xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 1f9a1ea8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 #ifdef CONFIG_X86_KERNEL_IBT
51 #define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
52 #else
53 #define EMIT_ENDBR()
54 #endif
55 
56 static bool is_imm8(int value)
57 {
58 	return value <= 127 && value >= -128;
59 }
60 
61 static bool is_simm32(s64 value)
62 {
63 	return value == (s64)(s32)value;
64 }
65 
66 static bool is_uimm32(u64 value)
67 {
68 	return value == (u64)(u32)value;
69 }
70 
71 /* mov dst, src */
72 #define EMIT_mov(DST, SRC)								 \
73 	do {										 \
74 		if (DST != SRC)								 \
75 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
76 	} while (0)
77 
78 static int bpf_size_to_x86_bytes(int bpf_size)
79 {
80 	if (bpf_size == BPF_W)
81 		return 4;
82 	else if (bpf_size == BPF_H)
83 		return 2;
84 	else if (bpf_size == BPF_B)
85 		return 1;
86 	else if (bpf_size == BPF_DW)
87 		return 4; /* imm32 */
88 	else
89 		return 0;
90 }
91 
92 /*
93  * List of x86 cond jumps opcodes (. + s8)
94  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
95  */
96 #define X86_JB  0x72
97 #define X86_JAE 0x73
98 #define X86_JE  0x74
99 #define X86_JNE 0x75
100 #define X86_JBE 0x76
101 #define X86_JA  0x77
102 #define X86_JL  0x7C
103 #define X86_JGE 0x7D
104 #define X86_JLE 0x7E
105 #define X86_JG  0x7F
106 
107 /* Pick a register outside of BPF range for JIT internal work */
108 #define AUX_REG (MAX_BPF_JIT_REG + 1)
109 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
110 
111 /*
112  * The following table maps BPF registers to x86-64 registers.
113  *
114  * x86-64 register R12 is unused, since if used as base address
115  * register in load/store instructions, it always needs an
116  * extra byte of encoding and is callee saved.
117  *
118  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
119  * trampoline. x86-64 register R10 is used for blinding (if enabled).
120  */
121 static const int reg2hex[] = {
122 	[BPF_REG_0] = 0,  /* RAX */
123 	[BPF_REG_1] = 7,  /* RDI */
124 	[BPF_REG_2] = 6,  /* RSI */
125 	[BPF_REG_3] = 2,  /* RDX */
126 	[BPF_REG_4] = 1,  /* RCX */
127 	[BPF_REG_5] = 0,  /* R8  */
128 	[BPF_REG_6] = 3,  /* RBX callee saved */
129 	[BPF_REG_7] = 5,  /* R13 callee saved */
130 	[BPF_REG_8] = 6,  /* R14 callee saved */
131 	[BPF_REG_9] = 7,  /* R15 callee saved */
132 	[BPF_REG_FP] = 5, /* RBP readonly */
133 	[BPF_REG_AX] = 2, /* R10 temp register */
134 	[AUX_REG] = 3,    /* R11 temp register */
135 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
136 };
137 
138 static const int reg2pt_regs[] = {
139 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
140 	[BPF_REG_1] = offsetof(struct pt_regs, di),
141 	[BPF_REG_2] = offsetof(struct pt_regs, si),
142 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
143 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
144 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
145 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
146 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
147 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
148 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
149 };
150 
151 /*
152  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
153  * which need extra byte of encoding.
154  * rax,rcx,...,rbp have simpler encoding
155  */
156 static bool is_ereg(u32 reg)
157 {
158 	return (1 << reg) & (BIT(BPF_REG_5) |
159 			     BIT(AUX_REG) |
160 			     BIT(BPF_REG_7) |
161 			     BIT(BPF_REG_8) |
162 			     BIT(BPF_REG_9) |
163 			     BIT(X86_REG_R9) |
164 			     BIT(BPF_REG_AX));
165 }
166 
167 /*
168  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
169  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
170  * of encoding. al,cl,dl,bl have simpler encoding.
171  */
172 static bool is_ereg_8l(u32 reg)
173 {
174 	return is_ereg(reg) ||
175 	    (1 << reg) & (BIT(BPF_REG_1) |
176 			  BIT(BPF_REG_2) |
177 			  BIT(BPF_REG_FP));
178 }
179 
180 static bool is_axreg(u32 reg)
181 {
182 	return reg == BPF_REG_0;
183 }
184 
185 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
186 static u8 add_1mod(u8 byte, u32 reg)
187 {
188 	if (is_ereg(reg))
189 		byte |= 1;
190 	return byte;
191 }
192 
193 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
194 {
195 	if (is_ereg(r1))
196 		byte |= 1;
197 	if (is_ereg(r2))
198 		byte |= 4;
199 	return byte;
200 }
201 
202 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
203 static u8 add_1reg(u8 byte, u32 dst_reg)
204 {
205 	return byte + reg2hex[dst_reg];
206 }
207 
208 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
209 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
210 {
211 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
212 }
213 
214 /* Some 1-byte opcodes for binary ALU operations */
215 static u8 simple_alu_opcodes[] = {
216 	[BPF_ADD] = 0x01,
217 	[BPF_SUB] = 0x29,
218 	[BPF_AND] = 0x21,
219 	[BPF_OR] = 0x09,
220 	[BPF_XOR] = 0x31,
221 	[BPF_LSH] = 0xE0,
222 	[BPF_RSH] = 0xE8,
223 	[BPF_ARSH] = 0xF8,
224 };
225 
226 static void jit_fill_hole(void *area, unsigned int size)
227 {
228 	/* Fill whole space with INT3 instructions */
229 	memset(area, 0xcc, size);
230 }
231 
232 int bpf_arch_text_invalidate(void *dst, size_t len)
233 {
234 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
235 }
236 
237 struct jit_context {
238 	int cleanup_addr; /* Epilogue code offset */
239 
240 	/*
241 	 * Program specific offsets of labels in the code; these rely on the
242 	 * JIT doing at least 2 passes, recording the position on the first
243 	 * pass, only to generate the correct offset on the second pass.
244 	 */
245 	int tail_call_direct_label;
246 	int tail_call_indirect_label;
247 };
248 
249 /* Maximum number of bytes emitted while JITing one eBPF insn */
250 #define BPF_MAX_INSN_SIZE	128
251 #define BPF_INSN_SAFETY		64
252 
253 /* Number of bytes emit_patch() needs to generate instructions */
254 #define X86_PATCH_SIZE		5
255 /* Number of bytes that will be skipped on tailcall */
256 #define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
257 
258 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
259 {
260 	u8 *prog = *pprog;
261 
262 	if (callee_regs_used[0])
263 		EMIT1(0x53);         /* push rbx */
264 	if (callee_regs_used[1])
265 		EMIT2(0x41, 0x55);   /* push r13 */
266 	if (callee_regs_used[2])
267 		EMIT2(0x41, 0x56);   /* push r14 */
268 	if (callee_regs_used[3])
269 		EMIT2(0x41, 0x57);   /* push r15 */
270 	*pprog = prog;
271 }
272 
273 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
274 {
275 	u8 *prog = *pprog;
276 
277 	if (callee_regs_used[3])
278 		EMIT2(0x41, 0x5F);   /* pop r15 */
279 	if (callee_regs_used[2])
280 		EMIT2(0x41, 0x5E);   /* pop r14 */
281 	if (callee_regs_used[1])
282 		EMIT2(0x41, 0x5D);   /* pop r13 */
283 	if (callee_regs_used[0])
284 		EMIT1(0x5B);         /* pop rbx */
285 	*pprog = prog;
286 }
287 
288 /*
289  * Emit x86-64 prologue code for BPF program.
290  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
291  * while jumping to another program
292  */
293 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
294 			  bool tail_call_reachable, bool is_subprog)
295 {
296 	u8 *prog = *pprog;
297 
298 	/* BPF trampoline can be made to work without these nops,
299 	 * but let's waste 5 bytes for now and optimize later
300 	 */
301 	EMIT_ENDBR();
302 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
303 	prog += X86_PATCH_SIZE;
304 	if (!ebpf_from_cbpf) {
305 		if (tail_call_reachable && !is_subprog)
306 			EMIT2(0x31, 0xC0); /* xor eax, eax */
307 		else
308 			EMIT2(0x66, 0x90); /* nop2 */
309 	}
310 	EMIT1(0x55);             /* push rbp */
311 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
312 
313 	/* X86_TAIL_CALL_OFFSET is here */
314 	EMIT_ENDBR();
315 
316 	/* sub rsp, rounded_stack_depth */
317 	if (stack_depth)
318 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
319 	if (tail_call_reachable)
320 		EMIT1(0x50);         /* push rax */
321 	*pprog = prog;
322 }
323 
324 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
325 {
326 	u8 *prog = *pprog;
327 	s64 offset;
328 
329 	offset = func - (ip + X86_PATCH_SIZE);
330 	if (!is_simm32(offset)) {
331 		pr_err("Target call %p is out of range\n", func);
332 		return -ERANGE;
333 	}
334 	EMIT1_off32(opcode, offset);
335 	*pprog = prog;
336 	return 0;
337 }
338 
339 static int emit_call(u8 **pprog, void *func, void *ip)
340 {
341 	return emit_patch(pprog, func, ip, 0xE8);
342 }
343 
344 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
345 {
346 	OPTIMIZER_HIDE_VAR(func);
347 	x86_call_depth_emit_accounting(pprog, func);
348 	return emit_patch(pprog, func, ip, 0xE8);
349 }
350 
351 static int emit_jump(u8 **pprog, void *func, void *ip)
352 {
353 	return emit_patch(pprog, func, ip, 0xE9);
354 }
355 
356 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
357 				void *old_addr, void *new_addr)
358 {
359 	const u8 *nop_insn = x86_nops[5];
360 	u8 old_insn[X86_PATCH_SIZE];
361 	u8 new_insn[X86_PATCH_SIZE];
362 	u8 *prog;
363 	int ret;
364 
365 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
366 	if (old_addr) {
367 		prog = old_insn;
368 		ret = t == BPF_MOD_CALL ?
369 		      emit_call(&prog, old_addr, ip) :
370 		      emit_jump(&prog, old_addr, ip);
371 		if (ret)
372 			return ret;
373 	}
374 
375 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
376 	if (new_addr) {
377 		prog = new_insn;
378 		ret = t == BPF_MOD_CALL ?
379 		      emit_call(&prog, new_addr, ip) :
380 		      emit_jump(&prog, new_addr, ip);
381 		if (ret)
382 			return ret;
383 	}
384 
385 	ret = -EBUSY;
386 	mutex_lock(&text_mutex);
387 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
388 		goto out;
389 	ret = 1;
390 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
391 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
392 		ret = 0;
393 	}
394 out:
395 	mutex_unlock(&text_mutex);
396 	return ret;
397 }
398 
399 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
400 		       void *old_addr, void *new_addr)
401 {
402 	if (!is_kernel_text((long)ip) &&
403 	    !is_bpf_text_address((long)ip))
404 		/* BPF poking in modules is not supported */
405 		return -EINVAL;
406 
407 	/*
408 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
409 	 * with an ENDBR instruction.
