xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 0845c3db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 #ifdef CONFIG_X86_KERNEL_IBT
51 #define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
52 #else
53 #define EMIT_ENDBR()
54 #endif
55 
56 static bool is_imm8(int value)
57 {
58 	return value <= 127 && value >= -128;
59 }
60 
61 static bool is_simm32(s64 value)
62 {
63 	return value == (s64)(s32)value;
64 }
65 
66 static bool is_uimm32(u64 value)
67 {
68 	return value == (u64)(u32)value;
69 }
70 
71 /* mov dst, src */
72 #define EMIT_mov(DST, SRC)								 \
73 	do {										 \
74 		if (DST != SRC)								 \
75 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
76 	} while (0)
77 
78 static int bpf_size_to_x86_bytes(int bpf_size)
79 {
80 	if (bpf_size == BPF_W)
81 		return 4;
82 	else if (bpf_size == BPF_H)
83 		return 2;
84 	else if (bpf_size == BPF_B)
85 		return 1;
86 	else if (bpf_size == BPF_DW)
87 		return 4; /* imm32 */
88 	else
89 		return 0;
90 }
91 
92 /*
93  * List of x86 cond jumps opcodes (. + s8)
94  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
95  */
96 #define X86_JB  0x72
97 #define X86_JAE 0x73
98 #define X86_JE  0x74
99 #define X86_JNE 0x75
100 #define X86_JBE 0x76
101 #define X86_JA  0x77
102 #define X86_JL  0x7C
103 #define X86_JGE 0x7D
104 #define X86_JLE 0x7E
105 #define X86_JG  0x7F
106 
107 /* Pick a register outside of BPF range for JIT internal work */
108 #define AUX_REG (MAX_BPF_JIT_REG + 1)
109 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
110 
111 /*
112  * The following table maps BPF registers to x86-64 registers.
113  *
114  * x86-64 register R12 is unused, since if used as base address
115  * register in load/store instructions, it always needs an
116  * extra byte of encoding and is callee saved.
117  *
118  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
119  * trampoline. x86-64 register R10 is used for blinding (if enabled).
120  */
121 static const int reg2hex[] = {
122 	[BPF_REG_0] = 0,  /* RAX */
123 	[BPF_REG_1] = 7,  /* RDI */
124 	[BPF_REG_2] = 6,  /* RSI */
125 	[BPF_REG_3] = 2,  /* RDX */
126 	[BPF_REG_4] = 1,  /* RCX */
127 	[BPF_REG_5] = 0,  /* R8  */
128 	[BPF_REG_6] = 3,  /* RBX callee saved */
129 	[BPF_REG_7] = 5,  /* R13 callee saved */
130 	[BPF_REG_8] = 6,  /* R14 callee saved */
131 	[BPF_REG_9] = 7,  /* R15 callee saved */
132 	[BPF_REG_FP] = 5, /* RBP readonly */
133 	[BPF_REG_AX] = 2, /* R10 temp register */
134 	[AUX_REG] = 3,    /* R11 temp register */
135 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
136 };
137 
138 static const int reg2pt_regs[] = {
139 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
140 	[BPF_REG_1] = offsetof(struct pt_regs, di),
141 	[BPF_REG_2] = offsetof(struct pt_regs, si),
142 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
143 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
144 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
145 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
146 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
147 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
148 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
149 };
150 
151 /*
152  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
153  * which need extra byte of encoding.
154  * rax,rcx,...,rbp have simpler encoding
155  */
156 static bool is_ereg(u32 reg)
157 {
158 	return (1 << reg) & (BIT(BPF_REG_5) |
159 			     BIT(AUX_REG) |
160 			     BIT(BPF_REG_7) |
161 			     BIT(BPF_REG_8) |
162 			     BIT(BPF_REG_9) |
163 			     BIT(X86_REG_R9) |
164 			     BIT(BPF_REG_AX));
165 }
166 
167 /*
168  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
169  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
170  * of encoding. al,cl,dl,bl have simpler encoding.
171  */
172 static bool is_ereg_8l(u32 reg)
173 {
174 	return is_ereg(reg) ||
175 	    (1 << reg) & (BIT(BPF_REG_1) |
176 			  BIT(BPF_REG_2) |
177 			  BIT(BPF_REG_FP));
178 }
179 
180 static bool is_axreg(u32 reg)
181 {
182 	return reg == BPF_REG_0;
183 }
184 
185 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
186 static u8 add_1mod(u8 byte, u32 reg)
187 {
188 	if (is_ereg(reg))
189 		byte |= 1;
190 	return byte;
191 }
192 
193 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
194 {
195 	if (is_ereg(r1))
196 		byte |= 1;
197 	if (is_ereg(r2))
198 		byte |= 4;
199 	return byte;
200 }
201 
202 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
203 static u8 add_1reg(u8 byte, u32 dst_reg)
204 {
205 	return byte + reg2hex[dst_reg];
206 }
207 
208 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
209 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
210 {
211 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
212 }
213 
214 /* Some 1-byte opcodes for binary ALU operations */
215 static u8 simple_alu_opcodes[] = {
216 	[BPF_ADD] = 0x01,
217 	[BPF_SUB] = 0x29,
218 	[BPF_AND] = 0x21,
219 	[BPF_OR] = 0x09,
220 	[BPF_XOR] = 0x31,
221 	[BPF_LSH] = 0xE0,
222 	[BPF_RSH] = 0xE8,
223 	[BPF_ARSH] = 0xF8,
224 };
225 
226 static void jit_fill_hole(void *area, unsigned int size)
227 {
228 	/* Fill whole space with INT3 instructions */
229 	memset(area, 0xcc, size);
230 }
231 
232 int bpf_arch_text_invalidate(void *dst, size_t len)
233 {
234 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
235 }
236 
237 struct jit_context {
238 	int cleanup_addr; /* Epilogue code offset */
239 
240 	/*
241 	 * Program specific offsets of labels in the code; these rely on the
242 	 * JIT doing at least 2 passes, recording the position on the first
243 	 * pass, only to generate the correct offset on the second pass.
244 	 */
245 	int tail_call_direct_label;
246 	int tail_call_indirect_label;
247 };
248 
249 /* Maximum number of bytes emitted while JITing one eBPF insn */
250 #define BPF_MAX_INSN_SIZE	128
251 #define BPF_INSN_SAFETY		64
252 
253 /* Number of bytes emit_patch() needs to generate instructions */
254 #define X86_PATCH_SIZE		5
255 /* Number of bytes that will be skipped on tailcall */
256 #define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
257 
258 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
259 {
260 	u8 *prog = *pprog;
261 
262 	if (callee_regs_used[0])
263 		EMIT1(0x53);         /* push rbx */
264 	if (callee_regs_used[1])
265 		EMIT2(0x41, 0x55);   /* push r13 */
266 	if (callee_regs_used[2])
267 		EMIT2(0x41, 0x56);   /* push r14 */
268 	if (callee_regs_used[3])
269 		EMIT2(0x41, 0x57);   /* push r15 */
270 	*pprog = prog;
271 }
272 
273 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
274 {
275 	u8 *prog = *pprog;
276 
277 	if (callee_regs_used[3])
278 		EMIT2(0x41, 0x5F);   /* pop r15 */
279 	if (callee_regs_used[2])
280 		EMIT2(0x41, 0x5E);   /* pop r14 */
281 	if (callee_regs_used[1])
282 		EMIT2(0x41, 0x5D);   /* pop r13 */
283 	if (callee_regs_used[0])
284 		EMIT1(0x5B);         /* pop rbx */
285 	*pprog = prog;
286 }
287 
288 /*
289  * Emit x86-64 prologue code for BPF program.
290  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
291  * while jumping to another program
292  */
293 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
294 			  bool tail_call_reachable, bool is_subprog)
295 {
296 	u8 *prog = *pprog;
297 
298 	/* BPF trampoline can be made to work without these nops,
299 	 * but let's waste 5 bytes for now and optimize later
300 	 */
301 	EMIT_ENDBR();
302 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
303 	prog += X86_PATCH_SIZE;
304 	if (!ebpf_from_cbpf) {
305 		if (tail_call_reachable && !is_subprog)
306 			EMIT2(0x31, 0xC0); /* xor eax, eax */
307 		else
308 			EMIT2(0x66, 0x90); /* nop2 */
309 	}
310 	EMIT1(0x55);             /* push rbp */
311 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
312 
313 	/* X86_TAIL_CALL_OFFSET is here */
314 	EMIT_ENDBR();
315 
316 	/* sub rsp, rounded_stack_depth */
317 	if (stack_depth)
318 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
319 	if (tail_call_reachable)
320 		EMIT1(0x50);         /* push rax */
321 	*pprog = prog;
322 }
323 
324 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
325 {
326 	u8 *prog = *pprog;
327 	s64 offset;
328 
329 	offset = func - (ip + X86_PATCH_SIZE);
330 	if (!is_simm32(offset)) {
331 		pr_err("Target call %p is out of range\n", func);
332 		return -ERANGE;
333 	}
334 	EMIT1_off32(opcode, offset);
335 	*pprog = prog;
336 	return 0;
337 }
338 
339 static int emit_call(u8 **pprog, void *func, void *ip)
340 {
341 	return emit_patch(pprog, func, ip, 0xE8);
342 }
343 
344 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
345 {
346 	OPTIMIZER_HIDE_VAR(func);
347 	x86_call_depth_emit_accounting(pprog, func);
348 	return emit_patch(pprog, func, ip, 0xE8);
349 }
350 
351 static int emit_jump(u8 **pprog, void *func, void *ip)
352 {
353 	return emit_patch(pprog, func, ip, 0xE9);
354 }
355 
356 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
357 				void *old_addr, void *new_addr)
358 {
359 	const u8 *nop_insn = x86_nops[5];
360 	u8 old_insn[X86_PATCH_SIZE];
361 	u8 new_insn[X86_PATCH_SIZE];
362 	u8 *prog;
363 	int ret;
364 
365 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
366 	if (old_addr) {
367 		prog = old_insn;
368 		ret = t == BPF_MOD_CALL ?
369 		      emit_call(&prog, old_addr, ip) :
370 		      emit_jump(&prog, old_addr, ip);
371 		if (ret)
372 			return ret;
373 	}
374 
375 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
376 	if (new_addr) {
377 		prog = new_insn;
378 		ret = t == BPF_MOD_CALL ?
379 		      emit_call(&prog, new_addr, ip) :
380 		      emit_jump(&prog, new_addr, ip);
381 		if (ret)
382 			return ret;
383 	}
384 
385 	ret = -EBUSY;
386 	mutex_lock(&text_mutex);
387 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
388 		goto out;
389 	ret = 1;
390 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
391 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
392 		ret = 0;
393 	}
394 out:
395 	mutex_unlock(&text_mutex);
396 	return ret;
397 }
398 
399 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
400 		       void *old_addr, void *new_addr)
401 {
402 	if (!is_kernel_text((long)ip) &&
403 	    !is_bpf_text_address((long)ip))
404 		/* BPF poking in modules is not supported */
405 		return -EINVAL;
406 
407 	/*
408 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
409 	 * with an ENDBR instruction.
