xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168 	return is_ereg(reg) ||
169 	    (1 << reg) & (BIT(BPF_REG_1) |
170 			  BIT(BPF_REG_2) |
171 			  BIT(BPF_REG_FP));
172 }
173 
174 static bool is_axreg(u32 reg)
175 {
176 	return reg == BPF_REG_0;
177 }
178 
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182 	if (is_ereg(reg))
183 		byte |= 1;
184 	return byte;
185 }
186 
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189 	if (is_ereg(r1))
190 		byte |= 1;
191 	if (is_ereg(r2))
192 		byte |= 4;
193 	return byte;
194 }
195 
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199 	return byte + reg2hex[dst_reg];
200 }
201 
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207 
208 static void jit_fill_hole(void *area, unsigned int size)
209 {
210 	/* Fill whole space with INT3 instructions */
211 	memset(area, 0xcc, size);
212 }
213 
214 struct jit_context {
215 	int cleanup_addr; /* Epilogue code offset */
216 };
217 
218 /* Maximum number of bytes emitted while JITing one eBPF insn */
219 #define BPF_MAX_INSN_SIZE	128
220 #define BPF_INSN_SAFETY		64
221 
222 /* Number of bytes emit_patch() needs to generate instructions */
223 #define X86_PATCH_SIZE		5
224 /* Number of bytes that will be skipped on tailcall */
225 #define X86_TAIL_CALL_OFFSET	11
226 
227 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
228 {
229 	u8 *prog = *pprog;
230 	int cnt = 0;
231 
232 	if (callee_regs_used[0])
233 		EMIT1(0x53);         /* push rbx */
234 	if (callee_regs_used[1])
235 		EMIT2(0x41, 0x55);   /* push r13 */
236 	if (callee_regs_used[2])
237 		EMIT2(0x41, 0x56);   /* push r14 */
238 	if (callee_regs_used[3])
239 		EMIT2(0x41, 0x57);   /* push r15 */
240 	*pprog = prog;
241 }
242 
243 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
244 {
245 	u8 *prog = *pprog;
246 	int cnt = 0;
247 
248 	if (callee_regs_used[3])
249 		EMIT2(0x41, 0x5F);   /* pop r15 */
250 	if (callee_regs_used[2])
251 		EMIT2(0x41, 0x5E);   /* pop r14 */
252 	if (callee_regs_used[1])
253 		EMIT2(0x41, 0x5D);   /* pop r13 */
254 	if (callee_regs_used[0])
255 		EMIT1(0x5B);         /* pop rbx */
256 	*pprog = prog;
257 }
258 
259 /*
260  * Emit x86-64 prologue code for BPF program.
261  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
262  * while jumping to another program
263  */
264 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
265 			  bool tail_call_reachable, bool is_subprog)
266 {
267 	u8 *prog = *pprog;
268 	int cnt = X86_PATCH_SIZE;
269 
270 	/* BPF trampoline can be made to work without these nops,
271 	 * but let's waste 5 bytes for now and optimize later
272 	 */
273 	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
274 	prog += cnt;
275 	if (!ebpf_from_cbpf) {
276 		if (tail_call_reachable && !is_subprog)
277 			EMIT2(0x31, 0xC0); /* xor eax, eax */
278 		else
279 			EMIT2(0x66, 0x90); /* nop2 */
280 	}
281 	EMIT1(0x55);             /* push rbp */
282 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
283 	/* sub rsp, rounded_stack_depth */
284 	if (stack_depth)
285 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
286 	if (tail_call_reachable)
287 		EMIT1(0x50);         /* push rax */
288 	*pprog = prog;
289 }
290 
291 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
292 {
293 	u8 *prog = *pprog;
294 	int cnt = 0;
295 	s64 offset;
296 
297 	offset = func - (ip + X86_PATCH_SIZE);
298 	if (!is_simm32(offset)) {
299 		pr_err("Target call %p is out of range\n", func);
300 		return -ERANGE;
301 	}
302 	EMIT1_off32(opcode, offset);
303 	*pprog = prog;
304 	return 0;
305 }
306 
307 static int emit_call(u8 **pprog, void *func, void *ip)
308 {
309 	return emit_patch(pprog, func, ip, 0xE8);
310 }
311 
312 static int emit_jump(u8 **pprog, void *func, void *ip)
313 {
314 	return emit_patch(pprog, func, ip, 0xE9);
315 }
316 
317 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
318 				void *old_addr, void *new_addr,
319 				const bool text_live)
320 {
321 	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
322 	u8 old_insn[X86_PATCH_SIZE];
323 	u8 new_insn[X86_PATCH_SIZE];
324 	u8 *prog;
325 	int ret;
326 
327 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
328 	if (old_addr) {
329 		prog = old_insn;
330 		ret = t == BPF_MOD_CALL ?
331 		      emit_call(&prog, old_addr, ip) :
332 		      emit_jump(&prog, old_addr, ip);
333 		if (ret)
334 			return ret;
335 	}
336 
337 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
338 	if (new_addr) {
339 		prog = new_insn;
340 		ret = t == BPF_MOD_CALL ?
341 		      emit_call(&prog, new_addr, ip) :
342 		      emit_jump(&prog, new_addr, ip);
343 		if (ret)
344 			return ret;
345 	}
346 
347 	ret = -EBUSY;
348 	mutex_lock(&text_mutex);
349 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
350 		goto out;
351 	ret = 1;
352 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
353 		if (text_live)
354 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
355 		else
356 			memcpy(ip, new_insn, X86_PATCH_SIZE);
357 		ret = 0;
358 	}
359 out:
360 	mutex_unlock(&text_mutex);
361 	return ret;
362 }
363 
364 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
365 		       void *old_addr, void *new_addr)
366 {
367 	if (!is_kernel_text((long)ip) &&
368 	    !is_bpf_text_address((long)ip))
369 		/* BPF poking in modules is not supported */
370 		return -EINVAL;
371 
372 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
373 }
374 
375 static int get_pop_bytes(bool *callee_regs_used)
376 {
377 	int bytes = 0;
378 
379 	if (callee_regs_used[3])
380 		bytes += 2;
381 	if (callee_regs_used[2])
382 		bytes += 2;
383 	if (callee_regs_used[1])
384 		bytes += 2;
385 	if (callee_regs_used[0])
386 		bytes += 1;
387 
388 	return bytes;
389 }
390 
391 /*
392  * Generate the following code:
393  *
394  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
395  *   if (index >= array->map.max_entries)
396  *     goto out;
397  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
398  *     goto out;
399  *   prog = array->ptrs[index];
400  *   if (prog == NULL)
401  *     goto out;
402  *   goto *(prog->bpf_func + prologue_size);
403  * out:
404  */
405 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
406 					u32 stack_depth)
407 {
408 	int tcc_off = -4 - round_up(stack_depth, 8);
409 	u8 *prog = *pprog;
410 	int pop_bytes = 0;
411 	int off1 = 42;
412 	int off2 = 31;
413 	int off3 = 9;
414 	int cnt = 0;
415 
416 	/* count the additional bytes used for popping callee regs from stack
417 	 * that need to be taken into account for each of the offsets that
418 	 * are used for bailing out of the tail call
419 	 */
420 	pop_bytes = get_pop_bytes(callee_regs_used);
421 	off1 += pop_bytes;
422 	off2 += pop_bytes;
423 	off3 += pop_bytes;
424 
425 	if (stack_depth) {
426 		off1 += 7;
427 		off2 += 7;
428 		off3 += 7;
429 	}
430 
431 	/*
432 	 * rdi - pointer to ctx
433 	 * rsi - pointer to bpf_array
434 	 * rdx - index in bpf_array
435 	 */
436 
437 	/*
438 	 * if (index >= array->map.max_entries)