410 	 */
411 	if (is_endbr(*(u32 *)ip))
412 		ip += ENDBR_INSN_SIZE;
413 
414 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
415 }
416 
417 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
418 
419 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
420 {
421 	u8 *prog = *pprog;
422 
423 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
424 		EMIT_LFENCE();
425 		EMIT2(0xFF, 0xE0 + reg);
426 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
427 		OPTIMIZER_HIDE_VAR(reg);
428 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
429 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
430 		else
431 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
432 	} else {
433 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
434 		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
435 			EMIT1(0xCC);		/* int3 */
436 	}
437 
438 	*pprog = prog;
439 }
440 
441 static void emit_return(u8 **pprog, u8 *ip)
442 {
443 	u8 *prog = *pprog;
444 
445 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
446 		emit_jump(&prog, x86_return_thunk, ip);
447 	} else {
448 		EMIT1(0xC3);		/* ret */
449 		if (IS_ENABLED(CONFIG_SLS))
450 			EMIT1(0xCC);	/* int3 */
451 	}
452 
453 	*pprog = prog;
454 }
455 
456 /*
457  * Generate the following code:
458  *
459  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
460  *   if (index >= array->map.max_entries)
461  *     goto out;
462  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
463  *     goto out;
464  *   prog = array->ptrs[index];
465  *   if (prog == NULL)
466  *     goto out;
467  *   goto *(prog->bpf_func + prologue_size);
468  * out:
469  */
470 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
471 					u32 stack_depth, u8 *ip,
472 					struct jit_context *ctx)
473 {
474 	int tcc_off = -4 - round_up(stack_depth, 8);
475 	u8 *prog = *pprog, *start = *pprog;
476 	int offset;
477 
478 	/*
479 	 * rdi - pointer to ctx
480 	 * rsi - pointer to bpf_array
481 	 * rdx - index in bpf_array
482 	 */
483 
484 	/*
485 	 * if (index >= array->map.max_entries)
486 	 *	goto out;
487 	 */
488 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
489 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
490 	      offsetof(struct bpf_array, map.max_entries));
491 
492 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
493 	EMIT2(X86_JBE, offset);                   /* jbe out */
494 
495 	/*
496 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
497 	 *	goto out;
498 	 */
499 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
500 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
501 
502 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
503 	EMIT2(X86_JAE, offset);                   /* jae out */
504 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
505 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
506 
507 	/* prog = array->ptrs[index]; */
508 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
509 		    offsetof(struct bpf_array, ptrs));
510 
511 	/*
512 	 * if (prog == NULL)
513 	 *	goto out;
514 	 */
515 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
516 
517 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
518 	EMIT2(X86_JE, offset);                    /* je out */
519 
520 	pop_callee_regs(&prog, callee_regs_used);
521 
522 	EMIT1(0x58);                              /* pop rax */
523 	if (stack_depth)
524 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
525 			    round_up(stack_depth, 8));
526 
527 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
528 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
529 	      offsetof(struct bpf_prog, bpf_func));
530 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
531 	      X86_TAIL_CALL_OFFSET);
532 	/*
533 	 * Now we're ready to jump into next BPF program
534 	 * rdi == ctx (1st arg)
535 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
536 	 */
537 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
538 
539 	/* out: */
540 	ctx->tail_call_indirect_label = prog - start;
541 	*pprog = prog;
542 }
543 
544 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
545 				      u8 **pprog, u8 *ip,
546 				      bool *callee_regs_used, u32 stack_depth,
547 				      struct jit_context *ctx)
548 {
549 	int tcc_off = -4 - round_up(stack_depth, 8);
550 	u8 *prog = *pprog, *start = *pprog;
551 	int offset;
552 
553 	/*
554 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
555 	 *	goto out;
556 	 */
557 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
558 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
559 
560 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
561 	EMIT2(X86_JAE, offset);                       /* jae out */
562 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
563 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
564 
565 	poke->tailcall_bypass = ip + (prog - start);
566 	poke->adj_off = X86_TAIL_CALL_OFFSET;
567 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
568 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
569 
570 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
571 		  poke->tailcall_bypass);
572 
573 	pop_callee_regs(&prog, callee_regs_used);
574 	EMIT1(0x58);                                  /* pop rax */
575 	if (stack_depth)
576 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
577 
578 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
579 	prog += X86_PATCH_SIZE;
580 
581 	/* out: */
582 	ctx->tail_call_direct_label = prog - start;
583 
584 	*pprog = prog;
585 }
586 
587 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
588 {
589 	struct bpf_jit_poke_descriptor *poke;
590 	struct bpf_array *array;
591 	struct bpf_prog *target;
592 	int i, ret;
593 
594 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
595 		poke = &prog->aux->poke_tab[i];
596 		if (poke->aux && poke->aux != prog->aux)
597 			continue;
598 
599 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
600 
601 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
602 			continue;
603 
604 		array = container_of(poke->tail_call.map, struct bpf_array, map);
605 		mutex_lock(&array->aux->poke_mutex);
606 		target = array->ptrs[poke->tail_call.key];
607 		if (target) {
608 			ret = __bpf_arch_text_poke(poke->tailcall_target,
609 						   BPF_MOD_JUMP, NULL,
610 						   (u8 *)target->bpf_func +
611 						   poke->adj_off);
612 			BUG_ON(ret < 0);
613 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
614 						   BPF_MOD_JUMP,
615 						   (u8 *)poke->tailcall_target +
616 						   X86_PATCH_SIZE, NULL);
617 			BUG_ON(ret < 0);
618 		}
619 		WRITE_ONCE(poke->tailcall_target_stable, true);
620 		mutex_unlock(&array->aux->poke_mutex);
621 	}
622 }
623 
624 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
625 			   u32 dst_reg, const u32 imm32)
626 {
627 	u8 *prog = *pprog;
628 	u8 b1, b2, b3;
629 
630 	/*
631 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
632 	 * (which zero-extends imm32) to save 2 bytes.
633 	 */
634 	if (sign_propagate && (s32)imm32 < 0) {
635 		/* 'mov %rax, imm32' sign extends imm32 */
636 		b1 = add_1mod(0x48, dst_reg);
637 		b2 = 0xC7;
638 		b3 = 0xC0;
639 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
640 		goto done;
641 	}
642 
643 	/*
644 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
645 	 * to save 3 bytes.
646 	 */
647 	if (imm32 == 0) {
648 		if (is_ereg(dst_reg))
649 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
650 		b2 = 0x31; /* xor */
651 		b3 = 0xC0;
652 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
653 		goto done;
654 	}
655 
656 	/* mov %eax, imm32 */
657 	if (is_ereg(dst_reg))
658 		EMIT1(add_1mod(0x40, dst_reg));
659 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
660 done:
661 	*pprog = prog;
662 }
663 
664 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
665 			   const u32 imm32_hi, const u32 imm32_lo)
666 {
667 	u8 *prog = *pprog;
668 
669 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
670 		/*
671 		 * For emitting plain u32, where sign bit must not be
672 		 * propagated LLVM tends to load imm64 over mov32
673 		 * directly, so save couple of bytes by just doing
674 		 * 'mov %eax, imm32' instead.
675 		 */
676 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
677 	} else {
678 		/* movabsq rax, imm64 */
679 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
680 		EMIT(imm32_lo, 4);
681 		EMIT(imm32_hi, 4);
682 	}
683 
684 	*pprog = prog;
685 }
686 
687 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
688 {
689 	u8 *prog = *pprog;
690 
691 	if (is64) {
692 		/* mov dst, src */
693 		EMIT_mov(dst_reg, src_reg);
694 	} else {
695 		/* mov32 dst, src */
696 		if (is_ereg(dst_reg) || is_ereg(src_reg))
697 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
698 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
699 	}
700 
701 	*pprog = prog;
702 }
703 
704 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
705 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
706 {
707 	u8 *prog = *pprog;
708 
709 	if (is_imm8(off)) {
710 		/* 1-byte signed displacement.