410 	 */
411 	if (is_endbr(*(u32 *)ip))
412 		ip += ENDBR_INSN_SIZE;
413 
414 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
415 }
416 
417 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
418 
419 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
420 {
421 	u8 *prog = *pprog;
422 
423 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
424 		EMIT_LFENCE();
425 		EMIT2(0xFF, 0xE0 + reg);
426 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
427 		OPTIMIZER_HIDE_VAR(reg);
428 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
429 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
430 		else
431 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
432 	} else {
433 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
434 		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
435 			EMIT1(0xCC);		/* int3 */
436 	}
437 
438 	*pprog = prog;
439 }
440 
441 static void emit_return(u8 **pprog, u8 *ip)
442 {
443 	u8 *prog = *pprog;
444 
445 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
446 		emit_jump(&prog, x86_return_thunk, ip);
447 	} else {
448 		EMIT1(0xC3);		/* ret */
449 		if (IS_ENABLED(CONFIG_SLS))
450 			EMIT1(0xCC);	/* int3 */
451 	}
452 
453 	*pprog = prog;
454 }
455 
456 /*
457  * Generate the following code:
458  *
459  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
460  *   if (index >= array->map.max_entries)
461  *     goto out;
462  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
463  *     goto out;
464  *   prog = array->ptrs[index];
465  *   if (prog == NULL)
466  *     goto out;
467  *   goto *(prog->bpf_func + prologue_size);
468  * out:
469  */
470 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
471 					u32 stack_depth, u8 *ip,
472 					struct jit_context *ctx)
473 {
474 	int tcc_off = -4 - round_up(stack_depth, 8);
475 	u8 *prog = *pprog, *start = *pprog;
476 	int offset;
477 
478 	/*
479 	 * rdi - pointer to ctx
480 	 * rsi - pointer to bpf_array
481 	 * rdx - index in bpf_array
482 	 */
483 
484 	/*
485 	 * if (index >= array->map.max_entries)
486 	 *	goto out;
487 	 */
488 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
489 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
490 	      offsetof(struct bpf_array, map.max_entries));
491 
492 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
493 	EMIT2(X86_JBE, offset);                   /* jbe out */
494 
495 	/*
496 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
497 	 *	goto out;
498 	 */
499 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
500 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
501 
502 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
503 	EMIT2(X86_JAE, offset);                   /* jae out */
504 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
505 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
506 
507 	/* prog = array->ptrs[index]; */
508 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
509 		    offsetof(struct bpf_array, ptrs));
510 
511 	/*
512 	 * if (prog == NULL)
513 	 *	goto out;
514 	 */
515 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
516 
517 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
518 	EMIT2(X86_JE, offset);                    /* je out */
519 
520 	pop_callee_regs(&prog, callee_regs_used);
521 
522 	EMIT1(0x58);                              /* pop rax */
523 	if (stack_depth)
524 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
525 			    round_up(stack_depth, 8));
526 
527 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
528 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
529 	      offsetof(struct bpf_prog, bpf_func));
530 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
531 	      X86_TAIL_CALL_OFFSET);
532 	/*
533 	 * Now we're ready to jump into next BPF program
534 	 * rdi == ctx (1st arg)
535 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
536 	 */
537 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
538 
539 	/* out: */
540 	ctx->tail_call_indirect_label = prog - start;
541 	*pprog = prog;
542 }
543 
544 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
545 				      u8 **pprog, u8 *ip,
546 				      bool *callee_regs_used, u32 stack_depth,
547 				      struct jit_context *ctx)
548 {
549 	int tcc_off = -4 - round_up(stack_depth, 8);
550 	u8 *prog = *pprog, *start = *pprog;
551 	int offset;
552 
553 	/*
554 	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
555 	 *	goto out;
556 	 */
557 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
558 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
559 
560 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
561 	EMIT2(X86_JAE, offset);                       /* jae out */
562 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
563 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
564 
565 	poke->tailcall_bypass = ip + (prog - start);
566 	poke->adj_off = X86_TAIL_CALL_OFFSET;
567 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
568 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
569 
570 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
571 		  poke->tailcall_bypass);
572 
573 	pop_callee_regs(&prog, callee_regs_used);
574 	EMIT1(0x58);                                  /* pop rax */
575 	if (stack_depth)
576 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
577 
578 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
579 	prog += X86_PATCH_SIZE;
580 
581 	/* out: */
582 	ctx->tail_call_direct_label = prog - start;
583 
584 	*pprog = prog;
585 }
586 
587 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
588 {
589 	struct bpf_jit_poke_descriptor *poke;
590 	struct bpf_array *array;
591 	struct bpf_prog *target;
592 	int i, ret;
593 
594 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
595 		poke = &prog->aux->poke_tab[i];
596 		if (poke->aux && poke->aux != prog->aux)
597 			continue;
598 
599 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
600 
601 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
602 			continue;
603 
604 		array = container_of(poke->tail_call.map, struct bpf_array, map);
605 		mutex_lock(&array->aux->poke_mutex);
606 		target = array->ptrs[poke->tail_call.key];
607 		if (target) {
608 			ret = __bpf_arch_text_poke(poke->tailcall_target,
609 						   BPF_MOD_JUMP, NULL,
610 						   (u8 *)target->bpf_func +
611 						   poke->adj_off);
612 			BUG_ON(ret < 0);
613 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
614 						   BPF_MOD_JUMP,
615 						   (u8 *)poke->tailcall_target +
616 						   X86_PATCH_SIZE, NULL);
617 			BUG_ON(ret < 0);
618 		}
619 		WRITE_ONCE(poke->tailcall_target_stable, true);
620 		mutex_unlock(&array->aux->poke_mutex);
621 	}
622 }
623 
624 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
625 			   u32 dst_reg, const u32 imm32)
626 {
627 	u8 *prog = *pprog;
628 	u8 b1, b2, b3;
629 
630 	/*
631 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
632 	 * (which zero-extends imm32) to save 2 bytes.
633 	 */
634 	if (sign_propagate && (s32)imm32 < 0) {
635 		/* 'mov %rax, imm32' sign extends imm32 */
636 		b1 = add_1mod(0x48, dst_reg);
637 		b2 = 0xC7;
638 		b3 = 0xC0;
639 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
640 		goto done;
641 	}
642 
643 	/*
644 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
645 	 * to save 3 bytes.
646 	 */
647 	if (imm32 == 0) {
648 		if (is_ereg(dst_reg))
649 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
650 		b2 = 0x31; /* xor */
651 		b3 = 0xC0;
652 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
653 		goto done;
654 	}
655 
656 	/* mov %eax, imm32 */
657 	if (is_ereg(dst_reg))
658 		EMIT1(add_1mod(0x40, dst_reg));
659 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
660 done:
661 	*pprog = prog;
662 }
663 
664 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
665 			   const u32 imm32_hi, const u32 imm32_lo)
666 {
667 	u8 *prog = *pprog;
668 
669 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
670 		/*
671 		 * For emitting plain u32, where sign bit must not be
672 		 * propagated LLVM tends to load imm64 over mov32
673 		 * directly, so save couple of bytes by just doing
674 		 * 'mov %eax, imm32' instead.
675 		 */
676 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
677 	} else {
678 		/* movabsq rax, imm64 */
679 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
680 		EMIT(imm32_lo, 4);
681 		EMIT(imm32_hi, 4);
682 	}
683 
684 	*pprog = prog;
685 }
686 
687 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
688 {
689 	u8 *prog = *pprog;
690 
691 	if (is64) {
692 		/* mov dst, src */
693 		EMIT_mov(dst_reg, src_reg);
694 	} else {
695 		/* mov32 dst, src */
696 		if (is_ereg(dst_reg) || is_ereg(src_reg))
697 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
698 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
699 	}
700 
701 	*pprog = prog;
702 }
703 
704 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
705 			   u32 src_reg)
706 {
707 	u8 *prog = *pprog;
708 
709 	if (is64) {
710 		/* movs[b,w,l]q dst, src */
711 		if (num_bits == 8)
712 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
713 			      add_2reg(0xC0, src_reg, dst_reg));
714 		else if (num_bits == 16)
715 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
716 			      add_2reg(0xC0, src_reg, dst_reg));
717 		else if (num_bits == 32)
718 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
719 			      add_2reg(0xC0, src_reg, dst_reg));
720 	} else {
721 		/* movs[b,w]l dst, src */
722 		if (num_bits == 8) {
723 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
724 			      add_2reg(0xC0, src_reg, dst_reg));
725 		} else if (num_bits == 16) {
726 			if (is_ereg(dst_reg) || is_ereg(src_reg))
727 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
728 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
729 			      add_2reg(0xC0, src_reg, dst_reg));
730 		}
731 	}
732 
733 	*pprog = prog;
734 }
735 
736 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
737 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
738 {
739 	u8 *prog = *pprog;
740 
741 	if (is_imm8(off)) {
742 		/* 1-byte signed displacement.
