xref: /openbmc/linux/arch/x86/net/bpf_jit_comp.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 
13 #include <asm/set_memory.h>
14 #include <asm/nospec-branch.h>
15 
16 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
17 {
18 	if (len == 1)
19 		*ptr = bytes;
20 	else if (len == 2)
21 		*(u16 *)ptr = bytes;
22 	else {
23 		*(u32 *)ptr = bytes;
24 		barrier();
25 	}
26 	return ptr + len;
27 }
28 
29 #define EMIT(bytes, len) \
30 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
31 
32 #define EMIT1(b1)		EMIT(b1, 1)
33 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
34 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
35 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
36 
37 #define EMIT1_off32(b1, off) \
38 	do { EMIT1(b1); EMIT(off, 4); } while (0)
39 #define EMIT2_off32(b1, b2, off) \
40 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
41 #define EMIT3_off32(b1, b2, b3, off) \
42 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
43 #define EMIT4_off32(b1, b2, b3, b4, off) \
44 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
45 
46 static bool is_imm8(int value)
47 {
48 	return value <= 127 && value >= -128;
49 }
50 
51 static bool is_simm32(s64 value)
52 {
53 	return value == (s64)(s32)value;
54 }
55 
56 static bool is_uimm32(u64 value)
57 {
58 	return value == (u64)(u32)value;
59 }
60 
61 /* mov dst, src */
62 #define EMIT_mov(DST, SRC)								 \
63 	do {										 \
64 		if (DST != SRC)								 \
65 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
66 	} while (0)
67 
68 static int bpf_size_to_x86_bytes(int bpf_size)
69 {
70 	if (bpf_size == BPF_W)
71 		return 4;
72 	else if (bpf_size == BPF_H)
73 		return 2;
74 	else if (bpf_size == BPF_B)
75 		return 1;
76 	else if (bpf_size == BPF_DW)
77 		return 4; /* imm32 */
78 	else
79 		return 0;
80 }
81 
82 /*
83  * List of x86 cond jumps opcodes (. + s8)
84  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
85  */
86 #define X86_JB  0x72
87 #define X86_JAE 0x73
88 #define X86_JE  0x74
89 #define X86_JNE 0x75
90 #define X86_JBE 0x76
91 #define X86_JA  0x77
92 #define X86_JL  0x7C
93 #define X86_JGE 0x7D
94 #define X86_JLE 0x7E
95 #define X86_JG  0x7F
96 
97 /* Pick a register outside of BPF range for JIT internal work */
98 #define AUX_REG (MAX_BPF_JIT_REG + 1)
99 
100 /*
101  * The following table maps BPF registers to x86-64 registers.
102  *
103  * x86-64 register R12 is unused, since if used as base address
104  * register in load/store instructions, it always needs an
105  * extra byte of encoding and is callee saved.
106  *
107  * Also x86-64 register R9 is unused. x86-64 register R10 is
108  * used for blinding (if enabled).
109  */
110 static const int reg2hex[] = {
111 	[BPF_REG_0] = 0,  /* RAX */
112 	[BPF_REG_1] = 7,  /* RDI */
113 	[BPF_REG_2] = 6,  /* RSI */
114 	[BPF_REG_3] = 2,  /* RDX */
115 	[BPF_REG_4] = 1,  /* RCX */
116 	[BPF_REG_5] = 0,  /* R8  */
117 	[BPF_REG_6] = 3,  /* RBX callee saved */
118 	[BPF_REG_7] = 5,  /* R13 callee saved */
119 	[BPF_REG_8] = 6,  /* R14 callee saved */
120 	[BPF_REG_9] = 7,  /* R15 callee saved */
121 	[BPF_REG_FP] = 5, /* RBP readonly */
122 	[BPF_REG_AX] = 2, /* R10 temp register */
123 	[AUX_REG] = 3,    /* R11 temp register */
124 };
125 
126 /*
127  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
128  * which need extra byte of encoding.