711 		 *
712 		 * If off == 0 we could skip this and save one extra byte, but
713 		 * special case of x86 R13 which always needs an offset is not
714 		 * worth the hassle
715 		 */
716 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
717 	} else {
718 		/* 4-byte signed displacement */
719 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
720 	}
721 	*pprog = prog;
722 }
723 
724 /*
725  * Emit a REX byte if it will be necessary to address these registers
726  */
727 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
728 {
729 	u8 *prog = *pprog;
730 
731 	if (is64)
732 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
733 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
734 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
735 	*pprog = prog;
736 }
737 
738 /*
739  * Similar version of maybe_emit_mod() for a single register
740  */
741 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
742 {
743 	u8 *prog = *pprog;
744 
745 	if (is64)
746 		EMIT1(add_1mod(0x48, reg));
747 	else if (is_ereg(reg))
748 		EMIT1(add_1mod(0x40, reg));
749 	*pprog = prog;
750 }
751 
752 /* LDX: dst_reg = *(u8*)(src_reg + off) */
753 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
754 {
755 	u8 *prog = *pprog;
756 
757 	switch (size) {
758 	case BPF_B:
759 		/* Emit 'movzx rax, byte ptr [rax + off]' */
760 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
761 		break;
762 	case BPF_H:
763 		/* Emit 'movzx rax, word ptr [rax + off]' */
764 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
765 		break;
766 	case BPF_W:
767 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
768 		if (is_ereg(dst_reg) || is_ereg(src_reg))
769 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
770 		else
771 			EMIT1(0x8B);
772 		break;
773 	case BPF_DW:
774 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
775 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
776 		break;
777 	}
778 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
779 	*pprog = prog;
780 }
781 
782 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
783 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
784 {
785 	u8 *prog = *pprog;
786 
787 	switch (size) {
788 	case BPF_B:
789 		/* Emit 'movsx rax, byte ptr [rax + off]' */
790 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
791 		break;
792 	case BPF_H:
793 		/* Emit 'movsx rax, word ptr [rax + off]' */
794 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
795 		break;
796 	case BPF_W:
797 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
798 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
799 		break;
800 	}
801 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
802 	*pprog = prog;
803 }
804 
805 /* STX: *(u8*)(dst_reg + off) = src_reg */
806 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
807 {
808 	u8 *prog = *pprog;
809 
810 	switch (size) {
811 	case BPF_B:
812 		/* Emit 'mov byte ptr [rax + off], al' */
813 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
814 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
815 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
816 		else
817 			EMIT1(0x88);
818 		break;
819 	case BPF_H:
820 		if (is_ereg(dst_reg) || is_ereg(src_reg))
821 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
822 		else
823 			EMIT2(0x66, 0x89);
824 		break;
825 	case BPF_W:
826 		if (is_ereg(dst_reg) || is_ereg(src_reg))
827 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
828 		else
829 			EMIT1(0x89);
830 		break;
831 	case BPF_DW:
832 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
833 		break;
834 	}
835 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
836 	*pprog = prog;
837 }
838 
839 static int emit_atomic(u8 **pprog, u8 atomic_op,
840 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
841 {
842 	u8 *prog = *pprog;
843 
844 	EMIT1(0xF0); /* lock prefix */
845 
846 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
847 
848 	/* emit opcode */
849 	switch (atomic_op) {
850 	case BPF_ADD:
851 	case BPF_AND:
852 	case BPF_OR:
853 	case BPF_XOR:
854 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
855 		EMIT1(simple_alu_opcodes[atomic_op]);
856 		break;
857 	case BPF_ADD | BPF_FETCH:
858 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
859 		EMIT2(0x0F, 0xC1);
860 		break;
861 	case BPF_XCHG:
862 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
863 		EMIT1(0x87);
864 		break;
865 	case BPF_CMPXCHG:
866 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
867 		EMIT2(0x0F, 0xB1);
868 		break;
869 	default:
870 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
871 		return -EFAULT;
872 	}
873 
874 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
875 
876 	*pprog = prog;
877 	return 0;
878 }
879 
880 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
881 {
882 	u32 reg = x->fixup >> 8;
883 
884 	/* jump over faulting load and clear dest register */
885 	*(unsigned long *)((void *)regs + reg) = 0;
886 	regs->ip += x->fixup & 0xff;
887 	return true;
888 }
889 
890 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
891 			     bool *regs_used, bool *tail_call_seen)
892 {
893 	int i;
894 
895 	for (i = 1; i <= insn_cnt; i++, insn++) {
896 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
897 			*tail_call_seen = true;
898 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
899 			regs_used[0] = true;
900 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
901 			regs_used[1] = true;
902 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
903 			regs_used[2] = true;
904 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
905 			regs_used[3] = true;
906 	}
907 }
908 
909 static void emit_nops(u8 **pprog, int len)
910 {
911 	u8 *prog = *pprog;
912 	int i, noplen;
913 
914 	while (len > 0) {
915 		noplen = len;
916 
917 		if (noplen > ASM_NOP_MAX)
918 			noplen = ASM_NOP_MAX;
919 
920 		for (i = 0; i < noplen; i++)
921 			EMIT1(x86_nops[noplen][i]);
922 		len -= noplen;
923 	}
924 
925 	*pprog = prog;
926 }
927 
928 /* emit the 3-byte VEX prefix
929  *
930  * r: same as rex.r, extra bit for ModRM reg field
931  * x: same as rex.x, extra bit for SIB index field
932  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
933  * m: opcode map select, encoding escape bytes e.g. 0x0f38
934  * w: same as rex.w (32 bit or 64 bit) or opcode specific
935  * src_reg2: additional source reg (encoded as BPF reg)
936  * l: vector length (128 bit or 256 bit) or reserved
937  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
938  */
939 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
940 		      bool w, u8 src_reg2, bool l, u8 pp)
941 {
942 	u8 *prog = *pprog;
943 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
944 	u8 b1, b2;
945 	u8 vvvv = reg2hex[src_reg2];
946 
947 	/* reg2hex gives only the lower 3 bit of vvvv */
948 	if (is_ereg(src_reg2))
949 		vvvv |= 1 << 3;
950 
951 	/*
952 	 * 2nd byte of 3-byte VEX prefix
953 	 * ~ means bit inverted encoding
954 	 *
955 	 *    7                           0
956 	 *  +---+---+---+---+---+---+---+---+
957 	 *  |~R |~X |~B |         m         |
958 	 *  +---+---+---+---+---+---+---+---+
959 	 */
960 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
961 	/*
962 	 * 3rd byte of 3-byte VEX prefix
963 	 *
964 	 *    7                           0
965 	 *  +---+---+---+---+---+---+---+---+
966 	 *  | W |     ~vvvv     | L |   pp  |
967 	 *  +---+---+---+---+---+---+---+---+
968 	 */
969 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
970 
971 	EMIT3(b0, b1, b2);
972 	*pprog = prog;
973 }
974 
975 /* emit BMI2 shift instruction */
976 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
977 {
978 	u8 *prog = *pprog;
979 	bool r = is_ereg(dst_reg);
980 	u8 m = 2; /* escape code 0f38 */
981 
982 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
983 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
984 	*pprog = prog;
985 }
986 
987 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
988 
989 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
990 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
991 {
992 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
993 	struct bpf_insn *insn = bpf_prog->insnsi;
994 	bool callee_regs_used[4] = {};
995 	int insn_cnt = bpf_prog->len;
996 	bool tail_call_seen = false;
997 	bool seen_exit = false;
998 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
999 	int i, excnt = 0;
1000 	int ilen, proglen = 0;
1001 	u8 *prog = temp;
1002 	int err;
1003 
1004 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1005 			 &tail_call_seen);
1006 
1007 	/* tail call's presence in current prog implies it is reachable */
1008 	tail_call_reachable |= tail_call_seen;
1009 
1010 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1011 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1012 		      bpf_prog->aux->func_idx != 0);
1013 	push_callee_regs(&prog, callee_regs_used);
1014 
1015 	ilen = prog - temp;
1016 	if (rw_image)
1017 		memcpy(rw_image + proglen, temp, ilen);
1018 	proglen += ilen;
1019 	addrs[0] = proglen;
1020 	prog = temp;
1021 
1022 	for (i = 1; i <= insn_cnt; i++, insn++) {
1023 		const s32 imm32 = insn->imm;
1024 		u32 dst_reg = insn->dst_reg;
1025 		u32 src_reg = insn->src_reg;
1026 		u8 b2 = 0, b3 = 0;
1027 		u8 *start_of_ldx;
1028 		s64 jmp_offset;
1029 		s16 insn_off;
1030 		u8 jmp_cond;
1031 		u8 *func;
1032 		int nops;
1033 
1034 		switch (insn->code) {
1035 			/* ALU */
1036 		case BPF_ALU | BPF_ADD | BPF_X:
1037 		case BPF_ALU | BPF_SUB | BPF_X:
1038 		case BPF_ALU | BPF_AND | BPF_X:
1039 		case BPF_ALU | BPF_OR | BPF_X:
1040 		case BPF_ALU | BPF_XOR | BPF_X:
1041 		case BPF_ALU64 | BPF_ADD | BPF_X:
1042 		case BPF_ALU64 | BPF_SUB | BPF_X:
1043 		case BPF_ALU64 | BPF_AND | BPF_X:
1044 		case BPF_ALU64 | BPF_OR | BPF_X:
1045 		case BPF_ALU64 | BPF_XOR | BPF_X:
1046 			maybe_emit_mod(&prog, dst_reg, src_reg,
1047 				       BPF_CLASS(insn->code) == BPF_ALU64);
1048 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1049 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1050 			break;
1051 
1052 		case BPF_ALU64 | BPF_MOV | BPF_X:
1053 		case BPF_ALU | BPF_MOV | BPF_X:
1054 			emit_mov_reg(&prog,
1055 				     BPF_CLASS(insn->code) == BPF_ALU64,
1056 				     dst_reg, src_reg);
1057 			break;
1058 
1059 			/* neg dst */
1060 		case BPF_ALU | BPF_NEG:
1061 		case BPF_ALU64 | BPF_NEG:
1062 			maybe_emit_1mod(&prog, dst_reg,
1063 					BPF_CLASS(insn->code) == BPF_ALU64);
1064 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1065 			break;
1066 
1067 		case BPF_ALU | BPF_ADD | BPF_K:
1068 		case BPF_ALU | BPF_SUB | BPF_K:
1069 		case BPF_ALU | BPF_AND | BPF_K:
1070 		case BPF_ALU | BPF_OR | BPF_K:
1071 		case BPF_ALU | BPF_XOR | BPF_K:
1072 		case BPF_ALU64 | BPF_ADD | BPF_K:
1073 		case BPF_ALU64 | BPF_SUB | BPF_K:
1074 		case BPF_ALU64 | BPF_AND | BPF_K:
1075 		case BPF_ALU64 | BPF_OR | BPF_K:
1076 		case BPF_ALU64 | BPF_XOR | BPF_K:
1077 			maybe_emit_1mod(&prog, dst_reg,
1078 					BPF_CLASS(insn->code) == BPF_ALU64);
1079 
1080 			/*
1081 			 * b3 holds 'normal' opcode, b2 short form only valid
1082 			 * in case dst is eax/rax.