743 		 *
744 		 * If off == 0 we could skip this and save one extra byte, but
745 		 * special case of x86 R13 which always needs an offset is not
746 		 * worth the hassle
747 		 */
748 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
749 	} else {
750 		/* 4-byte signed displacement */
751 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
752 	}
753 	*pprog = prog;
754 }
755 
756 /*
757  * Emit a REX byte if it will be necessary to address these registers
758  */
759 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
760 {
761 	u8 *prog = *pprog;
762 
763 	if (is64)
764 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
765 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
766 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
767 	*pprog = prog;
768 }
769 
770 /*
771  * Similar version of maybe_emit_mod() for a single register
772  */
773 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
774 {
775 	u8 *prog = *pprog;
776 
777 	if (is64)
778 		EMIT1(add_1mod(0x48, reg));
779 	else if (is_ereg(reg))
780 		EMIT1(add_1mod(0x40, reg));
781 	*pprog = prog;
782 }
783 
784 /* LDX: dst_reg = *(u8*)(src_reg + off) */
785 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
786 {
787 	u8 *prog = *pprog;
788 
789 	switch (size) {
790 	case BPF_B:
791 		/* Emit 'movzx rax, byte ptr [rax + off]' */
792 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
793 		break;
794 	case BPF_H:
795 		/* Emit 'movzx rax, word ptr [rax + off]' */
796 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
797 		break;
798 	case BPF_W:
799 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
800 		if (is_ereg(dst_reg) || is_ereg(src_reg))
801 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
802 		else
803 			EMIT1(0x8B);
804 		break;
805 	case BPF_DW:
806 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
807 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
808 		break;
809 	}
810 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
811 	*pprog = prog;
812 }
813 
814 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
815 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
816 {
817 	u8 *prog = *pprog;
818 
819 	switch (size) {
820 	case BPF_B:
821 		/* Emit 'movsx rax, byte ptr [rax + off]' */
822 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
823 		break;
824 	case BPF_H:
825 		/* Emit 'movsx rax, word ptr [rax + off]' */
826 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
827 		break;
828 	case BPF_W:
829 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
830 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
831 		break;
832 	}
833 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
834 	*pprog = prog;
835 }
836 
837 /* STX: *(u8*)(dst_reg + off) = src_reg */
838 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
839 {
840 	u8 *prog = *pprog;
841 
842 	switch (size) {
843 	case BPF_B:
844 		/* Emit 'mov byte ptr [rax + off], al' */
845 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
846 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
847 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
848 		else
849 			EMIT1(0x88);
850 		break;
851 	case BPF_H:
852 		if (is_ereg(dst_reg) || is_ereg(src_reg))
853 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
854 		else
855 			EMIT2(0x66, 0x89);
856 		break;
857 	case BPF_W:
858 		if (is_ereg(dst_reg) || is_ereg(src_reg))
859 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
860 		else
861 			EMIT1(0x89);
862 		break;
863 	case BPF_DW:
864 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
865 		break;
866 	}
867 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
868 	*pprog = prog;
869 }
870 
871 static int emit_atomic(u8 **pprog, u8 atomic_op,
872 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
873 {
874 	u8 *prog = *pprog;
875 
876 	EMIT1(0xF0); /* lock prefix */
877 
878 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
879 
880 	/* emit opcode */
881 	switch (atomic_op) {
882 	case BPF_ADD:
883 	case BPF_AND:
884 	case BPF_OR:
885 	case BPF_XOR:
886 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
887 		EMIT1(simple_alu_opcodes[atomic_op]);
888 		break;
889 	case BPF_ADD | BPF_FETCH:
890 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
891 		EMIT2(0x0F, 0xC1);
892 		break;
893 	case BPF_XCHG:
894 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
895 		EMIT1(0x87);
896 		break;
897 	case BPF_CMPXCHG:
898 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
899 		EMIT2(0x0F, 0xB1);
900 		break;
901 	default:
902 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
903 		return -EFAULT;
904 	}
905 
906 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
907 
908 	*pprog = prog;
909 	return 0;
910 }
911 
912 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
913 {
914 	u32 reg = x->fixup >> 8;
915 
916 	/* jump over faulting load and clear dest register */
917 	*(unsigned long *)((void *)regs + reg) = 0;
918 	regs->ip += x->fixup & 0xff;
919 	return true;
920 }
921 
922 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
923 			     bool *regs_used, bool *tail_call_seen)
924 {
925 	int i;
926 
927 	for (i = 1; i <= insn_cnt; i++, insn++) {
928 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
929 			*tail_call_seen = true;
930 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
931 			regs_used[0] = true;
932 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
933 			regs_used[1] = true;
934 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
935 			regs_used[2] = true;
936 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
937 			regs_used[3] = true;
938 	}
939 }
940 
941 static void emit_nops(u8 **pprog, int len)
942 {
943 	u8 *prog = *pprog;
944 	int i, noplen;
945 
946 	while (len > 0) {
947 		noplen = len;
948 
949 		if (noplen > ASM_NOP_MAX)
950 			noplen = ASM_NOP_MAX;
951 
952 		for (i = 0; i < noplen; i++)
953 			EMIT1(x86_nops[noplen][i]);
954 		len -= noplen;
955 	}
956 
957 	*pprog = prog;
958 }
959 
960 /* emit the 3-byte VEX prefix
961  *
962  * r: same as rex.r, extra bit for ModRM reg field
963  * x: same as rex.x, extra bit for SIB index field
964  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
965  * m: opcode map select, encoding escape bytes e.g. 0x0f38
966  * w: same as rex.w (32 bit or 64 bit) or opcode specific
967  * src_reg2: additional source reg (encoded as BPF reg)
968  * l: vector length (128 bit or 256 bit) or reserved
969  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
970  */
971 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
972 		      bool w, u8 src_reg2, bool l, u8 pp)
973 {
974 	u8 *prog = *pprog;
975 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
976 	u8 b1, b2;
977 	u8 vvvv = reg2hex[src_reg2];
978 
979 	/* reg2hex gives only the lower 3 bit of vvvv */
980 	if (is_ereg(src_reg2))
981 		vvvv |= 1 << 3;
982 
983 	/*
984 	 * 2nd byte of 3-byte VEX prefix
985 	 * ~ means bit inverted encoding
986 	 *
987 	 *    7                           0
988 	 *  +---+---+---+---+---+---+---+---+
989 	 *  |~R |~X |~B |         m         |
990 	 *  +---+---+---+---+---+---+---+---+
991 	 */
992 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
993 	/*
994 	 * 3rd byte of 3-byte VEX prefix
995 	 *
996 	 *    7                           0
997 	 *  +---+---+---+---+---+---+---+---+
998 	 *  | W |     ~vvvv     | L |   pp  |
999 	 *  +---+---+---+---+---+---+---+---+
1000 	 */
1001 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1002 
1003 	EMIT3(b0, b1, b2);
1004 	*pprog = prog;
1005 }
1006 
1007 /* emit BMI2 shift instruction */
1008 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1009 {
1010 	u8 *prog = *pprog;
1011 	bool r = is_ereg(dst_reg);
1012 	u8 m = 2; /* escape code 0f38 */
1013 
1014 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1015 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1016 	*pprog = prog;
1017 }
1018 
1019 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1020 
1021 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1022 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1023 {
1024 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1025 	struct bpf_insn *insn = bpf_prog->insnsi;
1026 	bool callee_regs_used[4] = {};
1027 	int insn_cnt = bpf_prog->len;
1028 	bool tail_call_seen = false;
1029 	bool seen_exit = false;
1030 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1031 	int i, excnt = 0;
1032 	int ilen, proglen = 0;
1033 	u8 *prog = temp;
1034 	int err;
1035 
1036 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1037 			 &tail_call_seen);
1038 
1039 	/* tail call's presence in current prog implies it is reachable */
1040 	tail_call_reachable |= tail_call_seen;
1041 
1042 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1043 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1044 		      bpf_prog->aux->func_idx != 0);
1045 	push_callee_regs(&prog, callee_regs_used);
1046 
1047 	ilen = prog - temp;
1048 	if (rw_image)
1049 		memcpy(rw_image + proglen, temp, ilen);
1050 	proglen += ilen;
1051 	addrs[0] = proglen;
1052 	prog = temp;
1053 
1054 	for (i = 1; i <= insn_cnt; i++, insn++) {
1055 		const s32 imm32 = insn->imm;
1056 		u32 dst_reg = insn->dst_reg;
1057 		u32 src_reg = insn->src_reg;
1058 		u8 b2 = 0, b3 = 0;
1059 		u8 *start_of_ldx;
1060 		s64 jmp_offset;
1061 		s16 insn_off;
1062 		u8 jmp_cond;
1063 		u8 *func;
1064 		int nops;
1065 
1066 		switch (insn->code) {
1067 			/* ALU */
1068 		case BPF_ALU | BPF_ADD | BPF_X:
1069 		case BPF_ALU | BPF_SUB | BPF_X:
1070 		case BPF_ALU | BPF_AND | BPF_X:
1071 		case BPF_ALU | BPF_OR | BPF_X:
1072 		case BPF_ALU | BPF_XOR | BPF_X:
1073 		case BPF_ALU64 | BPF_ADD | BPF_X:
1074 		case BPF_ALU64 | BPF_SUB | BPF_X:
1075 		case BPF_ALU64 | BPF_AND | BPF_X:
1076 		case BPF_ALU64 | BPF_OR | BPF_X:
1077 		case BPF_ALU64 | BPF_XOR | BPF_X:
1078 			maybe_emit_mod(&prog, dst_reg, src_reg,
1079 				       BPF_CLASS(insn->code) == BPF_ALU64);
1080 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1081 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1082 			break;
1083 
1084 		case BPF_ALU64 | BPF_MOV | BPF_X:
1085 		case BPF_ALU | BPF_MOV | BPF_X:
1086 			if (insn->off == 0)
1087 				emit_mov_reg(&prog,
1088 					     BPF_CLASS(insn->code) == BPF_ALU64,
1089 					     dst_reg, src_reg);
1090 			else
1091 				emit_movsx_reg(&prog, insn->off,
1092 					       BPF_CLASS(insn->code) == BPF_ALU64,
1093 					       dst_reg, src_reg);
1094 			break;
1095 
1096 			/* neg dst */
1097 		case BPF_ALU | BPF_NEG:
1098 		case BPF_ALU64 | BPF_NEG:
1099 			maybe_emit_1mod(&prog, dst_reg,
1100 					BPF_CLASS(insn->code) == BPF_ALU64);
1101 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1102 			break;
1103 
1104 		case BPF_ALU | BPF_ADD | BPF_K:
1105 		case BPF_ALU | BPF_SUB | BPF_K:
1106 		case BPF_ALU | BPF_AND | BPF_K:
1107 		case BPF_ALU | BPF_OR | BPF_K:
1108 		case BPF_ALU | BPF_XOR | BPF_K:
1109 		case BPF_ALU64 | BPF_ADD | BPF_K:
1110 		case BPF_ALU64 | BPF_SUB | BPF_K:
1111 		case BPF_ALU64 | BPF_AND | BPF_K:
1112 		case BPF_ALU64 | BPF_OR | BPF_K:
1113 		case BPF_ALU64 | BPF_XOR | BPF_K:
1114 			maybe_emit_1mod(&prog, dst_reg,
1115 					BPF_CLASS(insn->code) == BPF_ALU64);
1116 
1117 			/*
1118 			 * b3 holds 'normal' opcode, b2 short form only valid
1119 			 * in case dst is eax/rax.