439 	 *	goto out;
440 	 */
441 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
442 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
443 	      offsetof(struct bpf_array, map.max_entries));
444 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
445 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
446 
447 	/*
448 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
449 	 *	goto out;
450 	 */
451 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
452 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
453 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
454 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
455 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
456 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
457 
458 	/* prog = array->ptrs[index]; */
459 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
460 		    offsetof(struct bpf_array, ptrs));
461 
462 	/*
463 	 * if (prog == NULL)
464 	 *	goto out;
465 	 */
466 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
467 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
468 	EMIT2(X86_JE, OFFSET3);                   /* je out */
469 
470 	*pprog = prog;
471 	pop_callee_regs(pprog, callee_regs_used);
472 	prog = *pprog;
473 
474 	EMIT1(0x58);                              /* pop rax */
475 	if (stack_depth)
476 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
477 			    round_up(stack_depth, 8));
478 
479 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
480 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
481 	      offsetof(struct bpf_prog, bpf_func));
482 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
483 	      X86_TAIL_CALL_OFFSET);
484 	/*
485 	 * Now we're ready to jump into next BPF program
486 	 * rdi == ctx (1st arg)
487 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
488 	 */
489 	RETPOLINE_RCX_BPF_JIT();
490 
491 	/* out: */
492 	*pprog = prog;
493 }
494 
495 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
496 				      u8 **pprog, int addr, u8 *image,
497 				      bool *callee_regs_used, u32 stack_depth)
498 {
499 	int tcc_off = -4 - round_up(stack_depth, 8);
500 	u8 *prog = *pprog;
501 	int pop_bytes = 0;
502 	int off1 = 20;
503 	int poke_off;
504 	int cnt = 0;
505 
506 	/* count the additional bytes used for popping callee regs to stack
507 	 * that need to be taken into account for jump offset that is used for
508 	 * bailing out from of the tail call when limit is reached
509 	 */
510 	pop_bytes = get_pop_bytes(callee_regs_used);
511 	off1 += pop_bytes;
512 
513 	/*
514 	 * total bytes for:
515 	 * - nop5/ jmpq $off
516 	 * - pop callee regs
517 	 * - sub rsp, $val if depth > 0
518 	 * - pop rax
519 	 */
520 	poke_off = X86_PATCH_SIZE + pop_bytes + 1;
521 	if (stack_depth) {
522 		poke_off += 7;
523 		off1 += 7;
524 	}
525 
526 	/*
527 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
528 	 *	goto out;
529 	 */
530 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
531 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
532 	EMIT2(X86_JA, off1);                          /* ja out */
533 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
534 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
535 
536 	poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
537 	poke->adj_off = X86_TAIL_CALL_OFFSET;
538 	poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
539 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
540 
541 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
542 		  poke->tailcall_bypass);
543 
544 	*pprog = prog;
545 	pop_callee_regs(pprog, callee_regs_used);
546 	prog = *pprog;
547 	EMIT1(0x58);                                  /* pop rax */
548 	if (stack_depth)
549 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
550 
551 	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
552 	prog += X86_PATCH_SIZE;
553 	/* out: */
554 
555 	*pprog = prog;
556 }
557 
558 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
559 {
560 	struct bpf_jit_poke_descriptor *poke;
561 	struct bpf_array *array;
562 	struct bpf_prog *target;
563 	int i, ret;
564 
565 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
566 		poke = &prog->aux->poke_tab[i];
567 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
568 
569 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
570 			continue;
571 
572 		array = container_of(poke->tail_call.map, struct bpf_array, map);
573 		mutex_lock(&array->aux->poke_mutex);
574 		target = array->ptrs[poke->tail_call.key];
575 		if (target) {
576 			/* Plain memcpy is used when image is not live yet
577 			 * and still not locked as read-only. Once poke
578 			 * location is active (poke->tailcall_target_stable),
579 			 * any parallel bpf_arch_text_poke() might occur
580 			 * still on the read-write image until we finally
581 			 * locked it as read-only. Both modifications on
582 			 * the given image are under text_mutex to avoid
583 			 * interference.
584 			 */
585 			ret = __bpf_arch_text_poke(poke->tailcall_target,
586 						   BPF_MOD_JUMP, NULL,
587 						   (u8 *)target->bpf_func +
588 						   poke->adj_off, false);
589 			BUG_ON(ret < 0);
590 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
591 						   BPF_MOD_JUMP,
592 						   (u8 *)poke->tailcall_target +
593 						   X86_PATCH_SIZE, NULL, false);
594 			BUG_ON(ret < 0);
595 		}
596 		WRITE_ONCE(poke->tailcall_target_stable, true);
597 		mutex_unlock(&array->aux->poke_mutex);
598 	}
599 }
600 
601 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
602 			   u32 dst_reg, const u32 imm32)
603 {
604 	u8 *prog = *pprog;
605 	u8 b1, b2, b3;
606 	int cnt = 0;
607 
608 	/*
609 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
610 	 * (which zero-extends imm32) to save 2 bytes.
611 	 */
612 	if (sign_propagate && (s32)imm32 < 0) {
613 		/* 'mov %rax, imm32' sign extends imm32 */
614 		b1 = add_1mod(0x48, dst_reg);
615 		b2 = 0xC7;
616 		b3 = 0xC0;
617 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
618 		goto done;
619 	}
620 
621 	/*
622 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
623 	 * to save 3 bytes.
624 	 */
625 	if (imm32 == 0) {
626 		if (is_ereg(dst_reg))
627 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
628 		b2 = 0x31; /* xor */
629 		b3 = 0xC0;
630 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
631 		goto done;
632 	}
633 
634 	/* mov %eax, imm32 */
635 	if (is_ereg(dst_reg))
636 		EMIT1(add_1mod(0x40, dst_reg));
637 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
638 done:
639 	*pprog = prog;
640 }
641 
642 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
643 			   const u32 imm32_hi, const u32 imm32_lo)
644 {
645 	u8 *prog = *pprog;
646 	int cnt = 0;
647 
648 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
649 		/*
650 		 * For emitting plain u32, where sign bit must not be
651 		 * propagated LLVM tends to load imm64 over mov32
652 		 * directly, so save couple of bytes by just doing
653 		 * 'mov %eax, imm32' instead.