1083 			 */
1084 			switch (BPF_OP(insn->code)) {
1085 			case BPF_ADD:
1086 				b3 = 0xC0;
1087 				b2 = 0x05;
1088 				break;
1089 			case BPF_SUB:
1090 				b3 = 0xE8;
1091 				b2 = 0x2D;
1092 				break;
1093 			case BPF_AND:
1094 				b3 = 0xE0;
1095 				b2 = 0x25;
1096 				break;
1097 			case BPF_OR:
1098 				b3 = 0xC8;
1099 				b2 = 0x0D;
1100 				break;
1101 			case BPF_XOR:
1102 				b3 = 0xF0;
1103 				b2 = 0x35;
1104 				break;
1105 			}
1106 
1107 			if (is_imm8(imm32))
1108 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1109 			else if (is_axreg(dst_reg))
1110 				EMIT1_off32(b2, imm32);
1111 			else
1112 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1113 			break;
1114 
1115 		case BPF_ALU64 | BPF_MOV | BPF_K:
1116 		case BPF_ALU | BPF_MOV | BPF_K:
1117 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1118 				       dst_reg, imm32);
1119 			break;
1120 
1121 		case BPF_LD | BPF_IMM | BPF_DW:
1122 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1123 			insn++;
1124 			i++;
1125 			break;
1126 
1127 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1128 		case BPF_ALU | BPF_MOD | BPF_X:
1129 		case BPF_ALU | BPF_DIV | BPF_X:
1130 		case BPF_ALU | BPF_MOD | BPF_K:
1131 		case BPF_ALU | BPF_DIV | BPF_K:
1132 		case BPF_ALU64 | BPF_MOD | BPF_X:
1133 		case BPF_ALU64 | BPF_DIV | BPF_X:
1134 		case BPF_ALU64 | BPF_MOD | BPF_K:
1135 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1136 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1137 
1138 			if (dst_reg != BPF_REG_0)
1139 				EMIT1(0x50); /* push rax */
1140 			if (dst_reg != BPF_REG_3)
1141 				EMIT1(0x52); /* push rdx */
1142 
1143 			if (BPF_SRC(insn->code) == BPF_X) {
1144 				if (src_reg == BPF_REG_0 ||
1145 				    src_reg == BPF_REG_3) {
1146 					/* mov r11, src_reg */
1147 					EMIT_mov(AUX_REG, src_reg);
1148 					src_reg = AUX_REG;
1149 				}
1150 			} else {
1151 				/* mov r11, imm32 */
1152 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1153 				src_reg = AUX_REG;
1154 			}
1155 
1156 			if (dst_reg != BPF_REG_0)
1157 				/* mov rax, dst_reg */
1158 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1159 
1160 			/*
1161 			 * xor edx, edx
1162 			 * equivalent to 'xor rdx, rdx', but one byte less
1163 			 */
1164 			EMIT2(0x31, 0xd2);
1165 
1166 			/* div src_reg */
1167 			maybe_emit_1mod(&prog, src_reg, is64);
1168 			EMIT2(0xF7, add_1reg(0xF0, src_reg));
1169 
1170 			if (BPF_OP(insn->code) == BPF_MOD &&
1171 			    dst_reg != BPF_REG_3)
1172 				/* mov dst_reg, rdx */
1173 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1174 			else if (BPF_OP(insn->code) == BPF_DIV &&
1175 				 dst_reg != BPF_REG_0)
1176 				/* mov dst_reg, rax */
1177 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1178 
1179 			if (dst_reg != BPF_REG_3)
1180 				EMIT1(0x5A); /* pop rdx */
1181 			if (dst_reg != BPF_REG_0)
1182 				EMIT1(0x58); /* pop rax */
1183 			break;
1184 		}
1185 
1186 		case BPF_ALU | BPF_MUL | BPF_K:
1187 		case BPF_ALU64 | BPF_MUL | BPF_K:
1188 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1189 				       BPF_CLASS(insn->code) == BPF_ALU64);
1190 
1191 			if (is_imm8(imm32))
1192 				/* imul dst_reg, dst_reg, imm8 */
1193 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1194 				      imm32);
1195 			else
1196 				/* imul dst_reg, dst_reg, imm32 */
1197 				EMIT2_off32(0x69,
1198 					    add_2reg(0xC0, dst_reg, dst_reg),
1199 					    imm32);
1200 			break;
1201 
1202 		case BPF_ALU | BPF_MUL | BPF_X:
1203 		case BPF_ALU64 | BPF_MUL | BPF_X:
1204 			maybe_emit_mod(&prog, src_reg, dst_reg,
1205 				       BPF_CLASS(insn->code) == BPF_ALU64);
1206 
1207 			/* imul dst_reg, src_reg */
1208 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1209 			break;
1210 
1211 			/* Shifts */
1212 		case BPF_ALU | BPF_LSH | BPF_K:
1213 		case BPF_ALU | BPF_RSH | BPF_K:
1214 		case BPF_ALU | BPF_ARSH | BPF_K:
1215 		case BPF_ALU64 | BPF_LSH | BPF_K:
1216 		case BPF_ALU64 | BPF_RSH | BPF_K:
1217 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1218 			maybe_emit_1mod(&prog, dst_reg,
1219 					BPF_CLASS(insn->code) == BPF_ALU64);
1220 
1221 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1222 			if (imm32 == 1)
1223 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1224 			else
1225 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1226 			break;
1227 
1228 		case BPF_ALU | BPF_LSH | BPF_X:
1229 		case BPF_ALU | BPF_RSH | BPF_X:
1230 		case BPF_ALU | BPF_ARSH | BPF_X:
1231 		case BPF_ALU64 | BPF_LSH | BPF_X:
1232 		case BPF_ALU64 | BPF_RSH | BPF_X:
1233 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1234 			/* BMI2 shifts aren't better when shift count is already in rcx */
1235 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1236 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1237 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1238 				u8 op;
1239 
1240 				switch (BPF_OP(insn->code)) {
1241 				case BPF_LSH:
1242 					op = 1; /* prefix 0x66 */
1243 					break;
1244 				case BPF_RSH:
1245 					op = 3; /* prefix 0xf2 */
1246 					break;
1247 				case BPF_ARSH:
1248 					op = 2; /* prefix 0xf3 */
1249 					break;
1250 				}
1251 
1252 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1253 
1254 				break;
1255 			}
1256 
1257 			if (src_reg != BPF_REG_4) { /* common case */
1258 				/* Check for bad case when dst_reg == rcx */
1259 				if (dst_reg == BPF_REG_4) {
1260 					/* mov r11, dst_reg */
1261 					EMIT_mov(AUX_REG, dst_reg);
1262 					dst_reg = AUX_REG;
1263 				} else {
1264 					EMIT1(0x51); /* push rcx */
1265 				}
1266 				/* mov rcx, src_reg */
1267 				EMIT_mov(BPF_REG_4, src_reg);
1268 			}
1269 
1270 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1271 			maybe_emit_1mod(&prog, dst_reg,
1272 					BPF_CLASS(insn->code) == BPF_ALU64);
1273 
1274 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1275 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1276 
1277 			if (src_reg != BPF_REG_4) {
1278 				if (insn->dst_reg == BPF_REG_4)
1279 					/* mov dst_reg, r11 */
1280 					EMIT_mov(insn->dst_reg, AUX_REG);
1281 				else
1282 					EMIT1(0x59); /* pop rcx */
1283 			}
1284 
1285 			break;
1286 
1287 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1288 			switch (imm32) {
1289 			case 16:
1290 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1291 				EMIT1(0x66);
1292 				if (is_ereg(dst_reg))
1293 					EMIT1(0x41);
1294 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1295 
1296 				/* Emit 'movzwl eax, ax' */
1297 				if (is_ereg(dst_reg))
1298 					EMIT3(0x45, 0x0F, 0xB7);
1299 				else
1300 					EMIT2(0x0F, 0xB7);
1301 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1302 				break;
1303 			case 32:
1304 				/* Emit 'bswap eax' to swap lower 4 bytes */
1305 				if (is_ereg(dst_reg))
1306 					EMIT2(0x41, 0x0F);
1307 				else
1308 					EMIT1(0x0F);
1309 				EMIT1(add_1reg(0xC8, dst_reg));
1310 				break;
1311 			case 64:
1312 				/* Emit 'bswap rax' to swap 8 bytes */
1313 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1314 				      add_1reg(0xC8, dst_reg));
1315 				break;
1316 			}
1317 			break;
1318 
1319 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1320 			switch (imm32) {
1321 			case 16:
1322 				/*
1323 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1324 				 * into 64 bit
1325 				 */
1326 				if (is_ereg(dst_reg))
1327 					EMIT3(0x45, 0x0F, 0xB7);
1328 				else
1329 					EMIT2(0x0F, 0xB7);
1330 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1331 				break;
1332 			case 32:
1333 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1334 				if (is_ereg(dst_reg))
1335 					EMIT1(0x45);
1336 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1337 				break;
1338 			case 64:
1339 				/* nop */
1340 				break;
1341 			}
1342 			break;
1343 
1344 			/* speculation barrier */
1345 		case BPF_ST | BPF_NOSPEC:
1346 			EMIT_LFENCE();
1347 			break;
1348 
1349 			/* ST: *(u8*)(dst_reg + off) = imm */
1350 		case BPF_ST | BPF_MEM | BPF_B:
1351 			if (is_ereg(dst_reg))
1352 				EMIT2(0x41, 0xC6);
1353 			else
1354 				EMIT1(0xC6);
1355 			goto st;
1356 		case BPF_ST | BPF_MEM | BPF_H:
1357 			if (is_ereg(dst_reg))
1358 				EMIT3(0x66, 0x41, 0xC7);
1359 			else
1360 				EMIT2(0x66, 0xC7);
1361 			goto st;
1362 		case BPF_ST | BPF_MEM | BPF_W:
1363 			if (is_ereg(dst_reg))
1364 				EMIT2(0x41, 0xC7);
1365 			else
1366 				EMIT1(0xC7);
1367 			goto st;
1368 		case BPF_ST | BPF_MEM | BPF_DW:
1369 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1370 
1371 st:			if (is_imm8(insn->off))
1372 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1373 			else
1374 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1375 
1376 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1377 			break;
1378 
1379 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1380 		case BPF_STX | BPF_MEM | BPF_B:
1381 		case BPF_STX | BPF_MEM | BPF_H:
1382 		case BPF_STX | BPF_MEM | BPF_W:
1383 		case BPF_STX | BPF_MEM | BPF_DW:
1384 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1385 			break;
1386 
1387 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1388 		case BPF_LDX | BPF_MEM | BPF_B:
1389 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1390 		case BPF_LDX | BPF_MEM | BPF_H:
1391 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1392 		case BPF_LDX | BPF_MEM | BPF_W:
1393 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1394 		case BPF_LDX | BPF_MEM | BPF_DW:
1395 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1396 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1397 		case BPF_LDX | BPF_MEMSX | BPF_B:
1398 		case BPF_LDX | BPF_MEMSX | BPF_H:
1399 		case BPF_LDX | BPF_MEMSX | BPF_W:
1400 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1401 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1402 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1403 			insn_off = insn->off;
1404 
1405 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1406 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1407 				/* Conservatively check that src_reg + insn->off is a kernel address:
1408 				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1409 				 * src_reg is used as scratch for src_reg += insn->off and restored
1410 				 * after emit_ldx if necessary
1411 				 */
1412 
1413 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1414 				u8 *end_of_jmp;
1415 
1416 				/* At end of these emitted checks, insn->off will have been added
1417 				 * to src_reg, so no need to do relative load with insn->off offset
1418 				 */
1419 				insn_off = 0;
1420 
1421 				/* movabsq r11, limit */
1422 				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1423 				EMIT((u32)limit, 4);
1424 				EMIT(limit >> 32, 4);
1425 
1426 				if (insn->off) {
1427 					/* add src_reg, insn->off */
1428 					maybe_emit_1mod(&prog, src_reg, true);
1429 					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1430 				}
1431 
1432 				/* cmp src_reg, r11 */
1433 				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1434 				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1435 
1436 				/* if unsigned '>=', goto load */
1437 				EMIT2(X86_JAE, 0);
1438 				end_of_jmp = prog;
1439 
1440 				/* xor dst_reg, dst_reg */
1441 				emit_mov_imm32(&prog, false, dst_reg, 0);
1442 				/* jmp byte_after_ldx */
1443 				EMIT2(0xEB, 0);
1444 
1445 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1446 				start_of_ldx = prog;
1447 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1448 			}
1449 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1450 			    BPF_MODE(insn->code) == BPF_MEMSX)
1451 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1452 			else
1453 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1454 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1455 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1456 				struct exception_table_entry *ex;
1457 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1458 				s64 delta;
1459 
1460 				/* populate jmp_offset for JMP above */
1461 				start_of_ldx[-1] = prog - start_of_ldx;
1462 
1463 				if (insn->off && src_reg != dst_reg) {
1464 					/* sub src_reg, insn->off
1465 					 * Restore src_reg after "add src_reg, insn->off" in prev
1466 					 * if statement. But if src_reg == dst_reg, emit_ldx
1467 					 * above already clobbered src_reg, so no need to restore.
1468 					 * If add src_reg, insn->off was unnecessary, no need to
1469 					 * restore either.
1470 					 */
1471 					maybe_emit_1mod(&prog, src_reg, true);
1472 					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1473 				}
1474 
1475 				if (!bpf_prog->aux->extable)
1476 					break;
1477 
1478 				if (excnt >= bpf_prog->aux->num_exentries) {
1479 					pr_err("ex gen bug\n");
1480 					return -EFAULT;
1481 				}
1482 				ex = &bpf_prog->aux->extable[excnt++];
1483 
1484 				delta = _insn - (u8 *)&ex->insn;
1485 				if (!is_simm32(delta)) {
1486 					pr_err("extable->insn doesn't fit into 32-bit\n");
1487 					return -EFAULT;
1488 				}
1489 				/* switch ex to rw buffer for writes */
1490 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1491 
1492 				ex->insn = delta;
1493 
1494 				ex->data = EX_TYPE_BPF;
1495 
1496 				if (dst_reg > BPF_REG_9) {
1497 					pr_err("verifier error\n");
1498 					return -EFAULT;
1499 				}
1500 				/*
1501 				 * Compute size of x86 insn and its target dest x86 register.