1120 			 */
1121 			switch (BPF_OP(insn->code)) {
1122 			case BPF_ADD:
1123 				b3 = 0xC0;
1124 				b2 = 0x05;
1125 				break;
1126 			case BPF_SUB:
1127 				b3 = 0xE8;
1128 				b2 = 0x2D;
1129 				break;
1130 			case BPF_AND:
1131 				b3 = 0xE0;
1132 				b2 = 0x25;
1133 				break;
1134 			case BPF_OR:
1135 				b3 = 0xC8;
1136 				b2 = 0x0D;
1137 				break;
1138 			case BPF_XOR:
1139 				b3 = 0xF0;
1140 				b2 = 0x35;
1141 				break;
1142 			}
1143 
1144 			if (is_imm8(imm32))
1145 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1146 			else if (is_axreg(dst_reg))
1147 				EMIT1_off32(b2, imm32);
1148 			else
1149 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1150 			break;
1151 
1152 		case BPF_ALU64 | BPF_MOV | BPF_K:
1153 		case BPF_ALU | BPF_MOV | BPF_K:
1154 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1155 				       dst_reg, imm32);
1156 			break;
1157 
1158 		case BPF_LD | BPF_IMM | BPF_DW:
1159 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1160 			insn++;
1161 			i++;
1162 			break;
1163 
1164 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1165 		case BPF_ALU | BPF_MOD | BPF_X:
1166 		case BPF_ALU | BPF_DIV | BPF_X:
1167 		case BPF_ALU | BPF_MOD | BPF_K:
1168 		case BPF_ALU | BPF_DIV | BPF_K:
1169 		case BPF_ALU64 | BPF_MOD | BPF_X:
1170 		case BPF_ALU64 | BPF_DIV | BPF_X:
1171 		case BPF_ALU64 | BPF_MOD | BPF_K:
1172 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1173 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1174 
1175 			if (dst_reg != BPF_REG_0)
1176 				EMIT1(0x50); /* push rax */
1177 			if (dst_reg != BPF_REG_3)
1178 				EMIT1(0x52); /* push rdx */
1179 
1180 			if (BPF_SRC(insn->code) == BPF_X) {
1181 				if (src_reg == BPF_REG_0 ||
1182 				    src_reg == BPF_REG_3) {
1183 					/* mov r11, src_reg */
1184 					EMIT_mov(AUX_REG, src_reg);
1185 					src_reg = AUX_REG;
1186 				}
1187 			} else {
1188 				/* mov r11, imm32 */
1189 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1190 				src_reg = AUX_REG;
1191 			}
1192 
1193 			if (dst_reg != BPF_REG_0)
1194 				/* mov rax, dst_reg */
1195 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1196 
1197 			/*
1198 			 * xor edx, edx
1199 			 * equivalent to 'xor rdx, rdx', but one byte less
1200 			 */
1201 			EMIT2(0x31, 0xd2);
1202 
1203 			/* div src_reg */
1204 			maybe_emit_1mod(&prog, src_reg, is64);
1205 			EMIT2(0xF7, add_1reg(0xF0, src_reg));
1206 
1207 			if (BPF_OP(insn->code) == BPF_MOD &&
1208 			    dst_reg != BPF_REG_3)
1209 				/* mov dst_reg, rdx */
1210 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1211 			else if (BPF_OP(insn->code) == BPF_DIV &&
1212 				 dst_reg != BPF_REG_0)
1213 				/* mov dst_reg, rax */
1214 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1215 
1216 			if (dst_reg != BPF_REG_3)
1217 				EMIT1(0x5A); /* pop rdx */
1218 			if (dst_reg != BPF_REG_0)
1219 				EMIT1(0x58); /* pop rax */
1220 			break;
1221 		}
1222 
1223 		case BPF_ALU | BPF_MUL | BPF_K:
1224 		case BPF_ALU64 | BPF_MUL | BPF_K:
1225 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1226 				       BPF_CLASS(insn->code) == BPF_ALU64);
1227 
1228 			if (is_imm8(imm32))
1229 				/* imul dst_reg, dst_reg, imm8 */
1230 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1231 				      imm32);
1232 			else
1233 				/* imul dst_reg, dst_reg, imm32 */
1234 				EMIT2_off32(0x69,
1235 					    add_2reg(0xC0, dst_reg, dst_reg),
1236 					    imm32);
1237 			break;
1238 
1239 		case BPF_ALU | BPF_MUL | BPF_X:
1240 		case BPF_ALU64 | BPF_MUL | BPF_X:
1241 			maybe_emit_mod(&prog, src_reg, dst_reg,
1242 				       BPF_CLASS(insn->code) == BPF_ALU64);
1243 
1244 			/* imul dst_reg, src_reg */
1245 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1246 			break;
1247 
1248 			/* Shifts */
1249 		case BPF_ALU | BPF_LSH | BPF_K:
1250 		case BPF_ALU | BPF_RSH | BPF_K:
1251 		case BPF_ALU | BPF_ARSH | BPF_K:
1252 		case BPF_ALU64 | BPF_LSH | BPF_K:
1253 		case BPF_ALU64 | BPF_RSH | BPF_K:
1254 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1255 			maybe_emit_1mod(&prog, dst_reg,
1256 					BPF_CLASS(insn->code) == BPF_ALU64);
1257 
1258 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1259 			if (imm32 == 1)
1260 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1261 			else
1262 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1263 			break;
1264 
1265 		case BPF_ALU | BPF_LSH | BPF_X:
1266 		case BPF_ALU | BPF_RSH | BPF_X:
1267 		case BPF_ALU | BPF_ARSH | BPF_X:
1268 		case BPF_ALU64 | BPF_LSH | BPF_X:
1269 		case BPF_ALU64 | BPF_RSH | BPF_X:
1270 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1271 			/* BMI2 shifts aren't better when shift count is already in rcx */
1272 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1273 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1274 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1275 				u8 op;
1276 
1277 				switch (BPF_OP(insn->code)) {
1278 				case BPF_LSH:
1279 					op = 1; /* prefix 0x66 */
1280 					break;
1281 				case BPF_RSH:
1282 					op = 3; /* prefix 0xf2 */
1283 					break;
1284 				case BPF_ARSH:
1285 					op = 2; /* prefix 0xf3 */
1286 					break;
1287 				}
1288 
1289 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1290 
1291 				break;
1292 			}
1293 
1294 			if (src_reg != BPF_REG_4) { /* common case */
1295 				/* Check for bad case when dst_reg == rcx */
1296 				if (dst_reg == BPF_REG_4) {
1297 					/* mov r11, dst_reg */
1298 					EMIT_mov(AUX_REG, dst_reg);
1299 					dst_reg = AUX_REG;
1300 				} else {
1301 					EMIT1(0x51); /* push rcx */
1302 				}
1303 				/* mov rcx, src_reg */
1304 				EMIT_mov(BPF_REG_4, src_reg);
1305 			}
1306 
1307 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1308 			maybe_emit_1mod(&prog, dst_reg,
1309 					BPF_CLASS(insn->code) == BPF_ALU64);
1310 
1311 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1312 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1313 
1314 			if (src_reg != BPF_REG_4) {
1315 				if (insn->dst_reg == BPF_REG_4)
1316 					/* mov dst_reg, r11 */
1317 					EMIT_mov(insn->dst_reg, AUX_REG);
1318 				else
1319 					EMIT1(0x59); /* pop rcx */
1320 			}
1321 
1322 			break;
1323 
1324 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1325 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1326 			switch (imm32) {
1327 			case 16:
1328 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1329 				EMIT1(0x66);
1330 				if (is_ereg(dst_reg))
1331 					EMIT1(0x41);
1332 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1333 
1334 				/* Emit 'movzwl eax, ax' */
1335 				if (is_ereg(dst_reg))
1336 					EMIT3(0x45, 0x0F, 0xB7);
1337 				else
1338 					EMIT2(0x0F, 0xB7);
1339 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1340 				break;
1341 			case 32:
1342 				/* Emit 'bswap eax' to swap lower 4 bytes */
1343 				if (is_ereg(dst_reg))
1344 					EMIT2(0x41, 0x0F);
1345 				else
1346 					EMIT1(0x0F);
1347 				EMIT1(add_1reg(0xC8, dst_reg));
1348 				break;
1349 			case 64:
1350 				/* Emit 'bswap rax' to swap 8 bytes */
1351 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1352 				      add_1reg(0xC8, dst_reg));
1353 				break;
1354 			}
1355 			break;
1356 
1357 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1358 			switch (imm32) {
1359 			case 16:
1360 				/*
1361 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1362 				 * into 64 bit
1363 				 */
1364 				if (is_ereg(dst_reg))
1365 					EMIT3(0x45, 0x0F, 0xB7);
1366 				else
1367 					EMIT2(0x0F, 0xB7);
1368 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1369 				break;
1370 			case 32:
1371 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1372 				if (is_ereg(dst_reg))
1373 					EMIT1(0x45);
1374 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1375 				break;
1376 			case 64:
1377 				/* nop */
1378 				break;
1379 			}
1380 			break;
1381 
1382 			/* speculation barrier */
1383 		case BPF_ST | BPF_NOSPEC:
1384 			EMIT_LFENCE();
1385 			break;
1386 
1387 			/* ST: *(u8*)(dst_reg + off) = imm */
1388 		case BPF_ST | BPF_MEM | BPF_B:
1389 			if (is_ereg(dst_reg))
1390 				EMIT2(0x41, 0xC6);
1391 			else
1392 				EMIT1(0xC6);
1393 			goto st;
1394 		case BPF_ST | BPF_MEM | BPF_H:
1395 			if (is_ereg(dst_reg))
1396 				EMIT3(0x66, 0x41, 0xC7);
1397 			else
1398 				EMIT2(0x66, 0xC7);
1399 			goto st;
1400 		case BPF_ST | BPF_MEM | BPF_W:
1401 			if (is_ereg(dst_reg))
1402 				EMIT2(0x41, 0xC7);
1403 			else
1404 				EMIT1(0xC7);
1405 			goto st;
1406 		case BPF_ST | BPF_MEM | BPF_DW:
1407 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1408 
1409 st:			if (is_imm8(insn->off))
1410 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1411 			else
1412 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1413 
1414 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1415 			break;
1416 
1417 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1418 		case BPF_STX | BPF_MEM | BPF_B:
1419 		case BPF_STX | BPF_MEM | BPF_H:
1420 		case BPF_STX | BPF_MEM | BPF_W:
1421 		case BPF_STX | BPF_MEM | BPF_DW:
1422 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1423 			break;
1424 
1425 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1426 		case BPF_LDX | BPF_MEM | BPF_B:
1427 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1428 		case BPF_LDX | BPF_MEM | BPF_H:
1429 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1430 		case BPF_LDX | BPF_MEM | BPF_W:
1431 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1432 		case BPF_LDX | BPF_MEM | BPF_DW:
1433 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1434 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1435 		case BPF_LDX | BPF_MEMSX | BPF_B:
1436 		case BPF_LDX | BPF_MEMSX | BPF_H:
1437 		case BPF_LDX | BPF_MEMSX | BPF_W:
1438 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1439 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1440 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1441 			insn_off = insn->off;
1442 
1443 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1444 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1445 				/* Conservatively check that src_reg + insn->off is a kernel address:
1446 				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1447 				 * src_reg is used as scratch for src_reg += insn->off and restored
1448 				 * after emit_ldx if necessary
1449 				 */
1450 
1451 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1452 				u8 *end_of_jmp;
1453 
1454 				/* At end of these emitted checks, insn->off will have been added
1455 				 * to src_reg, so no need to do relative load with insn->off offset
1456 				 */
1457 				insn_off = 0;
1458 
1459 				/* movabsq r11, limit */
1460 				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1461 				EMIT((u32)limit, 4);
1462 				EMIT(limit >> 32, 4);
1463 
1464 				if (insn->off) {
1465 					/* add src_reg, insn->off */
1466 					maybe_emit_1mod(&prog, src_reg, true);
1467 					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1468 				}
1469 
1470 				/* cmp src_reg, r11 */
1471 				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1472 				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1473 
1474 				/* if unsigned '>=', goto load */
1475 				EMIT2(X86_JAE, 0);
1476 				end_of_jmp = prog;
1477 
1478 				/* xor dst_reg, dst_reg */
1479 				emit_mov_imm32(&prog, false, dst_reg, 0);
1480 				/* jmp byte_after_ldx */
1481 				EMIT2(0xEB, 0);
1482 
1483 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1484 				start_of_ldx = prog;
1485 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1486 			}
1487 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1488 			    BPF_MODE(insn->code) == BPF_MEMSX)
1489 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1490 			else
1491 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1492 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1493 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1494 				struct exception_table_entry *ex;
1495 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1496 				s64 delta;
1497 
1498 				/* populate jmp_offset for JMP above */
1499 				start_of_ldx[-1] = prog - start_of_ldx;
1500 
1501 				if (insn->off && src_reg != dst_reg) {
1502 					/* sub src_reg, insn->off
1503 					 * Restore src_reg after "add src_reg, insn->off" in prev
1504 					 * if statement. But if src_reg == dst_reg, emit_ldx
1505 					 * above already clobbered src_reg, so no need to restore.
1506 					 * If add src_reg, insn->off was unnecessary, no need to
1507 					 * restore either.