654 		 */
655 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
656 	} else {
657 		/* movabsq %rax, imm64 */
658 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
659 		EMIT(imm32_lo, 4);
660 		EMIT(imm32_hi, 4);
661 	}
662 
663 	*pprog = prog;
664 }
665 
666 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
667 {
668 	u8 *prog = *pprog;
669 	int cnt = 0;
670 
671 	if (is64) {
672 		/* mov dst, src */
673 		EMIT_mov(dst_reg, src_reg);
674 	} else {
675 		/* mov32 dst, src */
676 		if (is_ereg(dst_reg) || is_ereg(src_reg))
677 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
678 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
679 	}
680 
681 	*pprog = prog;
682 }
683 
684 /* LDX: dst_reg = *(u8*)(src_reg + off) */
685 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
686 {
687 	u8 *prog = *pprog;
688 	int cnt = 0;
689 
690 	switch (size) {
691 	case BPF_B:
692 		/* Emit 'movzx rax, byte ptr [rax + off]' */
693 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
694 		break;
695 	case BPF_H:
696 		/* Emit 'movzx rax, word ptr [rax + off]' */
697 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
698 		break;
699 	case BPF_W:
700 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
701 		if (is_ereg(dst_reg) || is_ereg(src_reg))
702 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
703 		else
704 			EMIT1(0x8B);
705 		break;
706 	case BPF_DW:
707 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
708 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
709 		break;
710 	}
711 	/*
712 	 * If insn->off == 0 we can save one extra byte, but
713 	 * special case of x86 R13 which always needs an offset
714 	 * is not worth the hassle
715 	 */
716 	if (is_imm8(off))
717 		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
718 	else
719 		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
720 	*pprog = prog;
721 }
722 
723 /* STX: *(u8*)(dst_reg + off) = src_reg */
724 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
725 {
726 	u8 *prog = *pprog;
727 	int cnt = 0;
728 
729 	switch (size) {
730 	case BPF_B:
731 		/* Emit 'mov byte ptr [rax + off], al' */
732 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
733 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
734 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
735 		else
736 			EMIT1(0x88);
737 		break;
738 	case BPF_H:
739 		if (is_ereg(dst_reg) || is_ereg(src_reg))
740 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
741 		else
742 			EMIT2(0x66, 0x89);
743 		break;
744 	case BPF_W:
745 		if (is_ereg(dst_reg) || is_ereg(src_reg))
746 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
747 		else
748 			EMIT1(0x89);
749 		break;
750 	case BPF_DW:
751 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
752 		break;
753 	}
754 	if (is_imm8(off))
755 		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
756 	else
757 		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
758 	*pprog = prog;
759 }
760 
761 static bool ex_handler_bpf(const struct exception_table_entry *x,
762 			   struct pt_regs *regs, int trapnr,
763 			   unsigned long error_code, unsigned long fault_addr)
764 {
765 	u32 reg = x->fixup >> 8;
766 
767 	/* jump over faulting load and clear dest register */
768 	*(unsigned long *)((void *)regs + reg) = 0;
769 	regs->ip += x->fixup & 0xff;
770 	return true;
771 }
772 
773 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
774 			     bool *regs_used, bool *tail_call_seen)
775 {
776 	int i;
777 
778 	for (i = 1; i <= insn_cnt; i++, insn++) {
779 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
780 			*tail_call_seen = true;
781 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
782 			regs_used[0] = true;
783 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
784 			regs_used[1] = true;
785 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
786 			regs_used[2] = true;
787 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
788 			regs_used[3] = true;
789 	}
790 }
791 
792 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
793 		  int oldproglen, struct jit_context *ctx)
794 {
795 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
796 	struct bpf_insn *insn = bpf_prog->insnsi;
797 	bool callee_regs_used[4] = {};
798 	int insn_cnt = bpf_prog->len;
799 	bool tail_call_seen = false;
800 	bool seen_exit = false;
801 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
802 	int i, cnt = 0, excnt = 0;
803 	int proglen = 0;
804 	u8 *prog = temp;
805 
806 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
807 			 &tail_call_seen);
808 
809 	/* tail call's presence in current prog implies it is reachable */
810 	tail_call_reachable |= tail_call_seen;
811 
812 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
813 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
814 		      bpf_prog->aux->func_idx != 0);
815 	push_callee_regs(&prog, callee_regs_used);
816 	addrs[0] = prog - temp;
817 
818 	for (i = 1; i <= insn_cnt; i++, insn++) {
819 		const s32 imm32 = insn->imm;
820 		u32 dst_reg = insn->dst_reg;
821 		u32 src_reg = insn->src_reg;
822 		u8 b2 = 0, b3 = 0;
823 		s64 jmp_offset;
824 		u8 jmp_cond;
825 		int ilen;
826 		u8 *func;
827 
828 		switch (insn->code) {
829 			/* ALU */
830 		case BPF_ALU | BPF_ADD | BPF_X:
831 		case BPF_ALU | BPF_SUB | BPF_X:
832 		case BPF_ALU | BPF_AND | BPF_X:
833 		case BPF_ALU | BPF_OR | BPF_X:
834 		case BPF_ALU | BPF_XOR | BPF_X:
835 		case BPF_ALU64 | BPF_ADD | BPF_X:
836 		case BPF_ALU64 | BPF_SUB | BPF_X:
837 		case BPF_ALU64 | BPF_AND | BPF_X:
838 		case BPF_ALU64 | BPF_OR | BPF_X:
839 		case BPF_ALU64 | BPF_XOR | BPF_X:
840 			switch (BPF_OP(insn->code)) {
841 			case BPF_ADD: b2 = 0x01; break;
842 			case BPF_SUB: b2 = 0x29; break;
843 			case BPF_AND: b2 = 0x21; break;
844 			case BPF_OR: b2 = 0x09; break;
845 			case BPF_XOR: b2 = 0x31; break;
846 			}
847 			if (BPF_CLASS(insn->code) == BPF_ALU64)
848 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
849 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
850 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
851 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
852 			break;
853 
854 		case BPF_ALU64 | BPF_MOV | BPF_X:
855 		case BPF_ALU | BPF_MOV | BPF_X:
856 			emit_mov_reg(&prog,
857 				     BPF_CLASS(insn->code) == BPF_ALU64,
858 				     dst_reg, src_reg);
859 			break;
860 
861 			/* neg dst */
862 		case BPF_ALU | BPF_NEG:
863 		case BPF_ALU64 | BPF_NEG:
864 			if (BPF_CLASS(insn->code) == BPF_ALU64)
865 				EMIT1(add_1mod(0x48, dst_reg));
866 			else if (is_ereg(dst_reg))
867 				EMIT1(add_1mod(0x40, dst_reg));
868 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
869 			break;
870 
871 		case BPF_ALU | BPF_ADD | BPF_K:
872 		case BPF_ALU | BPF_SUB | BPF_K:
873 		case BPF_ALU | BPF_AND | BPF_K:
874 		case BPF_ALU | BPF_OR | BPF_K:
875 		case BPF_ALU | BPF_XOR | BPF_K:
876 		case BPF_ALU64 | BPF_ADD | BPF_K:
877 		case BPF_ALU64 | BPF_SUB | BPF_K:
878 		case BPF_ALU64 | BPF_AND | BPF_K:
879 		case BPF_ALU64 | BPF_OR | BPF_K:
880 		case BPF_ALU64 | BPF_XOR | BPF_K:
881 			if (BPF_CLASS(insn->code) == BPF_ALU64)
882 				EMIT1(add_1mod(0x48, dst_reg));
883 			else if (is_ereg(dst_reg))
884 				EMIT1(add_1mod(0x40, dst_reg));
885 
886 			/*
887 			 * b3 holds 'normal' opcode, b2 short form only valid
888 			 * in case dst is eax/rax.