1502 				 * ex_handler_bpf() will use lower 8 bits to adjust
1503 				 * pt_regs->ip to jump over this x86 instruction
1504 				 * and upper bits to figure out which pt_regs to zero out.
1505 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1506 				 * of 4 bytes will be ignored and rbx will be zero inited.
1507 				 */
1508 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1509 			}
1510 			break;
1511 
1512 		case BPF_STX | BPF_ATOMIC | BPF_W:
1513 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1514 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1515 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1516 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1517 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1518 				u32 real_src_reg = src_reg;
1519 				u32 real_dst_reg = dst_reg;
1520 				u8 *branch_target;
1521 
1522 				/*
1523 				 * Can't be implemented with a single x86 insn.
1524 				 * Need to do a CMPXCHG loop.
1525 				 */
1526 
1527 				/* Will need RAX as a CMPXCHG operand so save R0 */
1528 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1529 				if (src_reg == BPF_REG_0)
1530 					real_src_reg = BPF_REG_AX;
1531 				if (dst_reg == BPF_REG_0)
1532 					real_dst_reg = BPF_REG_AX;
1533 
1534 				branch_target = prog;
1535 				/* Load old value */
1536 				emit_ldx(&prog, BPF_SIZE(insn->code),
1537 					 BPF_REG_0, real_dst_reg, insn->off);
1538 				/*
1539 				 * Perform the (commutative) operation locally,
1540 				 * put the result in the AUX_REG.
1541 				 */
1542 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1543 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1544 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1545 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1546 				/* Attempt to swap in new value */
1547 				err = emit_atomic(&prog, BPF_CMPXCHG,
1548 						  real_dst_reg, AUX_REG,
1549 						  insn->off,
1550 						  BPF_SIZE(insn->code));
1551 				if (WARN_ON(err))
1552 					return err;
1553 				/*
1554 				 * ZF tells us whether we won the race. If it's
1555 				 * cleared we need to try again.
1556 				 */
1557 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1558 				/* Return the pre-modification value */
1559 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1560 				/* Restore R0 after clobbering RAX */
1561 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1562 				break;
1563 			}
1564 
1565 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1566 					  insn->off, BPF_SIZE(insn->code));
1567 			if (err)
1568 				return err;
1569 			break;
1570 
1571 			/* call */
1572 		case BPF_JMP | BPF_CALL: {
1573 			int offs;
1574 
1575 			func = (u8 *) __bpf_call_base + imm32;
1576 			if (tail_call_reachable) {
1577 				/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1578 				EMIT3_off32(0x48, 0x8B, 0x85,
1579 					    -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1580 				if (!imm32)
1581 					return -EINVAL;
1582 				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1583 			} else {
1584 				if (!imm32)
1585 					return -EINVAL;
1586 				offs = x86_call_depth_emit_accounting(&prog, func);
1587 			}
1588 			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1589 				return -EINVAL;
1590 			break;
1591 		}
1592 
1593 		case BPF_JMP | BPF_TAIL_CALL:
1594 			if (imm32)
1595 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1596 							  &prog, image + addrs[i - 1],
1597 							  callee_regs_used,
1598 							  bpf_prog->aux->stack_depth,
1599 							  ctx);
1600 			else
1601 				emit_bpf_tail_call_indirect(&prog,
1602 							    callee_regs_used,
1603 							    bpf_prog->aux->stack_depth,
1604 							    image + addrs[i - 1],
1605 							    ctx);
1606 			break;
1607 
1608 			/* cond jump */
1609 		case BPF_JMP | BPF_JEQ | BPF_X:
1610 		case BPF_JMP | BPF_JNE | BPF_X:
1611 		case BPF_JMP | BPF_JGT | BPF_X:
1612 		case BPF_JMP | BPF_JLT | BPF_X:
1613 		case BPF_JMP | BPF_JGE | BPF_X:
1614 		case BPF_JMP | BPF_JLE | BPF_X:
1615 		case BPF_JMP | BPF_JSGT | BPF_X:
1616 		case BPF_JMP | BPF_JSLT | BPF_X:
1617 		case BPF_JMP | BPF_JSGE | BPF_X:
1618 		case BPF_JMP | BPF_JSLE | BPF_X:
1619 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1620 		case BPF_JMP32 | BPF_JNE | BPF_X:
1621 		case BPF_JMP32 | BPF_JGT | BPF_X:
1622 		case BPF_JMP32 | BPF_JLT | BPF_X:
1623 		case BPF_JMP32 | BPF_JGE | BPF_X:
1624 		case BPF_JMP32 | BPF_JLE | BPF_X:
1625 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1626 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1627 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1628 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1629 			/* cmp dst_reg, src_reg */
1630 			maybe_emit_mod(&prog, dst_reg, src_reg,
1631 				       BPF_CLASS(insn->code) == BPF_JMP);
1632 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1633 			goto emit_cond_jmp;
1634 
1635 		case BPF_JMP | BPF_JSET | BPF_X:
1636 		case BPF_JMP32 | BPF_JSET | BPF_X:
1637 			/* test dst_reg, src_reg */
1638 			maybe_emit_mod(&prog, dst_reg, src_reg,
1639 				       BPF_CLASS(insn->code) == BPF_JMP);
1640 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1641 			goto emit_cond_jmp;
1642 
1643 		case BPF_JMP | BPF_JSET | BPF_K:
1644 		case BPF_JMP32 | BPF_JSET | BPF_K:
1645 			/* test dst_reg, imm32 */
1646 			maybe_emit_1mod(&prog, dst_reg,
1647 					BPF_CLASS(insn->code) == BPF_JMP);
1648 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1649 			goto emit_cond_jmp;
1650 
1651 		case BPF_JMP | BPF_JEQ | BPF_K:
1652 		case BPF_JMP | BPF_JNE | BPF_K:
1653 		case BPF_JMP | BPF_JGT | BPF_K:
1654 		case BPF_JMP | BPF_JLT | BPF_K:
1655 		case BPF_JMP | BPF_JGE | BPF_K:
1656 		case BPF_JMP | BPF_JLE | BPF_K:
1657 		case BPF_JMP | BPF_JSGT | BPF_K:
1658 		case BPF_JMP | BPF_JSLT | BPF_K:
1659 		case BPF_JMP | BPF_JSGE | BPF_K:
1660 		case BPF_JMP | BPF_JSLE | BPF_K:
1661 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1662 		case BPF_JMP32 | BPF_JNE | BPF_K:
1663 		case BPF_JMP32 | BPF_JGT | BPF_K:
1664 		case BPF_JMP32 | BPF_JLT | BPF_K:
1665 		case BPF_JMP32 | BPF_JGE | BPF_K:
1666 		case BPF_JMP32 | BPF_JLE | BPF_K:
1667 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1668 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1669 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1670 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1671 			/* test dst_reg, dst_reg to save one extra byte */
1672 			if (imm32 == 0) {
1673 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1674 					       BPF_CLASS(insn->code) == BPF_JMP);
1675 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1676 				goto emit_cond_jmp;
1677 			}
1678 
1679 			/* cmp dst_reg, imm8/32 */
1680 			maybe_emit_1mod(&prog, dst_reg,
1681 					BPF_CLASS(insn->code) == BPF_JMP);
1682 
1683 			if (is_imm8(imm32))
1684 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1685 			else
1686 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1687 
1688 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1689 			switch (BPF_OP(insn->code)) {
1690 			case BPF_JEQ:
1691 				jmp_cond = X86_JE;
1692 				break;
1693 			case BPF_JSET:
1694 			case BPF_JNE:
1695 				jmp_cond = X86_JNE;
1696 				break;
1697 			case BPF_JGT:
1698 				/* GT is unsigned '>', JA in x86 */
1699 				jmp_cond = X86_JA;
1700 				break;
1701 			case BPF_JLT:
1702 				/* LT is unsigned '<', JB in x86 */
1703 				jmp_cond = X86_JB;
1704 				break;
1705 			case BPF_JGE:
1706 				/* GE is unsigned '>=', JAE in x86 */
1707 				jmp_cond = X86_JAE;
1708 				break;
1709 			case BPF_JLE:
1710 				/* LE is unsigned '<=', JBE in x86 */
1711 				jmp_cond = X86_JBE;
1712 				break;
1713 			case BPF_JSGT:
1714 				/* Signed '>', GT in x86 */
1715 				jmp_cond = X86_JG;
1716 				break;
1717 			case BPF_JSLT:
1718 				/* Signed '<', LT in x86 */
1719 				jmp_cond = X86_JL;
1720 				break;
1721 			case BPF_JSGE:
1722 				/* Signed '>=', GE in x86 */
1723 				jmp_cond = X86_JGE;
1724 				break;
1725 			case BPF_JSLE:
1726 				/* Signed '<=', LE in x86 */
1727 				jmp_cond = X86_JLE;
1728 				break;
1729 			default: /* to silence GCC warning */
1730 				return -EFAULT;
1731 			}
1732 			jmp_offset = addrs[i + insn->off] - addrs[i];
1733 			if (is_imm8(jmp_offset)) {
1734 				if (jmp_padding) {
1735 					/* To keep the jmp_offset valid, the extra bytes are
1736 					 * padded before the jump insn, so we subtract the
1737 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1738 					 *
1739 					 * If the previous pass already emits an imm8
1740 					 * jmp_cond, then this BPF insn won't shrink, so
1741 					 * "nops" is 0.
1742 					 *
1743 					 * On the other hand, if the previous pass emits an
1744 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1745 					 * keep the image from shrinking further.
1746 					 *
1747 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1748 					 *     is 2 bytes, so the size difference is 4 bytes.
1749 					 */
1750 					nops = INSN_SZ_DIFF - 2;
1751 					if (nops != 0 && nops != 4) {
1752 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1753 						       nops);
1754 						return -EFAULT;
1755 					}
1756 					emit_nops(&prog, nops);
1757 				}
1758 				EMIT2(jmp_cond, jmp_offset);
1759 			} else if (is_simm32(jmp_offset)) {
1760 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1761 			} else {
1762 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1763 				return -EFAULT;
1764 			}
1765 
1766 			break;
1767 
1768 		case BPF_JMP | BPF_JA:
1769 			if (insn->off == -1)
1770 				/* -1 jmp instructions will always jump
1771 				 * backwards two bytes. Explicitly handling
1772 				 * this case avoids wasting too many passes
1773 				 * when there are long sequences of replaced
1774 				 * dead code.
1775 				 */
1776 				jmp_offset = -2;
1777 			else
1778 				jmp_offset = addrs[i + insn->off] - addrs[i];
1779 
1780 			if (!jmp_offset) {
1781 				/*
1782 				 * If jmp_padding is enabled, the extra nops will
1783 				 * be inserted. Otherwise, optimize out nop jumps.
1784 				 */
1785 				if (jmp_padding) {
1786 					/* There are 3 possible conditions.
1787 					 * (1) This BPF_JA is already optimized out in
1788 					 *     the previous run, so there is no need
1789 					 *     to pad any extra byte (0 byte).
1790 					 * (2) The previous pass emits an imm8 jmp,
1791 					 *     so we pad 2 bytes to match the previous
1792 					 *     insn size.