1508 					 */
1509 					maybe_emit_1mod(&prog, src_reg, true);
1510 					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1511 				}
1512 
1513 				if (!bpf_prog->aux->extable)
1514 					break;
1515 
1516 				if (excnt >= bpf_prog->aux->num_exentries) {
1517 					pr_err("ex gen bug\n");
1518 					return -EFAULT;
1519 				}
1520 				ex = &bpf_prog->aux->extable[excnt++];
1521 
1522 				delta = _insn - (u8 *)&ex->insn;
1523 				if (!is_simm32(delta)) {
1524 					pr_err("extable->insn doesn't fit into 32-bit\n");
1525 					return -EFAULT;
1526 				}
1527 				/* switch ex to rw buffer for writes */
1528 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1529 
1530 				ex->insn = delta;
1531 
1532 				ex->data = EX_TYPE_BPF;
1533 
1534 				if (dst_reg > BPF_REG_9) {
1535 					pr_err("verifier error\n");
1536 					return -EFAULT;
1537 				}
1538 				/*
1539 				 * Compute size of x86 insn and its target dest x86 register.
1540 				 * ex_handler_bpf() will use lower 8 bits to adjust
1541 				 * pt_regs->ip to jump over this x86 instruction
1542 				 * and upper bits to figure out which pt_regs to zero out.
1543 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1544 				 * of 4 bytes will be ignored and rbx will be zero inited.
1545 				 */
1546 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1547 			}
1548 			break;
1549 
1550 		case BPF_STX | BPF_ATOMIC | BPF_W:
1551 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1552 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1553 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1554 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1555 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1556 				u32 real_src_reg = src_reg;
1557 				u32 real_dst_reg = dst_reg;
1558 				u8 *branch_target;
1559 
1560 				/*
1561 				 * Can't be implemented with a single x86 insn.
1562 				 * Need to do a CMPXCHG loop.
1563 				 */
1564 
1565 				/* Will need RAX as a CMPXCHG operand so save R0 */
1566 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1567 				if (src_reg == BPF_REG_0)
1568 					real_src_reg = BPF_REG_AX;
1569 				if (dst_reg == BPF_REG_0)
1570 					real_dst_reg = BPF_REG_AX;
1571 
1572 				branch_target = prog;
1573 				/* Load old value */
1574 				emit_ldx(&prog, BPF_SIZE(insn->code),
1575 					 BPF_REG_0, real_dst_reg, insn->off);
1576 				/*
1577 				 * Perform the (commutative) operation locally,
1578 				 * put the result in the AUX_REG.
1579 				 */
1580 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1581 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1582 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1583 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1584 				/* Attempt to swap in new value */
1585 				err = emit_atomic(&prog, BPF_CMPXCHG,
1586 						  real_dst_reg, AUX_REG,
1587 						  insn->off,
1588 						  BPF_SIZE(insn->code));
1589 				if (WARN_ON(err))
1590 					return err;
1591 				/*
1592 				 * ZF tells us whether we won the race. If it's
1593 				 * cleared we need to try again.
1594 				 */
1595 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1596 				/* Return the pre-modification value */
1597 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1598 				/* Restore R0 after clobbering RAX */
1599 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1600 				break;
1601 			}
1602 
1603 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1604 					  insn->off, BPF_SIZE(insn->code));
1605 			if (err)
1606 				return err;
1607 			break;
1608 
1609 			/* call */
1610 		case BPF_JMP | BPF_CALL: {
1611 			int offs;
1612 
1613 			func = (u8 *) __bpf_call_base + imm32;
1614 			if (tail_call_reachable) {
1615 				/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1616 				EMIT3_off32(0x48, 0x8B, 0x85,
1617 					    -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1618 				if (!imm32)
1619 					return -EINVAL;
1620 				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1621 			} else {
1622 				if (!imm32)
1623 					return -EINVAL;
1624 				offs = x86_call_depth_emit_accounting(&prog, func);
1625 			}
1626 			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1627 				return -EINVAL;
1628 			break;
1629 		}
1630 
1631 		case BPF_JMP | BPF_TAIL_CALL:
1632 			if (imm32)
1633 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1634 							  &prog, image + addrs[i - 1],
1635 							  callee_regs_used,
1636 							  bpf_prog->aux->stack_depth,
1637 							  ctx);
1638 			else
1639 				emit_bpf_tail_call_indirect(&prog,
1640 							    callee_regs_used,
1641 							    bpf_prog->aux->stack_depth,
1642 							    image + addrs[i - 1],
1643 							    ctx);
1644 			break;
1645 
1646 			/* cond jump */
1647 		case BPF_JMP | BPF_JEQ | BPF_X:
1648 		case BPF_JMP | BPF_JNE | BPF_X:
1649 		case BPF_JMP | BPF_JGT | BPF_X:
1650 		case BPF_JMP | BPF_JLT | BPF_X:
1651 		case BPF_JMP | BPF_JGE | BPF_X:
1652 		case BPF_JMP | BPF_JLE | BPF_X:
1653 		case BPF_JMP | BPF_JSGT | BPF_X:
1654 		case BPF_JMP | BPF_JSLT | BPF_X:
1655 		case BPF_JMP | BPF_JSGE | BPF_X:
1656 		case BPF_JMP | BPF_JSLE | BPF_X:
1657 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1658 		case BPF_JMP32 | BPF_JNE | BPF_X:
1659 		case BPF_JMP32 | BPF_JGT | BPF_X:
1660 		case BPF_JMP32 | BPF_JLT | BPF_X:
1661 		case BPF_JMP32 | BPF_JGE | BPF_X:
1662 		case BPF_JMP32 | BPF_JLE | BPF_X:
1663 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1664 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1665 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1666 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1667 			/* cmp dst_reg, src_reg */
1668 			maybe_emit_mod(&prog, dst_reg, src_reg,
1669 				       BPF_CLASS(insn->code) == BPF_JMP);
1670 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1671 			goto emit_cond_jmp;
1672 
1673 		case BPF_JMP | BPF_JSET | BPF_X:
1674 		case BPF_JMP32 | BPF_JSET | BPF_X:
1675 			/* test dst_reg, src_reg */
1676 			maybe_emit_mod(&prog, dst_reg, src_reg,
1677 				       BPF_CLASS(insn->code) == BPF_JMP);
1678 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1679 			goto emit_cond_jmp;
1680 
1681 		case BPF_JMP | BPF_JSET | BPF_K:
1682 		case BPF_JMP32 | BPF_JSET | BPF_K:
1683 			/* test dst_reg, imm32 */
1684 			maybe_emit_1mod(&prog, dst_reg,
1685 					BPF_CLASS(insn->code) == BPF_JMP);
1686 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1687 			goto emit_cond_jmp;
1688 
1689 		case BPF_JMP | BPF_JEQ | BPF_K:
1690 		case BPF_JMP | BPF_JNE | BPF_K:
1691 		case BPF_JMP | BPF_JGT | BPF_K:
1692 		case BPF_JMP | BPF_JLT | BPF_K:
1693 		case BPF_JMP | BPF_JGE | BPF_K:
1694 		case BPF_JMP | BPF_JLE | BPF_K:
1695 		case BPF_JMP | BPF_JSGT | BPF_K:
1696 		case BPF_JMP | BPF_JSLT | BPF_K:
1697 		case BPF_JMP | BPF_JSGE | BPF_K:
1698 		case BPF_JMP | BPF_JSLE | BPF_K:
1699 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1700 		case BPF_JMP32 | BPF_JNE | BPF_K:
1701 		case BPF_JMP32 | BPF_JGT | BPF_K:
1702 		case BPF_JMP32 | BPF_JLT | BPF_K:
1703 		case BPF_JMP32 | BPF_JGE | BPF_K:
1704 		case BPF_JMP32 | BPF_JLE | BPF_K:
1705 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1706 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1707 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1708 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1709 			/* test dst_reg, dst_reg to save one extra byte */
1710 			if (imm32 == 0) {
1711 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1712 					       BPF_CLASS(insn->code) == BPF_JMP);
1713 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1714 				goto emit_cond_jmp;
1715 			}
1716 
1717 			/* cmp dst_reg, imm8/32 */
1718 			maybe_emit_1mod(&prog, dst_reg,
1719 					BPF_CLASS(insn->code) == BPF_JMP);
1720 
1721 			if (is_imm8(imm32))
1722 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1723 			else
1724 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1725 
1726 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1727 			switch (BPF_OP(insn->code)) {
1728 			case BPF_JEQ:
1729 				jmp_cond = X86_JE;
1730 				break;
1731 			case BPF_JSET:
1732 			case BPF_JNE:
1733 				jmp_cond = X86_JNE;
1734 				break;
1735 			case BPF_JGT:
1736 				/* GT is unsigned '>', JA in x86 */
1737 				jmp_cond = X86_JA;
1738 				break;
1739 			case BPF_JLT:
1740 				/* LT is unsigned '<', JB in x86 */
1741 				jmp_cond = X86_JB;
1742 				break;
1743 			case BPF_JGE:
1744 				/* GE is unsigned '>=', JAE in x86 */
1745 				jmp_cond = X86_JAE;
1746 				break;
1747 			case BPF_JLE:
1748 				/* LE is unsigned '<=', JBE in x86 */
1749 				jmp_cond = X86_JBE;
1750 				break;
1751 			case BPF_JSGT:
1752 				/* Signed '>', GT in x86 */
1753 				jmp_cond = X86_JG;
1754 				break;
1755 			case BPF_JSLT:
1756 				/* Signed '<', LT in x86 */
1757 				jmp_cond = X86_JL;
1758 				break;
1759 			case BPF_JSGE:
1760 				/* Signed '>=', GE in x86 */
1761 				jmp_cond = X86_JGE;
1762 				break;
1763 			case BPF_JSLE:
1764 				/* Signed '<=', LE in x86 */
1765 				jmp_cond = X86_JLE;
1766 				break;
1767 			default: /* to silence GCC warning */
1768 				return -EFAULT;
1769 			}
1770 			jmp_offset = addrs[i + insn->off] - addrs[i];
1771 			if (is_imm8(jmp_offset)) {
1772 				if (jmp_padding) {
1773 					/* To keep the jmp_offset valid, the extra bytes are
1774 					 * padded before the jump insn, so we subtract the
1775 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1776 					 *
1777 					 * If the previous pass already emits an imm8
1778 					 * jmp_cond, then this BPF insn won't shrink, so
1779 					 * "nops" is 0.
1780 					 *
1781 					 * On the other hand, if the previous pass emits an
1782 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1783 					 * keep the image from shrinking further.
1784 					 *
1785 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1786 					 *     is 2 bytes, so the size difference is 4 bytes.
1787 					 */
1788 					nops = INSN_SZ_DIFF - 2;
1789 					if (nops != 0 && nops != 4) {
1790 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1791 						       nops);
1792 						return -EFAULT;
1793 					}
1794 					emit_nops(&prog, nops);
1795 				}
1796 				EMIT2(jmp_cond, jmp_offset);
1797 			} else if (is_simm32(jmp_offset)) {
1798 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1799 			} else {
1800 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1801 				return -EFAULT;
1802 			}
1803 
1804 			break;
1805 
1806 		case BPF_JMP | BPF_JA:
1807 			if (insn->off == -1)
1808 				/* -1 jmp instructions will always jump
1809 				 * backwards two bytes. Explicitly handling
1810 				 * this case avoids wasting too many passes
1811 				 * when there are long sequences of replaced
1812 				 * dead code.
1813 				 */
1814 				jmp_offset = -2;
1815 			else
1816 				jmp_offset = addrs[i + insn->off] - addrs[i];
1817 
1818 			if (!jmp_offset) {
1819 				/*
1820 				 * If jmp_padding is enabled, the extra nops will
1821 				 * be inserted. Otherwise, optimize out nop jumps.