889 			 */
890 			switch (BPF_OP(insn->code)) {
891 			case BPF_ADD:
892 				b3 = 0xC0;
893 				b2 = 0x05;
894 				break;
895 			case BPF_SUB:
896 				b3 = 0xE8;
897 				b2 = 0x2D;
898 				break;
899 			case BPF_AND:
900 				b3 = 0xE0;
901 				b2 = 0x25;
902 				break;
903 			case BPF_OR:
904 				b3 = 0xC8;
905 				b2 = 0x0D;
906 				break;
907 			case BPF_XOR:
908 				b3 = 0xF0;
909 				b2 = 0x35;
910 				break;
911 			}
912 
913 			if (is_imm8(imm32))
914 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
915 			else if (is_axreg(dst_reg))
916 				EMIT1_off32(b2, imm32);
917 			else
918 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
919 			break;
920 
921 		case BPF_ALU64 | BPF_MOV | BPF_K:
922 		case BPF_ALU | BPF_MOV | BPF_K:
923 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
924 				       dst_reg, imm32);
925 			break;
926 
927 		case BPF_LD | BPF_IMM | BPF_DW:
928 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
929 			insn++;
930 			i++;
931 			break;
932 
933 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
934 		case BPF_ALU | BPF_MOD | BPF_X:
935 		case BPF_ALU | BPF_DIV | BPF_X:
936 		case BPF_ALU | BPF_MOD | BPF_K:
937 		case BPF_ALU | BPF_DIV | BPF_K:
938 		case BPF_ALU64 | BPF_MOD | BPF_X:
939 		case BPF_ALU64 | BPF_DIV | BPF_X:
940 		case BPF_ALU64 | BPF_MOD | BPF_K:
941 		case BPF_ALU64 | BPF_DIV | BPF_K:
942 			EMIT1(0x50); /* push rax */
943 			EMIT1(0x52); /* push rdx */
944 
945 			if (BPF_SRC(insn->code) == BPF_X)
946 				/* mov r11, src_reg */
947 				EMIT_mov(AUX_REG, src_reg);
948 			else
949 				/* mov r11, imm32 */
950 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
951 
952 			/* mov rax, dst_reg */
953 			EMIT_mov(BPF_REG_0, dst_reg);
954 
955 			/*
956 			 * xor edx, edx
957 			 * equivalent to 'xor rdx, rdx', but one byte less
958 			 */
959 			EMIT2(0x31, 0xd2);
960 
961 			if (BPF_CLASS(insn->code) == BPF_ALU64)
962 				/* div r11 */
963 				EMIT3(0x49, 0xF7, 0xF3);
964 			else
965 				/* div r11d */
966 				EMIT3(0x41, 0xF7, 0xF3);
967 
968 			if (BPF_OP(insn->code) == BPF_MOD)
969 				/* mov r11, rdx */
970 				EMIT3(0x49, 0x89, 0xD3);
971 			else
972 				/* mov r11, rax */
973 				EMIT3(0x49, 0x89, 0xC3);
974 
975 			EMIT1(0x5A); /* pop rdx */
976 			EMIT1(0x58); /* pop rax */
977 
978 			/* mov dst_reg, r11 */
979 			EMIT_mov(dst_reg, AUX_REG);
980 			break;
981 
982 		case BPF_ALU | BPF_MUL | BPF_K:
983 		case BPF_ALU | BPF_MUL | BPF_X:
984 		case BPF_ALU64 | BPF_MUL | BPF_K:
985 		case BPF_ALU64 | BPF_MUL | BPF_X:
986 		{
987 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
988 
989 			if (dst_reg != BPF_REG_0)
990 				EMIT1(0x50); /* push rax */
991 			if (dst_reg != BPF_REG_3)
992 				EMIT1(0x52); /* push rdx */
993 
994 			/* mov r11, dst_reg */
995 			EMIT_mov(AUX_REG, dst_reg);
996 
997 			if (BPF_SRC(insn->code) == BPF_X)
998 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
999 			else
1000 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1001 
1002 			if (is64)
1003 				EMIT1(add_1mod(0x48, AUX_REG));
1004 			else if (is_ereg(AUX_REG))
1005 				EMIT1(add_1mod(0x40, AUX_REG));
1006 			/* mul(q) r11 */
1007 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1008 
1009 			if (dst_reg != BPF_REG_3)
1010 				EMIT1(0x5A); /* pop rdx */
1011 			if (dst_reg != BPF_REG_0) {
1012 				/* mov dst_reg, rax */
1013 				EMIT_mov(dst_reg, BPF_REG_0);
1014 				EMIT1(0x58); /* pop rax */
1015 			}
1016 			break;
1017 		}
1018 			/* Shifts */
1019 		case BPF_ALU | BPF_LSH | BPF_K:
1020 		case BPF_ALU | BPF_RSH | BPF_K:
1021 		case BPF_ALU | BPF_ARSH | BPF_K:
1022 		case BPF_ALU64 | BPF_LSH | BPF_K:
1023 		case BPF_ALU64 | BPF_RSH | BPF_K:
1024 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1025 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1026 				EMIT1(add_1mod(0x48, dst_reg));
1027 			else if (is_ereg(dst_reg))
1028 				EMIT1(add_1mod(0x40, dst_reg));
1029 
1030 			switch (BPF_OP(insn->code)) {
1031 			case BPF_LSH: b3 = 0xE0; break;
1032 			case BPF_RSH: b3 = 0xE8; break;
1033 			case BPF_ARSH: b3 = 0xF8; break;
1034 			}
1035 
1036 			if (imm32 == 1)
1037 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1038 			else
1039 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1040 			break;
1041 
1042 		case BPF_ALU | BPF_LSH | BPF_X:
1043 		case BPF_ALU | BPF_RSH | BPF_X:
1044 		case BPF_ALU | BPF_ARSH | BPF_X:
1045 		case BPF_ALU64 | BPF_LSH | BPF_X:
1046 		case BPF_ALU64 | BPF_RSH | BPF_X:
1047 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1048 
1049 			/* Check for bad case when dst_reg == rcx */
1050 			if (dst_reg == BPF_REG_4) {
1051 				/* mov r11, dst_reg */
1052 				EMIT_mov(AUX_REG, dst_reg);
1053 				dst_reg = AUX_REG;
1054 			}
1055 
1056 			if (src_reg != BPF_REG_4) { /* common case */
1057 				EMIT1(0x51); /* push rcx */
1058 
1059 				/* mov rcx, src_reg */
1060 				EMIT_mov(BPF_REG_4, src_reg);
1061 			}
1062 
1063 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1064 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1065 				EMIT1(add_1mod(0x48, dst_reg));
1066 			else if (is_ereg(dst_reg))
1067 				EMIT1(add_1mod(0x40, dst_reg));
1068 
1069 			switch (BPF_OP(insn->code)) {
1070 			case BPF_LSH: b3 = 0xE0; break;
1071 			case BPF_RSH: b3 = 0xE8; break;
1072 			case BPF_ARSH: b3 = 0xF8; break;
1073 			}
1074 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1075 
1076 			if (src_reg != BPF_REG_4)
1077 				EMIT1(0x59); /* pop rcx */
1078 
1079 			if (insn->dst_reg == BPF_REG_4)
1080 				/* mov dst_reg, r11 */
1081 				EMIT_mov(insn->dst_reg, AUX_REG);
1082 			break;
1083 
1084 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1085 			switch (imm32) {
1086 			case 16:
1087 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1088 				EMIT1(0x66);
1089 				if (is_ereg(dst_reg))
1090 					EMIT1(0x41);
1091 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1092 
1093 				/* Emit 'movzwl eax, ax' */
1094 				if (is_ereg(dst_reg))
1095 					EMIT3(0x45, 0x0F, 0xB7);
1096 				else
1097 					EMIT2(0x0F, 0xB7);
1098 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1099 				break;
1100 			case 32:
1101 				/* Emit 'bswap eax' to swap lower 4 bytes */
1102 				if (is_ereg(dst_reg))
1103 					EMIT2(0x41, 0x0F);
1104 				else
1105 					EMIT1(0x0F);
1106 				EMIT1(add_1reg(0xC8, dst_reg));
1107 				break;
1108 			case 64:
1109 				/* Emit 'bswap rax' to swap 8 bytes */
1110 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1111 				      add_1reg(0xC8, dst_reg));
1112 				break;
1113 			}
1114 			break;
1115 
1116 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1117 			switch (imm32) {
1118 			case 16:
1119 				/*
1120 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1121 				 * into 64 bit
1122 				 */
1123 				if (is_ereg(dst_reg))
1124 					EMIT3(0x45, 0x0F, 0xB7);
1125 				else
1126 					EMIT2(0x0F, 0xB7);
1127 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1128 				break;
1129 			case 32:
1130 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1131 				if (is_ereg(dst_reg))
1132 					EMIT1(0x45);
1133 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1134 				break;
1135 			case 64:
1136 				/* nop */
1137 				break;
1138 			}
1139 			break;
1140 
1141 			/* ST: *(u8*)(dst_reg + off) = imm */
1142 		case BPF_ST | BPF_MEM | BPF_B:
1143 			if (is_ereg(dst_reg))
1144 				EMIT2(0x41, 0xC6);
1145 			else
1146 				EMIT1(0xC6);
1147 			goto st;
1148 		case BPF_ST | BPF_MEM | BPF_H:
1149 			if (is_ereg(dst_reg))
1150 				EMIT3(0x66, 0x41, 0xC7);
1151 			else
1152 				EMIT2(0x66, 0xC7);
1153 			goto st;
1154 		case BPF_ST | BPF_MEM | BPF_W:
1155 			if (is_ereg(dst_reg))
1156 				EMIT2(0x41, 0xC7);
1157 			else
1158 				EMIT1(0xC7);
1159 			goto st;
1160 		case BPF_ST | BPF_MEM | BPF_DW:
1161 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1162 
1163 st:			if (is_imm8(insn->off))
1164 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1165 			else
1166 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1167 
1168 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1169 			break;
1170 
1171 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1172 		case BPF_STX | BPF_MEM | BPF_B:
1173 		case BPF_STX | BPF_MEM | BPF_H:
1174 		case BPF_STX | BPF_MEM | BPF_W:
1175 		case BPF_STX | BPF_MEM | BPF_DW:
1176 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1177 			break;
1178 
1179 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1180 		case BPF_LDX | BPF_MEM | BPF_B:
1181 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1182 		case BPF_LDX | BPF_MEM | BPF_H:
1183 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1184 		case BPF_LDX | BPF_MEM | BPF_W:
1185 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1186 		case BPF_LDX | BPF_MEM | BPF_DW:
1187 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1188 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1189 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1190 				struct exception_table_entry *ex;
1191 				u8 *_insn = image + proglen;
1192 				s64 delta;
1193 
1194 				if (!bpf_prog->aux->extable)
1195 					break;
1196 
1197 				if (excnt >= bpf_prog->aux->num_exentries) {
1198 					pr_err("ex gen bug\n");
1199 					return -EFAULT;
1200 				}
1201 				ex = &bpf_prog->aux->extable[excnt++];
1202 
1203 				delta = _insn - (u8 *)&ex->insn;
1204 				if (!is_simm32(delta)) {
1205 					pr_err("extable->insn doesn't fit into 32-bit\n");
1206 					return -EFAULT;
1207 				}
1208 				ex->insn = delta;
1209 
1210 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1211 				if (!is_simm32(delta)) {
1212 					pr_err("extable->handler doesn't fit into 32-bit\n");
1213 					return -EFAULT;
1214 				}
1215 				ex->handler = delta;
1216 
1217 				if (dst_reg > BPF_REG_9) {
1218 					pr_err("verifier error\n");
1219 					return -EFAULT;
1220 				}
1221 				/*
1222 				 * Compute size of x86 insn and its target dest x86 register.