129  * rax,rcx,...,rbp have simpler encoding
130  */
131 static bool is_ereg(u32 reg)
132 {
133 	return (1 << reg) & (BIT(BPF_REG_5) |
134 			     BIT(AUX_REG) |
135 			     BIT(BPF_REG_7) |
136 			     BIT(BPF_REG_8) |
137 			     BIT(BPF_REG_9) |
138 			     BIT(BPF_REG_AX));
139 }
140 
141 static bool is_axreg(u32 reg)
142 {
143 	return reg == BPF_REG_0;
144 }
145 
146 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
147 static u8 add_1mod(u8 byte, u32 reg)
148 {
149 	if (is_ereg(reg))
150 		byte |= 1;
151 	return byte;
152 }
153 
154 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
155 {
156 	if (is_ereg(r1))
157 		byte |= 1;
158 	if (is_ereg(r2))
159 		byte |= 4;
160 	return byte;
161 }
162 
163 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
164 static u8 add_1reg(u8 byte, u32 dst_reg)
165 {
166 	return byte + reg2hex[dst_reg];
167 }
168 
169 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
170 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
171 {
172 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
173 }
174 
175 static void jit_fill_hole(void *area, unsigned int size)
176 {
177 	/* Fill whole space with INT3 instructions */
178 	memset(area, 0xcc, size);
179 }
180 
181 struct jit_context {
182 	int cleanup_addr; /* Epilogue code offset */
183 };
184 
185 /* Maximum number of bytes emitted while JITing one eBPF insn */
186 #define BPF_MAX_INSN_SIZE	128
187 #define BPF_INSN_SAFETY		64
188 
189 #define PROLOGUE_SIZE		20
190 
191 /*
192  * Emit x86-64 prologue code for BPF program and check its size.
193  * bpf_tail_call helper will skip it while jumping into another program
194  */
195 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
196 {
197 	u8 *prog = *pprog;
198 	int cnt = 0;
199 
200 	EMIT1(0x55);             /* push rbp */
201 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
202 	/* sub rsp, rounded_stack_depth */
203 	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
204 	EMIT1(0x53);             /* push rbx */
205 	EMIT2(0x41, 0x55);       /* push r13 */
206 	EMIT2(0x41, 0x56);       /* push r14 */
207 	EMIT2(0x41, 0x57);       /* push r15 */
208 	if (!ebpf_from_cbpf) {
209 		/* zero init tail_call_cnt */
210 		EMIT2(0x6a, 0x00);
211 		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
212 	}
213 	*pprog = prog;
214 }
215 
216 /*
217  * Generate the following code:
218  *
219  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
220  *   if (index >= array->map.max_entries)
221  *     goto out;
222  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
223  *     goto out;
224  *   prog = array->ptrs[index];
225  *   if (prog == NULL)
226  *     goto out;
227  *   goto *(prog->bpf_func + prologue_size);
228  * out:
229  */
230 static void emit_bpf_tail_call(u8 **pprog)
231 {
232 	u8 *prog = *pprog;
233 	int label1, label2, label3;
234 	int cnt = 0;
235 
236 	/*
237 	 * rdi - pointer to ctx
238 	 * rsi - pointer to bpf_array
239 	 * rdx - index in bpf_array
240 	 */
241 
242 	/*
243 	 * if (index >= array->map.max_entries)
244 	 *	goto out;
245 	 */
246 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
247 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
248 	      offsetof(struct bpf_array, map.max_entries));
249 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
250 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
251 	label1 = cnt;
252 
253 	/*
254 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
255 	 *	goto out;
256 	 */
257 	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
258 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
259 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
260 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
261 	label2 = cnt;
262 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
263 	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
264 
265 	/* prog = array->ptrs[index]; */
266 	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
267 		    offsetof(struct bpf_array, ptrs));
268 
269 	/*
270 	 * if (prog == NULL)
271 	 *	goto out;
272 	 */
273 	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
274 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
275 	EMIT2(X86_JE, OFFSET3);                   /* je out */
276 	label3 = cnt;
277 
278 	/* goto *(prog->bpf_func + prologue_size); */
279 	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
280 	      offsetof(struct bpf_prog, bpf_func));
281 	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
282 
283 	/*
284 	 * Wow we're ready to jump into next BPF program
285 	 * rdi == ctx (1st arg)
286 	 * rax == prog->bpf_func + prologue_size
287 	 */
288 	RETPOLINE_RAX_BPF_JIT();
289 
290 	/* out: */
291 	BUILD_BUG_ON(cnt - label1 != OFFSET1);
292 	BUILD_BUG_ON(cnt - label2 != OFFSET2);
293 	BUILD_BUG_ON(cnt - label3 != OFFSET3);
294 	*pprog = prog;
295 }
296 
297 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
298 			   u32 dst_reg, const u32 imm32)
299 {
300 	u8 *prog = *pprog;
301 	u8 b1, b2, b3;
302 	int cnt = 0;
303 
304 	/*
305 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
306 	 * (which zero-extends imm32) to save 2 bytes.