1793 					 * (3) Similarly, the previous pass emits an
1794 					 *     imm32 jmp, and 5 bytes is padded.
1795 					 */
1796 					nops = INSN_SZ_DIFF;
1797 					if (nops != 0 && nops != 2 && nops != 5) {
1798 						pr_err("unexpected nop jump padding: %d bytes\n",
1799 						       nops);
1800 						return -EFAULT;
1801 					}
1802 					emit_nops(&prog, nops);
1803 				}
1804 				break;
1805 			}
1806 emit_jmp:
1807 			if (is_imm8(jmp_offset)) {
1808 				if (jmp_padding) {
1809 					/* To avoid breaking jmp_offset, the extra bytes
1810 					 * are padded before the actual jmp insn, so
1811 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1812 					 *
1813 					 * If the previous pass already emits an imm8
1814 					 * jmp, there is nothing to pad (0 byte).
1815 					 *
1816 					 * If it emits an imm32 jmp (5 bytes) previously
1817 					 * and now an imm8 jmp (2 bytes), then we pad
1818 					 * (5 - 2 = 3) bytes to stop the image from
1819 					 * shrinking further.
1820 					 */
1821 					nops = INSN_SZ_DIFF - 2;
1822 					if (nops != 0 && nops != 3) {
1823 						pr_err("unexpected jump padding: %d bytes\n",
1824 						       nops);
1825 						return -EFAULT;
1826 					}
1827 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1828 				}
1829 				EMIT2(0xEB, jmp_offset);
1830 			} else if (is_simm32(jmp_offset)) {
1831 				EMIT1_off32(0xE9, jmp_offset);
1832 			} else {
1833 				pr_err("jmp gen bug %llx\n", jmp_offset);
1834 				return -EFAULT;
1835 			}
1836 			break;
1837 
1838 		case BPF_JMP | BPF_EXIT:
1839 			if (seen_exit) {
1840 				jmp_offset = ctx->cleanup_addr - addrs[i];
1841 				goto emit_jmp;
1842 			}
1843 			seen_exit = true;
1844 			/* Update cleanup_addr */
1845 			ctx->cleanup_addr = proglen;
1846 			pop_callee_regs(&prog, callee_regs_used);
1847 			EMIT1(0xC9);         /* leave */
1848 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1849 			break;
1850 
1851 		default:
1852 			/*
1853 			 * By design x86-64 JIT should support all BPF instructions.
1854 			 * This error will be seen if new instruction was added
1855 			 * to the interpreter, but not to the JIT, or if there is
1856 			 * junk in bpf_prog.
1857 			 */
1858 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1859 			return -EINVAL;
1860 		}
1861 
1862 		ilen = prog - temp;
1863 		if (ilen > BPF_MAX_INSN_SIZE) {
1864 			pr_err("bpf_jit: fatal insn size error\n");
1865 			return -EFAULT;
1866 		}
1867 
1868 		if (image) {
1869 			/*
1870 			 * When populating the image, assert that:
1871 			 *
1872 			 *  i) We do not write beyond the allocated space, and
1873 			 * ii) addrs[i] did not change from the prior run, in order
1874 			 *     to validate assumptions made for computing branch
1875 			 *     displacements.
1876 			 */
1877 			if (unlikely(proglen + ilen > oldproglen ||
1878 				     proglen + ilen != addrs[i])) {
1879 				pr_err("bpf_jit: fatal error\n");
1880 				return -EFAULT;
1881 			}
1882 			memcpy(rw_image + proglen, temp, ilen);
1883 		}
1884 		proglen += ilen;
1885 		addrs[i] = proglen;
1886 		prog = temp;
1887 	}
1888 
1889 	if (image && excnt != bpf_prog->aux->num_exentries) {
1890 		pr_err("extable is not populated\n");
1891 		return -EFAULT;
1892 	}
1893 	return proglen;
1894 }
1895 
1896 static void clean_stack_garbage(const struct btf_func_model *m,
1897 				u8 **pprog, int nr_stack_slots,
1898 				int stack_size)
1899 {
1900 	int arg_size, off;
1901 	u8 *prog;
1902 
1903 	/* Generally speaking, the compiler will pass the arguments
1904 	 * on-stack with "push" instruction, which will take 8-byte
1905 	 * on the stack. In this case, there won't be garbage values
1906 	 * while we copy the arguments from origin stack frame to current
1907 	 * in BPF_DW.
1908 	 *
1909 	 * However, sometimes the compiler will only allocate 4-byte on
1910 	 * the stack for the arguments. For now, this case will only
1911 	 * happen if there is only one argument on-stack and its size
1912 	 * not more than 4 byte. In this case, there will be garbage
1913 	 * values on the upper 4-byte where we store the argument on
1914 	 * current stack frame.
1915 	 *
1916 	 * arguments on origin stack:
1917 	 *
1918 	 * stack_arg_1(4-byte) xxx(4-byte)
1919 	 *
1920 	 * what we copy:
1921 	 *
1922 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
1923 	 *
1924 	 * and the xxx is the garbage values which we should clean here.
1925 	 */
1926 	if (nr_stack_slots != 1)
1927 		return;
1928 
1929 	/* the size of the last argument */
1930 	arg_size = m->arg_size[m->nr_args - 1];
1931 	if (arg_size <= 4) {
1932 		off = -(stack_size - 4);
1933 		prog = *pprog;
1934 		/* mov DWORD PTR [rbp + off], 0 */
1935 		if (!is_imm8(off))
1936 			EMIT2_off32(0xC7, 0x85, off);
1937 		else
1938 			EMIT3(0xC7, 0x45, off);
1939 		EMIT(0, 4);
1940 		*pprog = prog;
1941 	}
1942 }
1943 
1944 /* get the count of the regs that are used to pass arguments */
1945 static int get_nr_used_regs(const struct btf_func_model *m)
1946 {
1947 	int i, arg_regs, nr_used_regs = 0;
1948 
1949 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
1950 		arg_regs = (m->arg_size[i] + 7) / 8;
1951 		if (nr_used_regs + arg_regs <= 6)
1952 			nr_used_regs += arg_regs;
1953 
1954 		if (nr_used_regs >= 6)
1955 			break;
1956 	}
1957 
1958 	return nr_used_regs;
1959 }
1960 
1961 static void save_args(const struct btf_func_model *m, u8 **prog,
1962 		      int stack_size, bool for_call_origin)
1963 {
1964 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
1965 	int i, j;
1966 
1967 	/* Store function arguments to stack.
1968 	 * For a function that accepts two pointers the sequence will be:
1969 	 * mov QWORD PTR [rbp-0x10],rdi
1970 	 * mov QWORD PTR [rbp-0x8],rsi
1971 	 */
1972 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
1973 		arg_regs = (m->arg_size[i] + 7) / 8;
1974 
1975 		/* According to the research of Yonghong, struct members
1976 		 * should be all in register or all on the stack.
1977 		 * Meanwhile, the compiler will pass the argument on regs
1978 		 * if the remaining regs can hold the argument.
1979 		 *
1980 		 * Disorder of the args can happen. For example:
1981 		 *
1982 		 * struct foo_struct {
1983 		 *     long a;
1984 		 *     int b;
1985 		 * };
1986 		 * int foo(char, char, char, char, char, struct foo_struct,
1987 		 *         char);
1988 		 *
1989 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
1990 		 * by stack.
1991 		 */
1992 		if (nr_regs + arg_regs > 6) {
1993 			/* copy function arguments from origin stack frame
1994 			 * into current stack frame.
1995 			 *
1996 			 * The starting address of the arguments on-stack
1997 			 * is:
1998 			 *   rbp + 8(push rbp) +
1999 			 *   8(return addr of origin call) +
2000 			 *   8(return addr of the caller)
2001 			 * which means: rbp + 24
2002 			 */
2003 			for (j = 0; j < arg_regs; j++) {
2004 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2005 					 nr_stack_slots * 8 + 0x18);
2006 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2007 					 -stack_size);
2008 
2009 				if (!nr_stack_slots)
2010 					first_off = stack_size;
2011 				stack_size -= 8;
2012 				nr_stack_slots++;
2013 			}
2014 		} else {
2015 			/* Only copy the arguments on-stack to current
2016 			 * 'stack_size' and ignore the regs, used to
2017 			 * prepare the arguments on-stack for orign call.
2018 			 */
2019 			if (for_call_origin) {
2020 				nr_regs += arg_regs;
2021 				continue;
2022 			}
2023 
2024 			/* copy the arguments from regs into stack */
2025 			for (j = 0; j < arg_regs; j++) {
2026 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2027 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2028 					 -stack_size);
2029 				stack_size -= 8;
2030 				nr_regs++;
2031 			}
2032 		}
2033 	}
2034 
2035 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2036 }
2037 
2038 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2039 			 int stack_size)
2040 {
2041 	int i, j, arg_regs, nr_regs = 0;
2042 
2043 	/* Restore function arguments from stack.
2044 	 * For a function that accepts two pointers the sequence will be:
2045 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2046 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2047 	 *
2048 	 * The logic here is similar to what we do in save_args()
2049 	 */
2050 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2051 		arg_regs = (m->arg_size[i] + 7) / 8;
2052 		if (nr_regs + arg_regs <= 6) {
2053 			for (j = 0; j < arg_regs; j++) {
2054 				emit_ldx(prog, BPF_DW,
2055 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2056 					 BPF_REG_FP,
2057 					 -stack_size);
2058 				stack_size -= 8;
2059 				nr_regs++;
2060 			}
2061 		} else {
2062 			stack_size -= 8 * arg_regs;
2063 		}
2064 
2065 		if (nr_regs >= 6)
2066 			break;
2067 	}
2068 }
2069 
2070 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2071 			   struct bpf_tramp_link *l, int stack_size,
2072 			   int run_ctx_off, bool save_ret)
2073 {
2074 	u8 *prog = *pprog;
2075 	u8 *jmp_insn;
2076 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2077 	struct bpf_prog *p = l->link.prog;
2078 	u64 cookie = l->cookie;
2079 
2080 	/* mov rdi, cookie */
2081 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2082 
2083 	/* Prepare struct bpf_tramp_run_ctx.
2084 	 *
2085 	 * bpf_tramp_run_ctx is already preserved by
2086 	 * arch_prepare_bpf_trampoline().
2087 	 *
2088 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2089 	 */
2090 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2091 
2092 	/* arg1: mov rdi, progs[i] */
2093 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2094 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2095 	if (!is_imm8(-run_ctx_off))
2096 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2097 	else
2098 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2099 
2100 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2101 		return -EINVAL;
2102 	/* remember prog start time returned by __bpf_prog_enter */
2103 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2104 
2105 	/* if (__bpf_prog_enter*(prog) == 0)
2106 	 *	goto skip_exec_of_prog;
2107 	 */
2108 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2109 	/* emit 2 nops that will be replaced with JE insn */
2110 	jmp_insn = prog;
2111 	emit_nops(&prog, 2);
2112 
2113 	/* arg1: lea rdi, [rbp - stack_size] */
2114 	if (!is_imm8(-stack_size))
2115 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2116 	else
2117 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2118 	/* arg2: progs[i]->insnsi for interpreter */
2119 	if (!p->jited)
2120 		emit_mov_imm64(&prog, BPF_REG_2,
2121 			       (long) p->insnsi >> 32,
2122 			       (u32) (long) p->insnsi);
2123 	/* call JITed bpf program or interpreter */
2124 	if (emit_rsb_call(&prog, p->bpf_func, prog))
2125 		return -EINVAL;
2126 
2127 	/*
2128 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2129 	 * of the previous call which is then passed on the stack to
2130 	 * the next BPF program.