1223 				 * ex_handler_bpf() will use lower 8 bits to adjust
1224 				 * pt_regs->ip to jump over this x86 instruction
1225 				 * and upper bits to figure out which pt_regs to zero out.
1226 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1227 				 * of 4 bytes will be ignored and rbx will be zero inited.
1228 				 */
1229 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1230 			}
1231 			break;
1232 
1233 			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1234 		case BPF_STX | BPF_XADD | BPF_W:
1235 			/* Emit 'lock add dword ptr [rax + off], eax' */
1236 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1237 				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1238 			else
1239 				EMIT2(0xF0, 0x01);
1240 			goto xadd;
1241 		case BPF_STX | BPF_XADD | BPF_DW:
1242 			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1243 xadd:			if (is_imm8(insn->off))
1244 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1245 			else
1246 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1247 					    insn->off);
1248 			break;
1249 
1250 			/* call */
1251 		case BPF_JMP | BPF_CALL:
1252 			func = (u8 *) __bpf_call_base + imm32;
1253 			if (tail_call_reachable) {
1254 				EMIT3_off32(0x48, 0x8B, 0x85,
1255 					    -(bpf_prog->aux->stack_depth + 8));
1256 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1257 					return -EINVAL;
1258 			} else {
1259 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1260 					return -EINVAL;
1261 			}
1262 			break;
1263 
1264 		case BPF_JMP | BPF_TAIL_CALL:
1265 			if (imm32)
1266 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1267 							  &prog, addrs[i], image,
1268 							  callee_regs_used,
1269 							  bpf_prog->aux->stack_depth);
1270 			else
1271 				emit_bpf_tail_call_indirect(&prog,
1272 							    callee_regs_used,
1273 							    bpf_prog->aux->stack_depth);
1274 			break;
1275 
1276 			/* cond jump */
1277 		case BPF_JMP | BPF_JEQ | BPF_X:
1278 		case BPF_JMP | BPF_JNE | BPF_X:
1279 		case BPF_JMP | BPF_JGT | BPF_X:
1280 		case BPF_JMP | BPF_JLT | BPF_X:
1281 		case BPF_JMP | BPF_JGE | BPF_X:
1282 		case BPF_JMP | BPF_JLE | BPF_X:
1283 		case BPF_JMP | BPF_JSGT | BPF_X:
1284 		case BPF_JMP | BPF_JSLT | BPF_X:
1285 		case BPF_JMP | BPF_JSGE | BPF_X:
1286 		case BPF_JMP | BPF_JSLE | BPF_X:
1287 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1288 		case BPF_JMP32 | BPF_JNE | BPF_X:
1289 		case BPF_JMP32 | BPF_JGT | BPF_X:
1290 		case BPF_JMP32 | BPF_JLT | BPF_X:
1291 		case BPF_JMP32 | BPF_JGE | BPF_X:
1292 		case BPF_JMP32 | BPF_JLE | BPF_X:
1293 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1294 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1295 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1296 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1297 			/* cmp dst_reg, src_reg */
1298 			if (BPF_CLASS(insn->code) == BPF_JMP)
1299 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1300 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1301 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1302 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1303 			goto emit_cond_jmp;
1304 
1305 		case BPF_JMP | BPF_JSET | BPF_X:
1306 		case BPF_JMP32 | BPF_JSET | BPF_X:
1307 			/* test dst_reg, src_reg */
1308 			if (BPF_CLASS(insn->code) == BPF_JMP)
1309 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1310 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1311 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1312 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1313 			goto emit_cond_jmp;
1314 
1315 		case BPF_JMP | BPF_JSET | BPF_K:
1316 		case BPF_JMP32 | BPF_JSET | BPF_K:
1317 			/* test dst_reg, imm32 */
1318 			if (BPF_CLASS(insn->code) == BPF_JMP)
1319 				EMIT1(add_1mod(0x48, dst_reg));
1320 			else if (is_ereg(dst_reg))
1321 				EMIT1(add_1mod(0x40, dst_reg));
1322 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1323 			goto emit_cond_jmp;
1324 
1325 		case BPF_JMP | BPF_JEQ | BPF_K:
1326 		case BPF_JMP | BPF_JNE | BPF_K:
1327 		case BPF_JMP | BPF_JGT | BPF_K:
1328 		case BPF_JMP | BPF_JLT | BPF_K:
1329 		case BPF_JMP | BPF_JGE | BPF_K:
1330 		case BPF_JMP | BPF_JLE | BPF_K:
1331 		case BPF_JMP | BPF_JSGT | BPF_K:
1332 		case BPF_JMP | BPF_JSLT | BPF_K:
1333 		case BPF_JMP | BPF_JSGE | BPF_K:
1334 		case BPF_JMP | BPF_JSLE | BPF_K:
1335 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1336 		case BPF_JMP32 | BPF_JNE | BPF_K:
1337 		case BPF_JMP32 | BPF_JGT | BPF_K:
1338 		case BPF_JMP32 | BPF_JLT | BPF_K:
1339 		case BPF_JMP32 | BPF_JGE | BPF_K:
1340 		case BPF_JMP32 | BPF_JLE | BPF_K:
1341 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1342 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1343 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1344 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1345 			/* test dst_reg, dst_reg to save one extra byte */
1346 			if (imm32 == 0) {
1347 				if (BPF_CLASS(insn->code) == BPF_JMP)
1348 					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1349 				else if (is_ereg(dst_reg))
1350 					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1351 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1352 				goto emit_cond_jmp;
1353 			}
1354 
1355 			/* cmp dst_reg, imm8/32 */
1356 			if (BPF_CLASS(insn->code) == BPF_JMP)
1357 				EMIT1(add_1mod(0x48, dst_reg));
1358 			else if (is_ereg(dst_reg))
1359 				EMIT1(add_1mod(0x40, dst_reg));
1360 
1361 			if (is_imm8(imm32))
1362 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1363 			else
1364 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1365 
1366 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1367 			switch (BPF_OP(insn->code)) {
1368 			case BPF_JEQ:
1369 				jmp_cond = X86_JE;
1370 				break;
1371 			case BPF_JSET:
1372 			case BPF_JNE:
1373 				jmp_cond = X86_JNE;
1374 				break;
1375 			case BPF_JGT:
1376 				/* GT is unsigned '>', JA in x86 */
1377 				jmp_cond = X86_JA;
1378 				break;
1379 			case BPF_JLT:
1380 				/* LT is unsigned '<', JB in x86 */
1381 				jmp_cond = X86_JB;
1382 				break;
1383 			case BPF_JGE:
1384 				/* GE is unsigned '>=', JAE in x86 */
1385 				jmp_cond = X86_JAE;
1386 				break;
1387 			case BPF_JLE:
1388 				/* LE is unsigned '<=', JBE in x86 */
1389 				jmp_cond = X86_JBE;
1390 				break;
1391 			case BPF_JSGT:
1392 				/* Signed '>', GT in x86 */
1393 				jmp_cond = X86_JG;
1394 				break;
1395 			case BPF_JSLT:
1396 				/* Signed '<', LT in x86 */
1397 				jmp_cond = X86_JL;
1398 				break;
1399 			case BPF_JSGE:
1400 				/* Signed '>=', GE in x86 */
1401 				jmp_cond = X86_JGE;
1402 				break;
1403 			case BPF_JSLE:
1404 				/* Signed '<=', LE in x86 */
1405 				jmp_cond = X86_JLE;
1406 				break;
1407 			default: /* to silence GCC warning */
1408 				return -EFAULT;
1409 			}
1410 			jmp_offset = addrs[i + insn->off] - addrs[i];
1411 			if (is_imm8(jmp_offset)) {
1412 				EMIT2(jmp_cond, jmp_offset);
1413 			} else if (is_simm32(jmp_offset)) {
1414 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1415 			} else {
1416 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1417 				return -EFAULT;
1418 			}
1419 
1420 			break;
1421 
1422 		case BPF_JMP | BPF_JA:
1423 			if (insn->off == -1)
1424 				/* -1 jmp instructions will always jump
1425 				 * backwards two bytes. Explicitly handling
1426 				 * this case avoids wasting too many passes
1427 				 * when there are long sequences of replaced
1428 				 * dead code.