307 	 */
308 	if (sign_propagate && (s32)imm32 < 0) {
309 		/* 'mov %rax, imm32' sign extends imm32 */
310 		b1 = add_1mod(0x48, dst_reg);
311 		b2 = 0xC7;
312 		b3 = 0xC0;
313 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
314 		goto done;
315 	}
316 
317 	/*
318 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
319 	 * to save 3 bytes.
320 	 */
321 	if (imm32 == 0) {
322 		if (is_ereg(dst_reg))
323 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
324 		b2 = 0x31; /* xor */
325 		b3 = 0xC0;
326 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
327 		goto done;
328 	}
329 
330 	/* mov %eax, imm32 */
331 	if (is_ereg(dst_reg))
332 		EMIT1(add_1mod(0x40, dst_reg));
333 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
334 done:
335 	*pprog = prog;
336 }
337 
338 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
339 			   const u32 imm32_hi, const u32 imm32_lo)
340 {
341 	u8 *prog = *pprog;
342 	int cnt = 0;
343 
344 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
345 		/*
346 		 * For emitting plain u32, where sign bit must not be
347 		 * propagated LLVM tends to load imm64 over mov32
348 		 * directly, so save couple of bytes by just doing
349 		 * 'mov %eax, imm32' instead.
350 		 */
351 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
352 	} else {
353 		/* movabsq %rax, imm64 */
354 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
355 		EMIT(imm32_lo, 4);
356 		EMIT(imm32_hi, 4);
357 	}
358 
359 	*pprog = prog;
360 }
361 
362 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
363 {
364 	u8 *prog = *pprog;
365 	int cnt = 0;
366 
367 	if (is64) {
368 		/* mov dst, src */
369 		EMIT_mov(dst_reg, src_reg);
370 	} else {
371 		/* mov32 dst, src */
372 		if (is_ereg(dst_reg) || is_ereg(src_reg))
373 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
374 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
375 	}
376 
377 	*pprog = prog;
378 }
379 
380 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
381 		  int oldproglen, struct jit_context *ctx)
382 {
383 	struct bpf_insn *insn = bpf_prog->insnsi;
384 	int insn_cnt = bpf_prog->len;
385 	bool seen_exit = false;
386 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
387 	int i, cnt = 0;
388 	int proglen = 0;
389 	u8 *prog = temp;
390 
391 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
392 		      bpf_prog_was_classic(bpf_prog));
393 
394 	for (i = 0; i < insn_cnt; i++, insn++) {
395 		const s32 imm32 = insn->imm;
396 		u32 dst_reg = insn->dst_reg;
397 		u32 src_reg = insn->src_reg;
398 		u8 b2 = 0, b3 = 0;
399 		s64 jmp_offset;
400 		u8 jmp_cond;
401 		int ilen;
402 		u8 *func;
403 
404 		switch (insn->code) {
405 			/* ALU */
406 		case BPF_ALU | BPF_ADD | BPF_X:
407 		case BPF_ALU | BPF_SUB | BPF_X:
408 		case BPF_ALU | BPF_AND | BPF_X:
409 		case BPF_ALU | BPF_OR | BPF_X:
410 		case BPF_ALU | BPF_XOR | BPF_X:
411 		case BPF_ALU64 | BPF_ADD | BPF_X:
412 		case BPF_ALU64 | BPF_SUB | BPF_X:
413 		case BPF_ALU64 | BPF_AND | BPF_X:
414 		case BPF_ALU64 | BPF_OR | BPF_X:
415 		case BPF_ALU64 | BPF_XOR | BPF_X:
416 			switch (BPF_OP(insn->code)) {
417 			case BPF_ADD: b2 = 0x01; break;
418 			case BPF_SUB: b2 = 0x29; break;
419 			case BPF_AND: b2 = 0x21; break;
420 			case BPF_OR: b2 = 0x09; break;
421 			case BPF_XOR: b2 = 0x31; break;
422 			}
423 			if (BPF_CLASS(insn->code) == BPF_ALU64)
424 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
425 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
426 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
427 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
428 			break;
429 
430 		case BPF_ALU64 | BPF_MOV | BPF_X:
431 		case BPF_ALU | BPF_MOV | BPF_X:
432 			emit_mov_reg(&prog,
433 				     BPF_CLASS(insn->code) == BPF_ALU64,
434 				     dst_reg, src_reg);
435 			break;
436 
437 			/* neg dst */
438 		case BPF_ALU | BPF_NEG:
439 		case BPF_ALU64 | BPF_NEG:
440 			if (BPF_CLASS(insn->code) == BPF_ALU64)
441 				EMIT1(add_1mod(0x48, dst_reg));
442 			else if (is_ereg(dst_reg))
443 				EMIT1(add_1mod(0x40, dst_reg));
444 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
445 			break;
446 
447 		case BPF_ALU | BPF_ADD | BPF_K:
448 		case BPF_ALU | BPF_SUB | BPF_K:
449 		case BPF_ALU | BPF_AND | BPF_K:
450 		case BPF_ALU | BPF_OR | BPF_K:
451 		case BPF_ALU | BPF_XOR | BPF_K:
452 		case BPF_ALU64 | BPF_ADD | BPF_K:
453 		case BPF_ALU64 | BPF_SUB | BPF_K:
454 		case BPF_ALU64 | BPF_AND | BPF_K:
455 		case BPF_ALU64 | BPF_OR | BPF_K:
456 		case BPF_ALU64 | BPF_XOR | BPF_K:
457 			if (BPF_CLASS(insn->code) == BPF_ALU64)
458 				EMIT1(add_1mod(0x48, dst_reg));
459 			else if (is_ereg(dst_reg))
460 				EMIT1(add_1mod(0x40, dst_reg));
461 
462 			/*
463 			 * b3 holds 'normal' opcode, b2 short form only valid
464 			 * in case dst is eax/rax.