1822 				 */
1823 				if (jmp_padding) {
1824 					/* There are 3 possible conditions.
1825 					 * (1) This BPF_JA is already optimized out in
1826 					 *     the previous run, so there is no need
1827 					 *     to pad any extra byte (0 byte).
1828 					 * (2) The previous pass emits an imm8 jmp,
1829 					 *     so we pad 2 bytes to match the previous
1830 					 *     insn size.
1831 					 * (3) Similarly, the previous pass emits an
1832 					 *     imm32 jmp, and 5 bytes is padded.
1833 					 */
1834 					nops = INSN_SZ_DIFF;
1835 					if (nops != 0 && nops != 2 && nops != 5) {
1836 						pr_err("unexpected nop jump padding: %d bytes\n",
1837 						       nops);
1838 						return -EFAULT;
1839 					}
1840 					emit_nops(&prog, nops);
1841 				}
1842 				break;
1843 			}
1844 emit_jmp:
1845 			if (is_imm8(jmp_offset)) {
1846 				if (jmp_padding) {
1847 					/* To avoid breaking jmp_offset, the extra bytes
1848 					 * are padded before the actual jmp insn, so
1849 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1850 					 *
1851 					 * If the previous pass already emits an imm8
1852 					 * jmp, there is nothing to pad (0 byte).
1853 					 *
1854 					 * If it emits an imm32 jmp (5 bytes) previously
1855 					 * and now an imm8 jmp (2 bytes), then we pad
1856 					 * (5 - 2 = 3) bytes to stop the image from
1857 					 * shrinking further.
1858 					 */
1859 					nops = INSN_SZ_DIFF - 2;
1860 					if (nops != 0 && nops != 3) {
1861 						pr_err("unexpected jump padding: %d bytes\n",
1862 						       nops);
1863 						return -EFAULT;
1864 					}
1865 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1866 				}
1867 				EMIT2(0xEB, jmp_offset);
1868 			} else if (is_simm32(jmp_offset)) {
1869 				EMIT1_off32(0xE9, jmp_offset);
1870 			} else {
1871 				pr_err("jmp gen bug %llx\n", jmp_offset);
1872 				return -EFAULT;
1873 			}
1874 			break;
1875 
1876 		case BPF_JMP | BPF_EXIT:
1877 			if (seen_exit) {
1878 				jmp_offset = ctx->cleanup_addr - addrs[i];
1879 				goto emit_jmp;
1880 			}
1881 			seen_exit = true;
1882 			/* Update cleanup_addr */
1883 			ctx->cleanup_addr = proglen;
1884 			pop_callee_regs(&prog, callee_regs_used);
1885 			EMIT1(0xC9);         /* leave */
1886 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1887 			break;
1888 
1889 		default:
1890 			/*
1891 			 * By design x86-64 JIT should support all BPF instructions.
1892 			 * This error will be seen if new instruction was added
1893 			 * to the interpreter, but not to the JIT, or if there is
1894 			 * junk in bpf_prog.
1895 			 */
1896 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1897 			return -EINVAL;
1898 		}
1899 
1900 		ilen = prog - temp;
1901 		if (ilen > BPF_MAX_INSN_SIZE) {
1902 			pr_err("bpf_jit: fatal insn size error\n");
1903 			return -EFAULT;
1904 		}
1905 
1906 		if (image) {
1907 			/*
1908 			 * When populating the image, assert that:
1909 			 *
1910 			 *  i) We do not write beyond the allocated space, and
1911 			 * ii) addrs[i] did not change from the prior run, in order
1912 			 *     to validate assumptions made for computing branch
1913 			 *     displacements.
1914 			 */
1915 			if (unlikely(proglen + ilen > oldproglen ||
1916 				     proglen + ilen != addrs[i])) {
1917 				pr_err("bpf_jit: fatal error\n");
1918 				return -EFAULT;
1919 			}
1920 			memcpy(rw_image + proglen, temp, ilen);
1921 		}
1922 		proglen += ilen;
1923 		addrs[i] = proglen;
1924 		prog = temp;
1925 	}
1926 
1927 	if (image && excnt != bpf_prog->aux->num_exentries) {
1928 		pr_err("extable is not populated\n");
1929 		return -EFAULT;
1930 	}
1931 	return proglen;
1932 }
1933 
1934 static void clean_stack_garbage(const struct btf_func_model *m,
1935 				u8 **pprog, int nr_stack_slots,
1936 				int stack_size)
1937 {
1938 	int arg_size, off;
1939 	u8 *prog;
1940 
1941 	/* Generally speaking, the compiler will pass the arguments
1942 	 * on-stack with "push" instruction, which will take 8-byte
1943 	 * on the stack. In this case, there won't be garbage values
1944 	 * while we copy the arguments from origin stack frame to current
1945 	 * in BPF_DW.
1946 	 *
1947 	 * However, sometimes the compiler will only allocate 4-byte on
1948 	 * the stack for the arguments. For now, this case will only
1949 	 * happen if there is only one argument on-stack and its size
1950 	 * not more than 4 byte. In this case, there will be garbage
1951 	 * values on the upper 4-byte where we store the argument on
1952 	 * current stack frame.
1953 	 *
1954 	 * arguments on origin stack:
1955 	 *
1956 	 * stack_arg_1(4-byte) xxx(4-byte)
1957 	 *
1958 	 * what we copy:
1959 	 *
1960 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
1961 	 *
1962 	 * and the xxx is the garbage values which we should clean here.
1963 	 */
1964 	if (nr_stack_slots != 1)
1965 		return;
1966 
1967 	/* the size of the last argument */
1968 	arg_size = m->arg_size[m->nr_args - 1];
1969 	if (arg_size <= 4) {
1970 		off = -(stack_size - 4);
1971 		prog = *pprog;
1972 		/* mov DWORD PTR [rbp + off], 0 */
1973 		if (!is_imm8(off))
1974 			EMIT2_off32(0xC7, 0x85, off);
1975 		else
1976 			EMIT3(0xC7, 0x45, off);
1977 		EMIT(0, 4);
1978 		*pprog = prog;
1979 	}
1980 }
1981 
1982 /* get the count of the regs that are used to pass arguments */
1983 static int get_nr_used_regs(const struct btf_func_model *m)
1984 {
1985 	int i, arg_regs, nr_used_regs = 0;
1986 
1987 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
1988 		arg_regs = (m->arg_size[i] + 7) / 8;
1989 		if (nr_used_regs + arg_regs <= 6)
1990 			nr_used_regs += arg_regs;
1991 
1992 		if (nr_used_regs >= 6)
1993 			break;
1994 	}
1995 
1996 	return nr_used_regs;
1997 }
1998 
1999 static void save_args(const struct btf_func_model *m, u8 **prog,
2000 		      int stack_size, bool for_call_origin)
2001 {
2002 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2003 	int i, j;
2004 
2005 	/* Store function arguments to stack.
2006 	 * For a function that accepts two pointers the sequence will be:
2007 	 * mov QWORD PTR [rbp-0x10],rdi
2008 	 * mov QWORD PTR [rbp-0x8],rsi
2009 	 */
2010 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2011 		arg_regs = (m->arg_size[i] + 7) / 8;
2012 
2013 		/* According to the research of Yonghong, struct members
2014 		 * should be all in register or all on the stack.
2015 		 * Meanwhile, the compiler will pass the argument on regs
2016 		 * if the remaining regs can hold the argument.
2017 		 *
2018 		 * Disorder of the args can happen. For example:
2019 		 *
2020 		 * struct foo_struct {
2021 		 *     long a;
2022 		 *     int b;
2023 		 * };
2024 		 * int foo(char, char, char, char, char, struct foo_struct,
2025 		 *         char);
2026 		 *
2027 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2028 		 * by stack.
2029 		 */
2030 		if (nr_regs + arg_regs > 6) {
2031 			/* copy function arguments from origin stack frame
2032 			 * into current stack frame.
2033 			 *
2034 			 * The starting address of the arguments on-stack
2035 			 * is:
2036 			 *   rbp + 8(push rbp) +
2037 			 *   8(return addr of origin call) +
2038 			 *   8(return addr of the caller)
2039 			 * which means: rbp + 24
2040 			 */
2041 			for (j = 0; j < arg_regs; j++) {
2042 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2043 					 nr_stack_slots * 8 + 0x18);
2044 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2045 					 -stack_size);
2046 
2047 				if (!nr_stack_slots)
2048 					first_off = stack_size;
2049 				stack_size -= 8;
2050 				nr_stack_slots++;
2051 			}
2052 		} else {
2053 			/* Only copy the arguments on-stack to current
2054 			 * 'stack_size' and ignore the regs, used to
2055 			 * prepare the arguments on-stack for orign call.
2056 			 */
2057 			if (for_call_origin) {
2058 				nr_regs += arg_regs;
2059 				continue;
2060 			}
2061 
2062 			/* copy the arguments from regs into stack */
2063 			for (j = 0; j < arg_regs; j++) {
2064 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2065 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2066 					 -stack_size);
2067 				stack_size -= 8;
2068 				nr_regs++;
2069 			}
2070 		}
2071 	}
2072 
2073 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2074 }
2075 
2076 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2077 			 int stack_size)
2078 {
2079 	int i, j, arg_regs, nr_regs = 0;
2080 
2081 	/* Restore function arguments from stack.
2082 	 * For a function that accepts two pointers the sequence will be:
2083 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2084 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2085 	 *
2086 	 * The logic here is similar to what we do in save_args()
2087 	 */
2088 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2089 		arg_regs = (m->arg_size[i] + 7) / 8;
2090 		if (nr_regs + arg_regs <= 6) {
2091 			for (j = 0; j < arg_regs; j++) {
2092 				emit_ldx(prog, BPF_DW,
2093 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2094 					 BPF_REG_FP,
2095 					 -stack_size);
2096 				stack_size -= 8;
2097 				nr_regs++;
2098 			}
2099 		} else {
2100 			stack_size -= 8 * arg_regs;
2101 		}
2102 
2103 		if (nr_regs >= 6)
2104 			break;
2105 	}
2106 }
2107 
2108 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2109 			   struct bpf_tramp_link *l, int stack_size,
2110 			   int run_ctx_off, bool save_ret)
2111 {
2112 	u8 *prog = *pprog;
2113 	u8 *jmp_insn;
2114 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2115 	struct bpf_prog *p = l->link.prog;
2116 	u64 cookie = l->cookie;
2117 
2118 	/* mov rdi, cookie */
2119 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2120 
2121 	/* Prepare struct bpf_tramp_run_ctx.
2122 	 *
2123 	 * bpf_tramp_run_ctx is already preserved by
2124 	 * arch_prepare_bpf_trampoline().