1429 				 */
1430 				jmp_offset = -2;
1431 			else
1432 				jmp_offset = addrs[i + insn->off] - addrs[i];
1433 
1434 			if (!jmp_offset)
1435 				/* Optimize out nop jumps */
1436 				break;
1437 emit_jmp:
1438 			if (is_imm8(jmp_offset)) {
1439 				EMIT2(0xEB, jmp_offset);
1440 			} else if (is_simm32(jmp_offset)) {
1441 				EMIT1_off32(0xE9, jmp_offset);
1442 			} else {
1443 				pr_err("jmp gen bug %llx\n", jmp_offset);
1444 				return -EFAULT;
1445 			}
1446 			break;
1447 
1448 		case BPF_JMP | BPF_EXIT:
1449 			if (seen_exit) {
1450 				jmp_offset = ctx->cleanup_addr - addrs[i];
1451 				goto emit_jmp;
1452 			}
1453 			seen_exit = true;
1454 			/* Update cleanup_addr */
1455 			ctx->cleanup_addr = proglen;
1456 			pop_callee_regs(&prog, callee_regs_used);
1457 			EMIT1(0xC9);         /* leave */
1458 			EMIT1(0xC3);         /* ret */
1459 			break;
1460 
1461 		default:
1462 			/*
1463 			 * By design x86-64 JIT should support all BPF instructions.
1464 			 * This error will be seen if new instruction was added
1465 			 * to the interpreter, but not to the JIT, or if there is
1466 			 * junk in bpf_prog.
1467 			 */
1468 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1469 			return -EINVAL;
1470 		}
1471 
1472 		ilen = prog - temp;
1473 		if (ilen > BPF_MAX_INSN_SIZE) {
1474 			pr_err("bpf_jit: fatal insn size error\n");
1475 			return -EFAULT;
1476 		}
1477 
1478 		if (image) {
1479 			if (unlikely(proglen + ilen > oldproglen)) {
1480 				pr_err("bpf_jit: fatal error\n");
1481 				return -EFAULT;
1482 			}
1483 			memcpy(image + proglen, temp, ilen);
1484 		}
1485 		proglen += ilen;
1486 		addrs[i] = proglen;
1487 		prog = temp;
1488 	}
1489 
1490 	if (image && excnt != bpf_prog->aux->num_exentries) {
1491 		pr_err("extable is not populated\n");
1492 		return -EFAULT;
1493 	}
1494 	return proglen;
1495 }
1496 
1497 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1498 		      int stack_size)
1499 {
1500 	int i;
1501 	/* Store function arguments to stack.
1502 	 * For a function that accepts two pointers the sequence will be:
1503 	 * mov QWORD PTR [rbp-0x10],rdi
1504 	 * mov QWORD PTR [rbp-0x8],rsi
1505 	 */
1506 	for (i = 0; i < min(nr_args, 6); i++)
1507 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1508 			 BPF_REG_FP,
1509 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1510 			 -(stack_size - i * 8));
1511 }
1512 
1513 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1514 			 int stack_size)
1515 {
1516 	int i;
1517 
1518 	/* Restore function arguments from stack.
1519 	 * For a function that accepts two pointers the sequence will be:
1520 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1521 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1522 	 */
1523 	for (i = 0; i < min(nr_args, 6); i++)
1524 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1525 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1526 			 BPF_REG_FP,
1527 			 -(stack_size - i * 8));
1528 }
1529 
1530 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1531 			   struct bpf_prog *p, int stack_size, bool mod_ret)
1532 {
1533 	u8 *prog = *pprog;
1534 	int cnt = 0;
1535 
1536 	if (p->aux->sleepable) {
1537 		if (emit_call(&prog, __bpf_prog_enter_sleepable, prog))
1538 			return -EINVAL;
1539 	} else {
1540 		if (emit_call(&prog, __bpf_prog_enter, prog))
1541 			return -EINVAL;
1542 		/* remember prog start time returned by __bpf_prog_enter */
1543 		emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1544 	}
1545 
1546 	/* arg1: lea rdi, [rbp - stack_size] */
1547 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1548 	/* arg2: progs[i]->insnsi for interpreter */
1549 	if (!p->jited)
1550 		emit_mov_imm64(&prog, BPF_REG_2,
1551 			       (long) p->insnsi >> 32,
1552 			       (u32) (long) p->insnsi);
1553 	/* call JITed bpf program or interpreter */
1554 	if (emit_call(&prog, p->bpf_func, prog))
1555 		return -EINVAL;
1556 
1557 	/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1558 	 * of the previous call which is then passed on the stack to
1559 	 * the next BPF program.