2131 	 *
2132 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2133 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2134 	 */
2135 	if (save_ret)
2136 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2137 
2138 	/* replace 2 nops with JE insn, since jmp target is known */
2139 	jmp_insn[0] = X86_JE;
2140 	jmp_insn[1] = prog - jmp_insn - 2;
2141 
2142 	/* arg1: mov rdi, progs[i] */
2143 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2144 	/* arg2: mov rsi, rbx <- start time in nsec */
2145 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2146 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2147 	if (!is_imm8(-run_ctx_off))
2148 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2149 	else
2150 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2151 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2152 		return -EINVAL;
2153 
2154 	*pprog = prog;
2155 	return 0;
2156 }
2157 
2158 static void emit_align(u8 **pprog, u32 align)
2159 {
2160 	u8 *target, *prog = *pprog;
2161 
2162 	target = PTR_ALIGN(prog, align);
2163 	if (target != prog)
2164 		emit_nops(&prog, target - prog);
2165 
2166 	*pprog = prog;
2167 }
2168 
2169 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2170 {
2171 	u8 *prog = *pprog;
2172 	s64 offset;
2173 
2174 	offset = func - (ip + 2 + 4);
2175 	if (!is_simm32(offset)) {
2176 		pr_err("Target %p is out of range\n", func);
2177 		return -EINVAL;
2178 	}
2179 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2180 	*pprog = prog;
2181 	return 0;
2182 }
2183 
2184 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2185 		      struct bpf_tramp_links *tl, int stack_size,
2186 		      int run_ctx_off, bool save_ret)
2187 {
2188 	int i;
2189 	u8 *prog = *pprog;
2190 
2191 	for (i = 0; i < tl->nr_links; i++) {
2192 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2193 				    run_ctx_off, save_ret))
2194 			return -EINVAL;
2195 	}
2196 	*pprog = prog;
2197 	return 0;
2198 }
2199 
2200 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2201 			      struct bpf_tramp_links *tl, int stack_size,
2202 			      int run_ctx_off, u8 **branches)
2203 {
2204 	u8 *prog = *pprog;
2205 	int i;
2206 
2207 	/* The first fmod_ret program will receive a garbage return value.
2208 	 * Set this to 0 to avoid confusing the program.
2209 	 */
2210 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2211 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2212 	for (i = 0; i < tl->nr_links; i++) {
2213 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2214 			return -EINVAL;
2215 
2216 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2217 		 * if (*(u64 *)(rbp - 8) !=  0)
2218 		 *	goto do_fexit;
2219 		 */
2220 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2221 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2222 
2223 		/* Save the location of the branch and Generate 6 nops
2224 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2225 		 * are replaced with a conditional jump once do_fexit (i.e. the
2226 		 * start of the fexit invocation) is finalized.
2227 		 */
2228 		branches[i] = prog;
2229 		emit_nops(&prog, 4 + 2);
2230 	}
2231 
2232 	*pprog = prog;
2233 	return 0;
2234 }
2235 
2236 /* Example:
2237  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2238  * its 'struct btf_func_model' will be nr_args=2
2239  * The assembly code when eth_type_trans is executing after trampoline:
2240  *
2241  * push rbp
2242  * mov rbp, rsp
2243  * sub rsp, 16                     // space for skb and dev
2244  * push rbx                        // temp regs to pass start time
2245  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2246  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2247  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2248  * mov rbx, rax                    // remember start time in bpf stats are enabled
2249  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2250  * call addr_of_jited_FENTRY_prog
2251  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2252  * mov rsi, rbx                    // prog start time
2253  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2254  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2255  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2256  * pop rbx
2257  * leave
2258  * ret
2259  *
2260  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2261  * replaced with 'call generated_bpf_trampoline'. When it returns
2262  * eth_type_trans will continue executing with original skb and dev pointers.
2263  *
2264  * The assembly code when eth_type_trans is called from trampoline:
2265  *
2266  * push rbp
2267  * mov rbp, rsp
2268  * sub rsp, 24                     // space for skb, dev, return value
2269  * push rbx                        // temp regs to pass start time
2270  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2271  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2272  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2273  * mov rbx, rax                    // remember start time if bpf stats are enabled
2274  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2275  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2276  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2277  * mov rsi, rbx                    // prog start time
2278  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2279  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2280  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2281  * call eth_type_trans+5           // execute body of eth_type_trans
2282  * mov qword ptr [rbp - 8], rax    // save return value
2283  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2284  * mov rbx, rax                    // remember start time in bpf stats are enabled
2285  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2286  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2287  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2288  * mov rsi, rbx                    // prog start time
2289  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2290  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2291  * pop rbx
2292  * leave
2293  * add rsp, 8                      // skip eth_type_trans's frame
2294  * ret                             // return to its caller
2295  */
2296 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2297 				const struct btf_func_model *m, u32 flags,
2298 				struct bpf_tramp_links *tlinks,
2299 				void *func_addr)
2300 {
2301 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2302 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2303 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2304 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2305 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2306 	void *orig_call = func_addr;
2307 	u8 **branches = NULL;
2308 	u8 *prog;
2309 	bool save_ret;
2310 
2311 	/* extra registers for struct arguments */
2312 	for (i = 0; i < m->nr_args; i++)
2313 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2314 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2315 
2316 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2317 	 * are passed through regs, the remains are through stack.
2318 	 */
2319 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2320 		return -ENOTSUPP;
2321 
2322 	/* Generated trampoline stack layout:
2323 	 *
2324 	 * RBP + 8         [ return address  ]
2325 	 * RBP + 0         [ RBP             ]
2326 	 *
2327 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2328 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2329 	 *
2330 	 *                 [ reg_argN        ]  always
2331 	 *                 [ ...             ]
2332 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2333 	 *
2334 	 * RBP - nregs_off [ regs count	     ]  always
2335 	 *
2336 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2337 	 *
2338 	 * RBP - rbx_off   [ rbx value       ]  always
2339 	 *
2340 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2341 	 *
2342 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2343 	 *                     [ ...        ]
2344 	 *                     [ stack_arg2 ]
2345 	 * RBP - arg_stack_off [ stack_arg1 ]
2346 	 */
2347 
2348 	/* room for return value of orig_call or fentry prog */
2349 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2350 	if (save_ret)
2351 		stack_size += 8;
2352 
2353 	stack_size += nr_regs * 8;
2354 	regs_off = stack_size;
2355 
2356 	/* regs count  */
2357 	stack_size += 8;
2358 	nregs_off = stack_size;
2359 
2360 	if (flags & BPF_TRAMP_F_IP_ARG)
2361 		stack_size += 8; /* room for IP address argument */
2362 
2363 	ip_off = stack_size;
2364 
2365 	stack_size += 8;
2366 	rbx_off = stack_size;
2367 
2368 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2369 	run_ctx_off = stack_size;
2370 
2371 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2372 		/* the space that used to pass arguments on-stack */
2373 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2374 		/* make sure the stack pointer is 16-byte aligned if we
2375 		 * need pass arguments on stack, which means
2376 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2377 		 * should be 16-byte aligned. Following code depend on
2378 		 * that stack_size is already 8-byte aligned.
2379 		 */
2380 		stack_size += (stack_size % 16) ? 0 : 8;
2381 	}
2382 
2383 	arg_stack_off = stack_size;
2384 
2385 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2386 		/* skip patched call instruction and point orig_call to actual
2387 		 * body of the kernel function.
2388 		 */
2389 		if (is_endbr(*(u32 *)orig_call))
2390 			orig_call += ENDBR_INSN_SIZE;
2391 		orig_call += X86_PATCH_SIZE;
2392 	}
2393 
2394 	prog = image;
2395 
2396 	EMIT_ENDBR();
2397 	/*
2398 	 * This is the direct-call trampoline, as such it needs accounting
2399 	 * for the __fentry__ call.
2400 	 */
2401 	x86_call_depth_emit_accounting(&prog, NULL);
2402 	EMIT1(0x55);		 /* push rbp */
2403 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2404 	if (!is_imm8(stack_size))
2405 		/* sub rsp, stack_size */
2406 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2407 	else
2408 		/* sub rsp, stack_size */
2409 		EMIT4(0x48, 0x83, 0xEC, stack_size);
2410 	/* mov QWORD PTR [rbp - rbx_off], rbx */
2411 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2412 
2413 	/* Store number of argument registers of the traced function:
2414 	 *   mov rax, nr_regs
2415 	 *   mov QWORD PTR [rbp - nregs_off], rax
2416 	 */
2417 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2418 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2419 
2420 	if (flags & BPF_TRAMP_F_IP_ARG) {
2421 		/* Store IP address of the traced function:
2422 		 * movabsq rax, func_addr
2423 		 * mov QWORD PTR [rbp - ip_off], rax
2424 		 */
2425 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2426 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2427 	}
2428 
2429 	save_args(m, &prog, regs_off, false);
2430 
2431 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2432 		/* arg1: mov rdi, im */
2433 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2434 		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2435 			ret = -EINVAL;
2436 			goto cleanup;
2437 		}
2438 	}
2439 
2440 	if (fentry->nr_links)
2441 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2442 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2443 			return -EINVAL;
2444 
2445 	if (fmod_ret->nr_links) {
2446 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2447 				   GFP_KERNEL);
2448 		if (!branches)
2449 			return -ENOMEM;
2450 
2451 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2452 				       run_ctx_off, branches)) {
2453 			ret = -EINVAL;
2454 			goto cleanup;
2455 		}
2456 	}
2457 
2458 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2459 		restore_regs(m, &prog, regs_off);
2460 		save_args(m, &prog, arg_stack_off, true);
2461 
2462 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2463 			emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2464 			EMIT2(0xff, 0xd0); /* call *rax */
2465 		} else {
2466 			/* call original function */
2467 			if (emit_rsb_call(&prog, orig_call, prog)) {
2468 				ret = -EINVAL;
2469 				goto cleanup;
2470 			}
2471 		}
2472 		/* remember return value in a stack for bpf prog to access */
2473 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2474 		im->ip_after_call = prog;
2475 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2476 		prog += X86_PATCH_SIZE;
2477 	}
2478 
2479 	if (fmod_ret->nr_links) {
2480 		/* From Intel 64 and IA-32 Architectures Optimization
2481 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2482 		 * Coding Rule 11: All branch targets should be 16-byte
2483 		 * aligned.
2484 		 */
2485 		emit_align(&prog, 16);
2486 		/* Update the branches saved in invoke_bpf_mod_ret with the
2487 		 * aligned address of do_fexit.