2125 	 *
2126 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2127 	 */
2128 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2129 
2130 	/* arg1: mov rdi, progs[i] */
2131 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2132 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2133 	if (!is_imm8(-run_ctx_off))
2134 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2135 	else
2136 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2137 
2138 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2139 		return -EINVAL;
2140 	/* remember prog start time returned by __bpf_prog_enter */
2141 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2142 
2143 	/* if (__bpf_prog_enter*(prog) == 0)
2144 	 *	goto skip_exec_of_prog;
2145 	 */
2146 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2147 	/* emit 2 nops that will be replaced with JE insn */
2148 	jmp_insn = prog;
2149 	emit_nops(&prog, 2);
2150 
2151 	/* arg1: lea rdi, [rbp - stack_size] */
2152 	if (!is_imm8(-stack_size))
2153 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2154 	else
2155 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2156 	/* arg2: progs[i]->insnsi for interpreter */
2157 	if (!p->jited)
2158 		emit_mov_imm64(&prog, BPF_REG_2,
2159 			       (long) p->insnsi >> 32,
2160 			       (u32) (long) p->insnsi);
2161 	/* call JITed bpf program or interpreter */
2162 	if (emit_rsb_call(&prog, p->bpf_func, prog))
2163 		return -EINVAL;
2164 
2165 	/*
2166 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2167 	 * of the previous call which is then passed on the stack to
2168 	 * the next BPF program.
2169 	 *
2170 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2171 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2172 	 */
2173 	if (save_ret)
2174 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2175 
2176 	/* replace 2 nops with JE insn, since jmp target is known */
2177 	jmp_insn[0] = X86_JE;
2178 	jmp_insn[1] = prog - jmp_insn - 2;
2179 
2180 	/* arg1: mov rdi, progs[i] */
2181 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2182 	/* arg2: mov rsi, rbx <- start time in nsec */
2183 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2184 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2185 	if (!is_imm8(-run_ctx_off))
2186 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2187 	else
2188 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2189 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2190 		return -EINVAL;
2191 
2192 	*pprog = prog;
2193 	return 0;
2194 }
2195 
2196 static void emit_align(u8 **pprog, u32 align)
2197 {
2198 	u8 *target, *prog = *pprog;
2199 
2200 	target = PTR_ALIGN(prog, align);
2201 	if (target != prog)
2202 		emit_nops(&prog, target - prog);
2203 
2204 	*pprog = prog;
2205 }
2206 
2207 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2208 {
2209 	u8 *prog = *pprog;
2210 	s64 offset;
2211 
2212 	offset = func - (ip + 2 + 4);
2213 	if (!is_simm32(offset)) {
2214 		pr_err("Target %p is out of range\n", func);
2215 		return -EINVAL;
2216 	}
2217 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2218 	*pprog = prog;
2219 	return 0;
2220 }
2221 
2222 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2223 		      struct bpf_tramp_links *tl, int stack_size,
2224 		      int run_ctx_off, bool save_ret)
2225 {
2226 	int i;
2227 	u8 *prog = *pprog;
2228 
2229 	for (i = 0; i < tl->nr_links; i++) {
2230 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2231 				    run_ctx_off, save_ret))
2232 			return -EINVAL;
2233 	}
2234 	*pprog = prog;
2235 	return 0;
2236 }
2237 
2238 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2239 			      struct bpf_tramp_links *tl, int stack_size,
2240 			      int run_ctx_off, u8 **branches)
2241 {
2242 	u8 *prog = *pprog;
2243 	int i;
2244 
2245 	/* The first fmod_ret program will receive a garbage return value.
2246 	 * Set this to 0 to avoid confusing the program.
2247 	 */
2248 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2249 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2250 	for (i = 0; i < tl->nr_links; i++) {
2251 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2252 			return -EINVAL;
2253 
2254 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2255 		 * if (*(u64 *)(rbp - 8) !=  0)
2256 		 *	goto do_fexit;
2257 		 */
2258 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2259 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2260 
2261 		/* Save the location of the branch and Generate 6 nops
2262 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2263 		 * are replaced with a conditional jump once do_fexit (i.e. the
2264 		 * start of the fexit invocation) is finalized.
2265 		 */
2266 		branches[i] = prog;
2267 		emit_nops(&prog, 4 + 2);
2268 	}
2269 
2270 	*pprog = prog;
2271 	return 0;
2272 }
2273 
2274 /* Example:
2275  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2276  * its 'struct btf_func_model' will be nr_args=2
2277  * The assembly code when eth_type_trans is executing after trampoline:
2278  *
2279  * push rbp
2280  * mov rbp, rsp
2281  * sub rsp, 16                     // space for skb and dev
2282  * push rbx                        // temp regs to pass start time
2283  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2284  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2285  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2286  * mov rbx, rax                    // remember start time in bpf stats are enabled
2287  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2288  * call addr_of_jited_FENTRY_prog
2289  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2290  * mov rsi, rbx                    // prog start time
2291  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2292  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2293  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2294  * pop rbx
2295  * leave
2296  * ret
2297  *
2298  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2299  * replaced with 'call generated_bpf_trampoline'. When it returns
2300  * eth_type_trans will continue executing with original skb and dev pointers.
2301  *
2302  * The assembly code when eth_type_trans is called from trampoline:
2303  *
2304  * push rbp
2305  * mov rbp, rsp
2306  * sub rsp, 24                     // space for skb, dev, return value
2307  * push rbx                        // temp regs to pass start time
2308  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2309  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2310  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2311  * mov rbx, rax                    // remember start time if bpf stats are enabled
2312  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2313  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2314  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2315  * mov rsi, rbx                    // prog start time
2316  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2317  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2318  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2319  * call eth_type_trans+5           // execute body of eth_type_trans
2320  * mov qword ptr [rbp - 8], rax    // save return value
2321  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2322  * mov rbx, rax                    // remember start time in bpf stats are enabled
2323  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2324  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2325  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2326  * mov rsi, rbx                    // prog start time
2327  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2328  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2329  * pop rbx
2330  * leave
2331  * add rsp, 8                      // skip eth_type_trans's frame
2332  * ret                             // return to its caller
2333  */
2334 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2335 				const struct btf_func_model *m, u32 flags,
2336 				struct bpf_tramp_links *tlinks,
2337 				void *func_addr)
2338 {
2339 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2340 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2341 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2342 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2343 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2344 	void *orig_call = func_addr;
2345 	u8 **branches = NULL;
2346 	u8 *prog;
2347 	bool save_ret;
2348 
2349 	/* extra registers for struct arguments */
2350 	for (i = 0; i < m->nr_args; i++)
2351 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2352 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2353 
2354 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2355 	 * are passed through regs, the remains are through stack.
2356 	 */
2357 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2358 		return -ENOTSUPP;
2359 
2360 	/* Generated trampoline stack layout:
2361 	 *
2362 	 * RBP + 8         [ return address  ]
2363 	 * RBP + 0         [ RBP             ]
2364 	 *
2365 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2366 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2367 	 *
2368 	 *                 [ reg_argN        ]  always
2369 	 *                 [ ...             ]
2370 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2371 	 *
2372 	 * RBP - nregs_off [ regs count	     ]  always
2373 	 *
2374 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2375 	 *
2376 	 * RBP - rbx_off   [ rbx value       ]  always
2377 	 *
2378 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2379 	 *
2380 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2381 	 *                     [ ...        ]
2382 	 *                     [ stack_arg2 ]
2383 	 * RBP - arg_stack_off [ stack_arg1 ]
2384 	 */
2385 
2386 	/* room for return value of orig_call or fentry prog */
2387 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2388 	if (save_ret)
2389 		stack_size += 8;
2390 
2391 	stack_size += nr_regs * 8;
2392 	regs_off = stack_size;
2393 
2394 	/* regs count  */
2395 	stack_size += 8;
2396 	nregs_off = stack_size;
2397 
2398 	if (flags & BPF_TRAMP_F_IP_ARG)
2399 		stack_size += 8; /* room for IP address argument */
2400 
2401 	ip_off = stack_size;
2402 
2403 	stack_size += 8;
2404 	rbx_off = stack_size;
2405 
2406 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2407 	run_ctx_off = stack_size;
2408 
2409 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2410 		/* the space that used to pass arguments on-stack */
2411 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2412 		/* make sure the stack pointer is 16-byte aligned if we
2413 		 * need pass arguments on stack, which means
2414 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2415 		 * should be 16-byte aligned. Following code depend on
2416 		 * that stack_size is already 8-byte aligned.
2417 		 */
2418 		stack_size += (stack_size % 16) ? 0 : 8;
2419 	}
2420 
2421 	arg_stack_off = stack_size;
2422 
2423 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2424 		/* skip patched call instruction and point orig_call to actual
2425 		 * body of the kernel function.
2426 		 */
2427 		if (is_endbr(*(u32 *)orig_call))
2428 			orig_call += ENDBR_INSN_SIZE;
2429 		orig_call += X86_PATCH_SIZE;
2430 	}
2431 
2432 	prog = image;
2433 
2434 	EMIT_ENDBR();
2435 	/*
2436 	 * This is the direct-call trampoline, as such it needs accounting
2437 	 * for the __fentry__ call.
2438 	 */
2439 	x86_call_depth_emit_accounting(&prog, NULL);
2440 	EMIT1(0x55);		 /* push rbp */
2441 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2442 	if (!is_imm8(stack_size))
2443 		/* sub rsp, stack_size */
2444 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2445 	else
2446 		/* sub rsp, stack_size */
2447 		EMIT4(0x48, 0x83, 0xEC, stack_size);
2448 	/* mov QWORD PTR [rbp - rbx_off], rbx */
2449 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2450 
2451 	/* Store number of argument registers of the traced function:
2452 	 *   mov rax, nr_regs
2453 	 *   mov QWORD PTR [rbp - nregs_off], rax
2454 	 */
2455 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2456 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2457 
2458 	if (flags & BPF_TRAMP_F_IP_ARG) {
2459 		/* Store IP address of the traced function:
2460 		 * movabsq rax, func_addr
2461 		 * mov QWORD PTR [rbp - ip_off], rax
2462 		 */
2463 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2464 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2465 	}
2466 
2467 	save_args(m, &prog, regs_off, false);
2468 
2469 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2470 		/* arg1: mov rdi, im */
2471 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2472 		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2473 			ret = -EINVAL;
2474 			goto cleanup;
2475 		}
2476 	}
2477 
2478 	if (fentry->nr_links)
2479 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2480 			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2481 			return -EINVAL;
2482 
2483 	if (fmod_ret->nr_links) {
2484 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2485 				   GFP_KERNEL);
2486 		if (!branches)
2487 			return -ENOMEM;
2488 
2489 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2490 				       run_ctx_off, branches)) {
2491 			ret = -EINVAL;
2492 			goto cleanup;
2493 		}
2494 	}
2495 
2496 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2497 		restore_regs(m, &prog, regs_off);
2498 		save_args(m, &prog, arg_stack_off, true);
2499 
2500 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2501 			emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2502 			EMIT2(0xff, 0xd0); /* call *rax */
2503 		} else {
2504 			/* call original function */
2505 			if (emit_rsb_call(&prog, orig_call, prog)) {
2506 				ret = -EINVAL;
2507 				goto cleanup;
2508 			}
2509 		}
2510 		/* remember return value in a stack for bpf prog to access */
2511 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2512 		im->ip_after_call = prog;
2513 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2514 		prog += X86_PATCH_SIZE;
2515 	}
2516 
2517 	if (fmod_ret->nr_links) {
2518 		/* From Intel 64 and IA-32 Architectures Optimization
2519 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2520 		 * Coding Rule 11: All branch targets should be 16-byte
2521 		 * aligned.
2522 		 */
2523 		emit_align(&prog, 16);
2524 		/* Update the branches saved in invoke_bpf_mod_ret with the
2525 		 * aligned address of do_fexit.