1560 	 */
1561 	if (mod_ret)
1562 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1563 
1564 	if (p->aux->sleepable) {
1565 		if (emit_call(&prog, __bpf_prog_exit_sleepable, prog))
1566 			return -EINVAL;
1567 	} else {
1568 		/* arg1: mov rdi, progs[i] */
1569 		emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32,
1570 			       (u32) (long) p);
1571 		/* arg2: mov rsi, rbx <- start time in nsec */
1572 		emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1573 		if (emit_call(&prog, __bpf_prog_exit, prog))
1574 			return -EINVAL;
1575 	}
1576 
1577 	*pprog = prog;
1578 	return 0;
1579 }
1580 
1581 static void emit_nops(u8 **pprog, unsigned int len)
1582 {
1583 	unsigned int i, noplen;
1584 	u8 *prog = *pprog;
1585 	int cnt = 0;
1586 
1587 	while (len > 0) {
1588 		noplen = len;
1589 
1590 		if (noplen > ASM_NOP_MAX)
1591 			noplen = ASM_NOP_MAX;
1592 
1593 		for (i = 0; i < noplen; i++)
1594 			EMIT1(ideal_nops[noplen][i]);
1595 		len -= noplen;
1596 	}
1597 
1598 	*pprog = prog;
1599 }
1600 
1601 static void emit_align(u8 **pprog, u32 align)
1602 {
1603 	u8 *target, *prog = *pprog;
1604 
1605 	target = PTR_ALIGN(prog, align);
1606 	if (target != prog)
1607 		emit_nops(&prog, target - prog);
1608 
1609 	*pprog = prog;
1610 }
1611 
1612 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1613 {
1614 	u8 *prog = *pprog;
1615 	int cnt = 0;
1616 	s64 offset;
1617 
1618 	offset = func - (ip + 2 + 4);
1619 	if (!is_simm32(offset)) {
1620 		pr_err("Target %p is out of range\n", func);
1621 		return -EINVAL;
1622 	}
1623 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1624 	*pprog = prog;
1625 	return 0;
1626 }
1627 
1628 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1629 		      struct bpf_tramp_progs *tp, int stack_size)
1630 {
1631 	int i;
1632 	u8 *prog = *pprog;
1633 
1634 	for (i = 0; i < tp->nr_progs; i++) {
1635 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1636 			return -EINVAL;
1637 	}
1638 	*pprog = prog;
1639 	return 0;
1640 }
1641 
1642 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1643 			      struct bpf_tramp_progs *tp, int stack_size,
1644 			      u8 **branches)
1645 {
1646 	u8 *prog = *pprog;
1647 	int i, cnt = 0;
1648 
1649 	/* The first fmod_ret program will receive a garbage return value.
1650 	 * Set this to 0 to avoid confusing the program.
1651 	 */
1652 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1653 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1654 	for (i = 0; i < tp->nr_progs; i++) {
1655 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1656 			return -EINVAL;
1657 
1658 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1659 		 * if (*(u64 *)(rbp - 8) !=  0)
1660 		 *	goto do_fexit;
1661 		 */
1662 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1663 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1664 
1665 		/* Save the location of the branch and Generate 6 nops
1666 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1667 		 * are replaced with a conditional jump once do_fexit (i.e. the
1668 		 * start of the fexit invocation) is finalized.
1669 		 */
1670 		branches[i] = prog;
1671 		emit_nops(&prog, 4 + 2);
1672 	}
1673 
1674 	*pprog = prog;
1675 	return 0;
1676 }
1677 
1678 /* Example:
1679  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1680  * its 'struct btf_func_model' will be nr_args=2
1681  * The assembly code when eth_type_trans is executing after trampoline:
1682  *
1683  * push rbp
1684  * mov rbp, rsp
1685  * sub rsp, 16                     // space for skb and dev
1686  * push rbx                        // temp regs to pass start time
1687  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1688  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1689  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1690  * mov rbx, rax                    // remember start time in bpf stats are enabled
1691  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1692  * call addr_of_jited_FENTRY_prog
1693  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1694  * mov rsi, rbx                    // prog start time
1695  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1696  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1697  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1698  * pop rbx
1699  * leave
1700  * ret
1701  *
1702  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1703  * replaced with 'call generated_bpf_trampoline'. When it returns
1704  * eth_type_trans will continue executing with original skb and dev pointers.
1705  *
1706  * The assembly code when eth_type_trans is called from trampoline:
1707  *
1708  * push rbp
1709  * mov rbp, rsp
1710  * sub rsp, 24                     // space for skb, dev, return value
1711  * push rbx                        // temp regs to pass start time
1712  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1713  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1714  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1715  * mov rbx, rax                    // remember start time if bpf stats are enabled
1716  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1717  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1718  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1719  * mov rsi, rbx                    // prog start time
1720  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1721  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1722  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1723  * call eth_type_trans+5           // execute body of eth_type_trans
1724  * mov qword ptr [rbp - 8], rax    // save return value
1725  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1726  * mov rbx, rax                    // remember start time in bpf stats are enabled
1727  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1728  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1729  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1730  * mov rsi, rbx                    // prog start time
1731  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1732  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1733  * pop rbx
1734  * leave
1735  * add rsp, 8                      // skip eth_type_trans's frame
1736  * ret                             // return to its caller
1737  */
1738 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1739 				const struct btf_func_model *m, u32 flags,
1740 				struct bpf_tramp_progs *tprogs,
1741 				void *orig_call)
1742 {
1743 	int ret, i, cnt = 0, nr_args = m->nr_args;
1744 	int stack_size = nr_args * 8;
1745 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1746 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1747 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1748 	u8 **branches = NULL;
1749 	u8 *prog;
1750 
1751 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1752 	if (nr_args > 6)
1753 		return -ENOTSUPP;
1754 
1755 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1756 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1757 		return -EINVAL;
1758 
1759 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1760 		stack_size += 8; /* room for return value of orig_call */
1761 
1762 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1763 		/* skip patched call instruction and point orig_call to actual
1764 		 * body of the kernel function.
1765 		 */
1766 		orig_call += X86_PATCH_SIZE;
1767 
1768 	prog = image;
1769 
1770 	EMIT1(0x55);		 /* push rbp */
1771 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1772 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1773 	EMIT1(0x53);		 /* push rbx */
1774 
1775 	save_regs(m, &prog, nr_args, stack_size);
1776 
1777 	if (fentry->nr_progs)
1778 		if (invoke_bpf(m, &prog, fentry, stack_size))
1779 			return -EINVAL;
1780 
1781 	if (fmod_ret->nr_progs) {
1782 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1783 				   GFP_KERNEL);
1784 		if (!branches)
1785 			return -ENOMEM;
1786 
1787 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1788 				       branches)) {
1789 			ret = -EINVAL;
1790 			goto cleanup;
1791 		}
1792 	}
1793 
1794 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1795 		if (fentry->nr_progs || fmod_ret->nr_progs)
1796 			restore_regs(m, &prog, nr_args, stack_size);
1797 
1798 		/* call original function */
1799 		if (emit_call(&prog, orig_call, prog)) {
1800 			ret = -EINVAL;
1801 			goto cleanup;
1802 		}
1803 		/* remember return value in a stack for bpf prog to access */
1804 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1805 	}
1806 
1807 	if (fmod_ret->nr_progs) {
1808 		/* From Intel 64 and IA-32 Architectures Optimization
1809 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1810 		 * Coding Rule 11: All branch targets should be 16-byte
1811 		 * aligned.
1812 		 */
1813 		emit_align(&prog, 16);
1814 		/* Update the branches saved in invoke_bpf_mod_ret with the
1815 		 * aligned address of do_fexit.
1816 		 */
1817 		for (i = 0; i < fmod_ret->nr_progs; i++)
1818 			emit_cond_near_jump(&branches[i], prog, branches[i],
1819 					    X86_JNE);
1820 	}
1821 
1822 	if (fexit->nr_progs)
1823 		if (invoke_bpf(m, &prog, fexit, stack_size)) {
1824 			ret = -EINVAL;
1825 			goto cleanup;
1826 		}
1827 
1828 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1829 		restore_regs(m, &prog, nr_args, stack_size);
1830 
1831 	/* This needs to be done regardless. If there were fmod_ret programs,
1832 	 * the return value is only updated on the stack and still needs to be
1833 	 * restored to R0.
1834 	 */
1835 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1836 		/* restore original return value back into RAX */
1837 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1838 
1839 	EMIT1(0x5B); /* pop rbx */
1840 	EMIT1(0xC9); /* leave */
1841 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1842 		/* skip our return address and return to parent */
1843 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1844 	EMIT1(0xC3); /* ret */
1845 	/* Make sure the trampoline generation logic doesn't overflow */
1846 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
1847 		ret = -EFAULT;
1848 		goto cleanup;
1849 	}
1850 	ret = prog - (u8 *)image;
1851 
1852 cleanup:
1853 	kfree(branches);
1854 	return ret;
1855 }
1856 
1857 static int emit_fallback_jump(u8 **pprog)
1858 {
1859 	u8 *prog = *pprog;
1860 	int err = 0;
1861 
1862 #ifdef CONFIG_RETPOLINE
1863 	/* Note that this assumes the the compiler uses external
1864 	 * thunks for indirect calls. Both clang and GCC use the same
1865 	 * naming convention for external thunks.