2488 		 */
2489 		for (i = 0; i < fmod_ret->nr_links; i++)
2490 			emit_cond_near_jump(&branches[i], prog, branches[i],
2491 					    X86_JNE);
2492 	}
2493 
2494 	if (fexit->nr_links)
2495 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2496 			ret = -EINVAL;
2497 			goto cleanup;
2498 		}
2499 
2500 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2501 		restore_regs(m, &prog, regs_off);
2502 
2503 	/* This needs to be done regardless. If there were fmod_ret programs,
2504 	 * the return value is only updated on the stack and still needs to be
2505 	 * restored to R0.
2506 	 */
2507 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2508 		im->ip_epilogue = prog;
2509 		/* arg1: mov rdi, im */
2510 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2511 		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2512 			ret = -EINVAL;
2513 			goto cleanup;
2514 		}
2515 	}
2516 	/* restore return value of orig_call or fentry prog back into RAX */
2517 	if (save_ret)
2518 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2519 
2520 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2521 	EMIT1(0xC9); /* leave */
2522 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2523 		/* skip our return address and return to parent */
2524 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2525 	emit_return(&prog, prog);
2526 	/* Make sure the trampoline generation logic doesn't overflow */
2527 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2528 		ret = -EFAULT;
2529 		goto cleanup;
2530 	}
2531 	ret = prog - (u8 *)image;
2532 
2533 cleanup:
2534 	kfree(branches);
2535 	return ret;
2536 }
2537 
2538 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2539 {
2540 	u8 *jg_reloc, *prog = *pprog;
2541 	int pivot, err, jg_bytes = 1;
2542 	s64 jg_offset;
2543 
2544 	if (a == b) {
2545 		/* Leaf node of recursion, i.e. not a range of indices
2546 		 * anymore.
2547 		 */
2548 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2549 		if (!is_simm32(progs[a]))
2550 			return -1;
2551 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2552 			    progs[a]);
2553 		err = emit_cond_near_jump(&prog,	/* je func */
2554 					  (void *)progs[a], image + (prog - buf),
2555 					  X86_JE);
2556 		if (err)
2557 			return err;
2558 
2559 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2560 
2561 		*pprog = prog;
2562 		return 0;
2563 	}
2564 
2565 	/* Not a leaf node, so we pivot, and recursively descend into
2566 	 * the lower and upper ranges.
2567 	 */
2568 	pivot = (b - a) / 2;
2569 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2570 	if (!is_simm32(progs[a + pivot]))
2571 		return -1;
2572 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2573 
2574 	if (pivot > 2) {				/* jg upper_part */
2575 		/* Require near jump. */
2576 		jg_bytes = 4;
2577 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2578 	} else {
2579 		EMIT2(X86_JG, 0);
2580 	}
2581 	jg_reloc = prog;
2582 
2583 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2584 				  progs, image, buf);
2585 	if (err)
2586 		return err;
2587 
2588 	/* From Intel 64 and IA-32 Architectures Optimization
2589 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2590 	 * Coding Rule 11: All branch targets should be 16-byte
2591 	 * aligned.
2592 	 */
2593 	emit_align(&prog, 16);
2594 	jg_offset = prog - jg_reloc;
2595 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2596 
2597 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2598 				  b, progs, image, buf);
2599 	if (err)
2600 		return err;
2601 
2602 	*pprog = prog;
2603 	return 0;
2604 }
2605 
2606 static int cmp_ips(const void *a, const void *b)
2607 {
2608 	const s64 *ipa = a;
2609 	const s64 *ipb = b;
2610 
2611 	if (*ipa > *ipb)
2612 		return 1;
2613 	if (*ipa < *ipb)
2614 		return -1;
2615 	return 0;
2616 }
2617 
2618 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2619 {
2620 	u8 *prog = buf;
2621 
2622 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2623 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2624 }
2625 
2626 struct x64_jit_data {
2627 	struct bpf_binary_header *rw_header;
2628 	struct bpf_binary_header *header;
2629 	int *addrs;
2630 	u8 *image;
2631 	int proglen;
2632 	struct jit_context ctx;
2633 };
2634 
2635 #define MAX_PASSES 20
2636 #define PADDING_PASSES (MAX_PASSES - 5)
2637 
2638 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2639 {
2640 	struct bpf_binary_header *rw_header = NULL;
2641 	struct bpf_binary_header *header = NULL;
2642 	struct bpf_prog *tmp, *orig_prog = prog;
2643 	struct x64_jit_data *jit_data;
2644 	int proglen, oldproglen = 0;
2645 	struct jit_context ctx = {};
2646 	bool tmp_blinded = false;
2647 	bool extra_pass = false;
2648 	bool padding = false;
2649 	u8 *rw_image = NULL;
2650 	u8 *image = NULL;
2651 	int *addrs;
2652 	int pass;
2653 	int i;
2654 
2655 	if (!prog->jit_requested)
2656 		return orig_prog;
2657 
2658 	tmp = bpf_jit_blind_constants(prog);
2659 	/*
2660 	 * If blinding was requested and we failed during blinding,
2661 	 * we must fall back to the interpreter.
2662 	 */
2663 	if (IS_ERR(tmp))
2664 		return orig_prog;
2665 	if (tmp != prog) {
2666 		tmp_blinded = true;
2667 		prog = tmp;
2668 	}
2669 
2670 	jit_data = prog->aux->jit_data;
2671 	if (!jit_data) {
2672 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2673 		if (!jit_data) {
2674 			prog = orig_prog;
2675 			goto out;
2676 		}
2677 		prog->aux->jit_data = jit_data;
2678 	}
2679 	addrs = jit_data->addrs;
2680 	if (addrs) {
2681 		ctx = jit_data->ctx;
2682 		oldproglen = jit_data->proglen;
2683 		image = jit_data->image;
2684 		header = jit_data->header;
2685 		rw_header = jit_data->rw_header;
2686 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2687 		extra_pass = true;
2688 		padding = true;
2689 		goto skip_init_addrs;
2690 	}
2691 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2692 	if (!addrs) {
2693 		prog = orig_prog;
2694 		goto out_addrs;
2695 	}
2696 
2697 	/*
2698 	 * Before first pass, make a rough estimation of addrs[]
2699 	 * each BPF instruction is translated to less than 64 bytes
2700 	 */
2701 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2702 		proglen += 64;
2703 		addrs[i] = proglen;
2704 	}
2705 	ctx.cleanup_addr = proglen;
2706 skip_init_addrs:
2707 
2708 	/*
2709 	 * JITed image shrinks with every pass and the loop iterates
2710 	 * until the image stops shrinking. Very large BPF programs
2711 	 * may converge on the last pass. In such case do one more
2712 	 * pass to emit the final image.
2713 	 */
2714 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2715 		if (!padding && pass >= PADDING_PASSES)
2716 			padding = true;
2717 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2718 		if (proglen <= 0) {
2719 out_image:
2720 			image = NULL;
2721 			if (header) {
2722 				bpf_arch_text_copy(&header->size, &rw_header->size,
2723 						   sizeof(rw_header->size));
2724 				bpf_jit_binary_pack_free(header, rw_header);
2725 			}
2726 			/* Fall back to interpreter mode */
2727 			prog = orig_prog;
2728 			if (extra_pass) {
2729 				prog->bpf_func = NULL;
2730 				prog->jited = 0;
2731 				prog->jited_len = 0;
2732 			}
2733 			goto out_addrs;
2734 		}
2735 		if (image) {
2736 			if (proglen != oldproglen) {
2737 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2738 				       proglen, oldproglen);
2739 				goto out_image;
2740 			}
2741 			break;
2742 		}
2743 		if (proglen == oldproglen) {
2744 			/*
2745 			 * The number of entries in extable is the number of BPF_LDX
2746 			 * insns that access kernel memory via "pointer to BTF type".
2747 			 * The verifier changed their opcode from LDX|MEM|size
2748 			 * to LDX|PROBE_MEM|size to make JITing easier.
2749 			 */
2750 			u32 align = __alignof__(struct exception_table_entry);
2751 			u32 extable_size = prog->aux->num_exentries *
2752 				sizeof(struct exception_table_entry);
2753 
2754 			/* allocate module memory for x86 insns and extable */
2755 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2756 							   &image, align, &rw_header, &rw_image,
2757 							   jit_fill_hole);
2758 			if (!header) {
2759 				prog = orig_prog;
2760 				goto out_addrs;
2761 			}
2762 			prog->aux->extable = (void *) image + roundup(proglen, align);
2763 		}
2764 		oldproglen = proglen;
2765 		cond_resched();
2766 	}
2767 
2768 	if (bpf_jit_enable > 1)
2769 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2770 
2771 	if (image) {
2772 		if (!prog->is_func || extra_pass) {
2773 			/*
2774 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2775 			 *   1) header is not pointing to proper module memory;
2776 			 *   2) the arch doesn't support bpf_arch_text_copy().
2777 			 *
2778 			 * Both cases are serious bugs and justify WARN_ON.
2779 			 */
2780 			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2781 				/* header has been freed */
2782 				header = NULL;
2783 				goto out_image;
2784 			}
2785 
2786 			bpf_tail_call_direct_fixup(prog);
2787 		} else {
2788 			jit_data->addrs = addrs;
2789 			jit_data->ctx = ctx;
2790 			jit_data->proglen = proglen;
2791 			jit_data->image = image;
2792 			jit_data->header = header;
2793 			jit_data->rw_header = rw_header;
2794 		}
2795 		prog->bpf_func = (void *)image;
2796 		prog->jited = 1;
2797 		prog->jited_len = proglen;
2798 	} else {
2799 		prog = orig_prog;
2800 	}
2801 
2802 	if (!image || !prog->is_func || extra_pass) {
2803 		if (image)
2804 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2805 out_addrs:
2806 		kvfree(addrs);
2807 		kfree(jit_data);
2808 		prog->aux->jit_data = NULL;
2809 	}
2810 out:
2811 	if (tmp_blinded)
2812 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2813 					   tmp : orig_prog);
2814 	return prog;
2815 }
2816 
2817 bool bpf_jit_supports_kfunc_call(void)
2818 {
2819 	return true;
2820 }
2821 
2822 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2823 {
2824 	if (text_poke_copy(dst, src, len) == NULL)
2825 		return ERR_PTR(-EINVAL);
2826 	return dst;
2827 }
2828 
2829 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2830 bool bpf_jit_supports_subprog_tailcalls(void)
2831 {
2832 	return true;
2833 }
2834 
2835 void bpf_jit_free(struct bpf_prog *prog)
2836 {
2837 	if (prog->jited) {
2838 		struct x64_jit_data *jit_data = prog->aux->jit_data;
2839 		struct bpf_binary_header *hdr;
2840 
2841 		/*
2842 		 * If we fail the final pass of JIT (from jit_subprogs),
2843 		 * the program may not be finalized yet. Call finalize here
2844 		 * before freeing it.
2845 		 */
2846 		if (jit_data) {
2847 			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2848 						     jit_data->rw_header);
2849 			kvfree(jit_data->addrs);
2850 			kfree(jit_data);
2851 		}
2852 		hdr = bpf_jit_binary_pack_hdr(prog);
2853 		bpf_jit_binary_pack_free(hdr, NULL);
2854 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2855 	}
2856 
2857 	bpf_prog_unlock_free(prog);
2858 }
2859