
2880 		oldproglen = proglen;
2881 		cond_resched();
2882 	}
2883 
2884 	if (bpf_jit_enable > 1)
2885 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2886 
2887 	if (image) {
2888 		if (!prog->is_func || extra_pass) {
2889 			/*
2890 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2891 			 *   1) header is not pointing to proper module memory;
2892 			 *   2) the arch doesn't support bpf_arch_text_copy().
2893 			 *
2894 			 * Both cases are serious bugs and justify WARN_ON.
2895 			 */
2896 			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2897 				/* header has been freed */
2898 				header = NULL;
2899 				goto out_image;
2900 			}
2901 
2902 			bpf_tail_call_direct_fixup(prog);
2903 		} else {
2904 			jit_data->addrs = addrs;
2905 			jit_data->ctx = ctx;
2906 			jit_data->proglen = proglen;
2907 			jit_data->image = image;
2908 			jit_data->header = header;
2909 			jit_data->rw_header = rw_header;
2910 		}
2911 		prog->bpf_func = (void *)image;
2912 		prog->jited = 1;
2913 		prog->jited_len = proglen;
2914 	} else {
2915 		prog = orig_prog;
2916 	}
2917 
2918 	if (!image || !prog->is_func || extra_pass) {
2919 		if (image)
2920 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2921 out_addrs:
2922 		kvfree(addrs);
2923 		kfree(jit_data);
2924 		prog->aux->jit_data = NULL;
2925 	}
2926 out:
2927 	if (tmp_blinded)
2928 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2929 					   tmp : orig_prog);
2930 	return prog;
2931 }
2932 
2933 bool bpf_jit_supports_kfunc_call(void)
2934 {
2935 	return true;
2936 }
2937 
2938 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2939 {
2940 	if (text_poke_copy(dst, src, len) == NULL)
2941 		return ERR_PTR(-EINVAL);
2942 	return dst;
2943 }
2944 
2945 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2946 bool bpf_jit_supports_subprog_tailcalls(void)
2947 {
2948 	return true;
2949 }
2950 
2951 void bpf_jit_free(struct bpf_prog *prog)
2952 {
2953 	if (prog->jited) {
2954 		struct x64_jit_data *jit_data = prog->aux->jit_data;
2955 		struct bpf_binary_header *hdr;
2956 
2957 		/*
2958 		 * If we fail the final pass of JIT (from jit_subprogs),
2959 		 * the program may not be finalized yet. Call finalize here
2960 		 * before freeing it.
2961 		 */
2962 		if (jit_data) {
2963 			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2964 						     jit_data->rw_header);
2965 			kvfree(jit_data->addrs);
2966 			kfree(jit_data);
2967 		}
2968 		hdr = bpf_jit_binary_pack_hdr(prog);
2969 		bpf_jit_binary_pack_free(hdr, NULL);
2970 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2971 	}
2972 
2973 	bpf_prog_unlock_free(prog);
2974 }
2975 
2976 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
2977 			       struct bpf_prog *new, struct bpf_prog *old)
2978 {
2979 	u8 *old_addr, *new_addr, *old_bypass_addr;
2980 	int ret;
2981 
2982 	old_bypass_addr = old ? NULL : poke->bypass_addr;
2983 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
2984 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
2985 
2986 	/*
2987 	 * On program loading or teardown, the program's kallsym entry
2988 	 * might not be in place, so we use __bpf_arch_text_poke to skip
2989 	 * the kallsyms check.
2990 	 */
2991 	if (new) {
2992 		ret = __bpf_arch_text_poke(poke->tailcall_target,
2993 					   BPF_MOD_JUMP,
2994 					   old_addr, new_addr);
2995 		BUG_ON(ret < 0);
2996 		if (!old) {
2997 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2998 						   BPF_MOD_JUMP,
2999 						   poke->bypass_addr,
3000 						   NULL);
3001 			BUG_ON(ret < 0);
3002 		}
3003 	} else {
3004 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3005 					   BPF_MOD_JUMP,
3006 					   old_bypass_addr,
3007 					   poke->bypass_addr);
3008 		BUG_ON(ret < 0);
3009 		/* let other CPUs finish the execution of program
3010 		 * so that it will not possible to expose them
3011 		 * to invalid nop, stack unwind, nop state
3012 		 */
3013 		if (!ret)
3014 			synchronize_rcu();
3015 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3016 					   BPF_MOD_JUMP,
3017 					   old_addr, NULL);
3018 		BUG_ON(ret < 0);
3019 	}
3020 }
3021