1866 	 */
1867 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1868 #else
1869 	int cnt = 0;
1870 
1871 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
1872 #endif
1873 	*pprog = prog;
1874 	return err;
1875 }
1876 
1877 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1878 {
1879 	u8 *jg_reloc, *prog = *pprog;
1880 	int pivot, err, jg_bytes = 1, cnt = 0;
1881 	s64 jg_offset;
1882 
1883 	if (a == b) {
1884 		/* Leaf node of recursion, i.e. not a range of indices
1885 		 * anymore.
1886 		 */
1887 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
1888 		if (!is_simm32(progs[a]))
1889 			return -1;
1890 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1891 			    progs[a]);
1892 		err = emit_cond_near_jump(&prog,	/* je func */
1893 					  (void *)progs[a], prog,
1894 					  X86_JE);
1895 		if (err)
1896 			return err;
1897 
1898 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
1899 		if (err)
1900 			return err;
1901 
1902 		*pprog = prog;
1903 		return 0;
1904 	}
1905 
1906 	/* Not a leaf node, so we pivot, and recursively descend into
1907 	 * the lower and upper ranges.
1908 	 */
1909 	pivot = (b - a) / 2;
1910 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
1911 	if (!is_simm32(progs[a + pivot]))
1912 		return -1;
1913 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1914 
1915 	if (pivot > 2) {				/* jg upper_part */
1916 		/* Require near jump. */
1917 		jg_bytes = 4;
1918 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1919 	} else {
1920 		EMIT2(X86_JG, 0);
1921 	}
1922 	jg_reloc = prog;
1923 
1924 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
1925 				  progs);
1926 	if (err)
1927 		return err;
1928 
1929 	/* From Intel 64 and IA-32 Architectures Optimization
1930 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1931 	 * Coding Rule 11: All branch targets should be 16-byte
1932 	 * aligned.
1933 	 */
1934 	emit_align(&prog, 16);
1935 	jg_offset = prog - jg_reloc;
1936 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1937 
1938 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
1939 				  b, progs);
1940 	if (err)
1941 		return err;
1942 
1943 	*pprog = prog;
1944 	return 0;
1945 }
1946 
1947 static int cmp_ips(const void *a, const void *b)
1948 {
1949 	const s64 *ipa = a;
1950 	const s64 *ipb = b;
1951 
1952 	if (*ipa > *ipb)
1953 		return 1;
1954 	if (*ipa < *ipb)
1955 		return -1;
1956 	return 0;
1957 }
1958 
1959 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1960 {
1961 	u8 *prog = image;
1962 
1963 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1964 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1965 }
1966 
1967 struct x64_jit_data {
1968 	struct bpf_binary_header *header;
1969 	int *addrs;
1970 	u8 *image;
1971 	int proglen;
1972 	struct jit_context ctx;
1973 };
1974 
1975 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1976 {
1977 	struct bpf_binary_header *header = NULL;
1978 	struct bpf_prog *tmp, *orig_prog = prog;
1979 	struct x64_jit_data *jit_data;
1980 	int proglen, oldproglen = 0;
1981 	struct jit_context ctx = {};
1982 	bool tmp_blinded = false;
1983 	bool extra_pass = false;
1984 	u8 *image = NULL;
1985 	int *addrs;
1986 	int pass;
1987 	int i;
1988 
1989 	if (!prog->jit_requested)
1990 		return orig_prog;
1991 
1992 	tmp = bpf_jit_blind_constants(prog);
1993 	/*
1994 	 * If blinding was requested and we failed during blinding,
1995 	 * we must fall back to the interpreter.
1996 	 */
1997 	if (IS_ERR(tmp))
1998 		return orig_prog;
1999 	if (tmp != prog) {
2000 		tmp_blinded = true;
2001 		prog = tmp;
2002 	}
2003 
2004 	jit_data = prog->aux->jit_data;
2005 	if (!jit_data) {
2006 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2007 		if (!jit_data) {
2008 			prog = orig_prog;
2009 			goto out;
2010 		}
2011 		prog->aux->jit_data = jit_data;
2012 	}
2013 	addrs = jit_data->addrs;
2014 	if (addrs) {
2015 		ctx = jit_data->ctx;
2016 		oldproglen = jit_data->proglen;
2017 		image = jit_data->image;
2018 		header = jit_data->header;
2019 		extra_pass = true;
2020 		goto skip_init_addrs;
2021 	}
2022 	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2023 	if (!addrs) {
2024 		prog = orig_prog;
2025 		goto out_addrs;
2026 	}
2027 
2028 	/*
2029 	 * Before first pass, make a rough estimation of addrs[]
2030 	 * each BPF instruction is translated to less than 64 bytes
2031 	 */
2032 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2033 		proglen += 64;
2034 		addrs[i] = proglen;
2035 	}
2036 	ctx.cleanup_addr = proglen;
2037 skip_init_addrs:
2038 
2039 	/*
2040 	 * JITed image shrinks with every pass and the loop iterates
2041 	 * until the image stops shrinking. Very large BPF programs
2042 	 * may converge on the last pass. In such case do one more
2043 	 * pass to emit the final image.
2044 	 */
2045 	for (pass = 0; pass < 20 || image; pass++) {
2046 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2047 		if (proglen <= 0) {
2048 out_image:
2049 			image = NULL;
2050 			if (header)
2051 				bpf_jit_binary_free(header);
2052 			prog = orig_prog;
2053 			goto out_addrs;
2054 		}
2055 		if (image) {
2056 			if (proglen != oldproglen) {
2057 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2058 				       proglen, oldproglen);
2059 				goto out_image;
2060 			}
2061 			break;
2062 		}
2063 		if (proglen == oldproglen) {
2064 			/*
2065 			 * The number of entries in extable is the number of BPF_LDX
2066 			 * insns that access kernel memory via "pointer to BTF type".
2067 			 * The verifier changed their opcode from LDX|MEM|size
2068 			 * to LDX|PROBE_MEM|size to make JITing easier.
2069 			 */
2070 			u32 align = __alignof__(struct exception_table_entry);
2071 			u32 extable_size = prog->aux->num_exentries *
2072 				sizeof(struct exception_table_entry);
2073 
2074 			/* allocate module memory for x86 insns and extable */
2075 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2076 						      &image, align, jit_fill_hole);
2077 			if (!header) {
2078 				prog = orig_prog;
2079 				goto out_addrs;
2080 			}
2081 			prog->aux->extable = (void *) image + roundup(proglen, align);
2082 		}
2083 		oldproglen = proglen;
2084 		cond_resched();
2085 	}
2086 
2087 	if (bpf_jit_enable > 1)
2088 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2089 
2090 	if (image) {
2091 		if (!prog->is_func || extra_pass) {
2092 			bpf_tail_call_direct_fixup(prog);
2093 			bpf_jit_binary_lock_ro(header);
2094 		} else {
2095 			jit_data->addrs = addrs;
2096 			jit_data->ctx = ctx;
2097 			jit_data->proglen = proglen;
2098 			jit_data->image = image;
2099 			jit_data->header = header;
2100 		}
2101 		prog->bpf_func = (void *)image;
2102 		prog->jited = 1;
2103 		prog->jited_len = proglen;
2104 	} else {
2105 		prog = orig_prog;
2106 	}
2107 
2108 	if (!image || !prog->is_func || extra_pass) {
2109 		if (image)
2110 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2111 out_addrs:
2112 		kfree(addrs);
2113 		kfree(jit_data);
2114 		prog->aux->jit_data = NULL;
2115 	}
2116 out:
2117 	if (tmp_blinded)
2118 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2119 					   tmp : orig_prog);
2120 	return prog;
2121 }
2122