2526 		 */
2527 		for (i = 0; i < fmod_ret->nr_links; i++)
2528 			emit_cond_near_jump(&branches[i], prog, branches[i],
2529 					    X86_JNE);
2530 	}
2531 
2532 	if (fexit->nr_links)
2533 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2534 			ret = -EINVAL;
2535 			goto cleanup;
2536 		}
2537 
2538 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2539 		restore_regs(m, &prog, regs_off);
2540 
2541 	/* This needs to be done regardless. If there were fmod_ret programs,
2542 	 * the return value is only updated on the stack and still needs to be
2543 	 * restored to R0.
2544 	 */
2545 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2546 		im->ip_epilogue = prog;
2547 		/* arg1: mov rdi, im */
2548 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2549 		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2550 			ret = -EINVAL;
2551 			goto cleanup;
2552 		}
2553 	}
2554 	/* restore return value of orig_call or fentry prog back into RAX */
2555 	if (save_ret)
2556 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2557 
2558 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2559 	EMIT1(0xC9); /* leave */
2560 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2561 		/* skip our return address and return to parent */
2562 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2563 	emit_return(&prog, prog);
2564 	/* Make sure the trampoline generation logic doesn't overflow */
2565 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2566 		ret = -EFAULT;
2567 		goto cleanup;
2568 	}
2569 	ret = prog - (u8 *)image;
2570 
2571 cleanup:
2572 	kfree(branches);
2573 	return ret;
2574 }
2575 
2576 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2577 {
2578 	u8 *jg_reloc, *prog = *pprog;
2579 	int pivot, err, jg_bytes = 1;
2580 	s64 jg_offset;
2581 
2582 	if (a == b) {
2583 		/* Leaf node of recursion, i.e. not a range of indices
2584 		 * anymore.
2585 		 */
2586 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2587 		if (!is_simm32(progs[a]))
2588 			return -1;
2589 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2590 			    progs[a]);
2591 		err = emit_cond_near_jump(&prog,	/* je func */
2592 					  (void *)progs[a], image + (prog - buf),
2593 					  X86_JE);
2594 		if (err)
2595 			return err;
2596 
2597 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2598 
2599 		*pprog = prog;
2600 		return 0;
2601 	}
2602 
2603 	/* Not a leaf node, so we pivot, and recursively descend into
2604 	 * the lower and upper ranges.
2605 	 */
2606 	pivot = (b - a) / 2;
2607 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2608 	if (!is_simm32(progs[a + pivot]))
2609 		return -1;
2610 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2611 
2612 	if (pivot > 2) {				/* jg upper_part */
2613 		/* Require near jump. */
2614 		jg_bytes = 4;
2615 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2616 	} else {
2617 		EMIT2(X86_JG, 0);
2618 	}
2619 	jg_reloc = prog;
2620 
2621 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2622 				  progs, image, buf);
2623 	if (err)
2624 		return err;
2625 
2626 	/* From Intel 64 and IA-32 Architectures Optimization
2627 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2628 	 * Coding Rule 11: All branch targets should be 16-byte
2629 	 * aligned.
2630 	 */
2631 	emit_align(&prog, 16);
2632 	jg_offset = prog - jg_reloc;
2633 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2634 
2635 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2636 				  b, progs, image, buf);
2637 	if (err)
2638 		return err;
2639 
2640 	*pprog = prog;
2641 	return 0;
2642 }
2643 
2644 static int cmp_ips(const void *a, const void *b)
2645 {
2646 	const s64 *ipa = a;
2647 	const s64 *ipb = b;
2648 
2649 	if (*ipa > *ipb)
2650 		return 1;
2651 	if (*ipa < *ipb)
2652 		return -1;
2653 	return 0;
2654 }
2655 
2656 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2657 {
2658 	u8 *prog = buf;
2659 
2660 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2661 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2662 }
2663 
2664 struct x64_jit_data {
2665 	struct bpf_binary_header *rw_header;
2666 	struct bpf_binary_header *header;
2667 	int *addrs;
2668 	u8 *image;
2669 	int proglen;
2670 	struct jit_context ctx;
2671 };
2672 
2673 #define MAX_PASSES 20
2674 #define PADDING_PASSES (MAX_PASSES - 5)
2675 
2676 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2677 {
2678 	struct bpf_binary_header *rw_header = NULL;
2679 	struct bpf_binary_header *header = NULL;
2680 	struct bpf_prog *tmp, *orig_prog = prog;
2681 	struct x64_jit_data *jit_data;
2682 	int proglen, oldproglen = 0;
2683 	struct jit_context ctx = {};
2684 	bool tmp_blinded = false;
2685 	bool extra_pass = false;
2686 	bool padding = false;
2687 	u8 *rw_image = NULL;
2688 	u8 *image = NULL;
2689 	int *addrs;
2690 	int pass;
2691 	int i;
2692 
2693 	if (!prog->jit_requested)
2694 		return orig_prog;
2695 
2696 	tmp = bpf_jit_blind_constants(prog);
2697 	/*
2698 	 * If blinding was requested and we failed during blinding,
2699 	 * we must fall back to the interpreter.
2700 	 */
2701 	if (IS_ERR(tmp))
2702 		return orig_prog;
2703 	if (tmp != prog) {
2704 		tmp_blinded = true;
2705 		prog = tmp;
2706 	}
2707 
2708 	jit_data = prog->aux->jit_data;
2709 	if (!jit_data) {
2710 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2711 		if (!jit_data) {
2712 			prog = orig_prog;
2713 			goto out;
2714 		}
2715 		prog->aux->jit_data = jit_data;
2716 	}
2717 	addrs = jit_data->addrs;
2718 	if (addrs) {
2719 		ctx = jit_data->ctx;
2720 		oldproglen = jit_data->proglen;
2721 		image = jit_data->image;
2722 		header = jit_data->header;
2723 		rw_header = jit_data->rw_header;
2724 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2725 		extra_pass = true;
2726 		padding = true;
2727 		goto skip_init_addrs;
2728 	}
2729 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2730 	if (!addrs) {
2731 		prog = orig_prog;
2732 		goto out_addrs;
2733 	}
2734 
2735 	/*
2736 	 * Before first pass, make a rough estimation of addrs[]
2737 	 * each BPF instruction is translated to less than 64 bytes
2738 	 */
2739 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2740 		proglen += 64;
2741 		addrs[i] = proglen;
2742 	}
2743 	ctx.cleanup_addr = proglen;
2744 skip_init_addrs:
2745 
2746 	/*
2747 	 * JITed image shrinks with every pass and the loop iterates
2748 	 * until the image stops shrinking. Very large BPF programs
2749 	 * may converge on the last pass. In such case do one more
2750 	 * pass to emit the final image.
2751 	 */
2752 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2753 		if (!padding && pass >= PADDING_PASSES)
2754 			padding = true;
2755 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2756 		if (proglen <= 0) {
2757 out_image:
2758 			image = NULL;
2759 			if (header) {
2760 				bpf_arch_text_copy(&header->size, &rw_header->size,
2761 						   sizeof(rw_header->size));
2762 				bpf_jit_binary_pack_free(header, rw_header);
2763 			}
2764 			/* Fall back to interpreter mode */
2765 			prog = orig_prog;
2766 			if (extra_pass) {
2767 				prog->bpf_func = NULL;
2768 				prog->jited = 0;
2769 				prog->jited_len = 0;
2770 			}
2771 			goto out_addrs;
2772 		}
2773 		if (image) {
2774 			if (proglen != oldproglen) {
2775 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2776 				       proglen, oldproglen);
2777 				goto out_image;
2778 			}
2779 			break;
2780 		}
2781 		if (proglen == oldproglen) {
2782 			/*
2783 			 * The number of entries in extable is the number of BPF_LDX
2784 			 * insns that access kernel memory via "pointer to BTF type".
2785 			 * The verifier changed their opcode from LDX|MEM|size
2786 			 * to LDX|PROBE_MEM|size to make JITing easier.
2787 			 */
2788 			u32 align = __alignof__(struct exception_table_entry);
2789 			u32 extable_size = prog->aux->num_exentries *
2790 				sizeof(struct exception_table_entry);
2791 
2792 			/* allocate module memory for x86 insns and extable */
2793 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2794 							   &image, align, &rw_header, &rw_image,
2795 							   jit_fill_hole);
2796 			if (!header) {
2797 				prog = orig_prog;
2798 				goto out_addrs;
2799 			}
2800 			prog->aux->extable = (void *) image + roundup(proglen, align);
2801 		}
2802 		oldproglen = proglen;
2803 		cond_resched();
2804 	}
2805 
2806 	if (bpf_jit_enable > 1)
2807 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2808 
2809 	if (image) {
2810 		if (!prog->is_func || extra_pass) {
2811 			/*
2812 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2813 			 *   1) header is not pointing to proper module memory;
2814 			 *   2) the arch doesn't support bpf_arch_text_copy().
2815 			 *
2816 			 * Both cases are serious bugs and justify WARN_ON.
2817 			 */
2818 			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2819 				/* header has been freed */
2820 				header = NULL;
2821 				goto out_image;
2822 			}
2823 
2824 			bpf_tail_call_direct_fixup(prog);
2825 		} else {
2826 			jit_data->addrs = addrs;
2827 			jit_data->ctx = ctx;
2828 			jit_data->proglen = proglen;
2829 			jit_data->image = image;
2830 			jit_data->header = header;
2831 			jit_data->rw_header = rw_header;
2832 		}
2833 		prog->bpf_func = (void *)image;
2834 		prog->jited = 1;
2835 		prog->jited_len = proglen;
2836 	} else {
2837 		prog = orig_prog;
2838 	}
2839 
2840 	if (!image || !prog->is_func || extra_pass) {
2841 		if (image)
2842 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2843 out_addrs:
2844 		kvfree(addrs);
2845 		kfree(jit_data);
2846 		prog->aux->jit_data = NULL;
2847 	}
2848 out:
2849 	if (tmp_blinded)
2850 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2851 					   tmp : orig_prog);
2852 	return prog;
2853 }
2854 
2855 bool bpf_jit_supports_kfunc_call(void)
2856 {
2857 	return true;
2858 }
2859 
2860 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2861 {
2862 	if (text_poke_copy(dst, src, len) == NULL)
2863 		return ERR_PTR(-EINVAL);
2864 	return dst;
2865 }
2866 
2867 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2868 bool bpf_jit_supports_subprog_tailcalls(void)
2869 {
2870 	return true;
2871 }
2872 
2873 void bpf_jit_free(struct bpf_prog *prog)
2874 {
2875 	if (prog->jited) {
2876 		struct x64_jit_data *jit_data = prog->aux->jit_data;
2877 		struct bpf_binary_header *hdr;
2878 
2879 		/*
2880 		 * If we fail the final pass of JIT (from jit_subprogs),
2881 		 * the program may not be finalized yet. Call finalize here
2882 		 * before freeing it.
2883 		 */
2884 		if (jit_data) {
2885 			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2886 						     jit_data->rw_header);
2887 			kvfree(jit_data->addrs);
2888 			kfree(jit_data);
2889 		}
2890 		hdr = bpf_jit_binary_pack_hdr(prog);
2891 		bpf_jit_binary_pack_free(hdr, NULL);
2892 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2893 	}
2894 
2895 	bpf_prog_unlock_free(prog);
2896 }
2897