465 			 */
466 			switch (BPF_OP(insn->code)) {
467 			case BPF_ADD:
468 				b3 = 0xC0;
469 				b2 = 0x05;
470 				break;
471 			case BPF_SUB:
472 				b3 = 0xE8;
473 				b2 = 0x2D;
474 				break;
475 			case BPF_AND:
476 				b3 = 0xE0;
477 				b2 = 0x25;
478 				break;
479 			case BPF_OR:
480 				b3 = 0xC8;
481 				b2 = 0x0D;
482 				break;
483 			case BPF_XOR:
484 				b3 = 0xF0;
485 				b2 = 0x35;
486 				break;
487 			}
488 
489 			if (is_imm8(imm32))
490 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
491 			else if (is_axreg(dst_reg))
492 				EMIT1_off32(b2, imm32);
493 			else
494 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
495 			break;
496 
497 		case BPF_ALU64 | BPF_MOV | BPF_K:
498 		case BPF_ALU | BPF_MOV | BPF_K:
499 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
500 				       dst_reg, imm32);
501 			break;
502 
503 		case BPF_LD | BPF_IMM | BPF_DW:
504 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
505 			insn++;
506 			i++;
507 			break;
508 
509 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
510 		case BPF_ALU | BPF_MOD | BPF_X:
511 		case BPF_ALU | BPF_DIV | BPF_X:
512 		case BPF_ALU | BPF_MOD | BPF_K:
513 		case BPF_ALU | BPF_DIV | BPF_K:
514 		case BPF_ALU64 | BPF_MOD | BPF_X:
515 		case BPF_ALU64 | BPF_DIV | BPF_X:
516 		case BPF_ALU64 | BPF_MOD | BPF_K:
517 		case BPF_ALU64 | BPF_DIV | BPF_K:
518 			EMIT1(0x50); /* push rax */
519 			EMIT1(0x52); /* push rdx */
520 
521 			if (BPF_SRC(insn->code) == BPF_X)
522 				/* mov r11, src_reg */
523 				EMIT_mov(AUX_REG, src_reg);
524 			else
525 				/* mov r11, imm32 */
526 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
527 
528 			/* mov rax, dst_reg */
529 			EMIT_mov(BPF_REG_0, dst_reg);
530 
531 			/*
532 			 * xor edx, edx
533 			 * equivalent to 'xor rdx, rdx', but one byte less
534 			 */
535 			EMIT2(0x31, 0xd2);
536 
537 			if (BPF_CLASS(insn->code) == BPF_ALU64)
538 				/* div r11 */
539 				EMIT3(0x49, 0xF7, 0xF3);
540 			else
541 				/* div r11d */
542 				EMIT3(0x41, 0xF7, 0xF3);
543 
544 			if (BPF_OP(insn->code) == BPF_MOD)
545 				/* mov r11, rdx */
546 				EMIT3(0x49, 0x89, 0xD3);
547 			else
548 				/* mov r11, rax */
549 				EMIT3(0x49, 0x89, 0xC3);
550 
551 			EMIT1(0x5A); /* pop rdx */
552 			EMIT1(0x58); /* pop rax */
553 
554 			/* mov dst_reg, r11 */
555 			EMIT_mov(dst_reg, AUX_REG);
556 			break;
557 
558 		case BPF_ALU | BPF_MUL | BPF_K:
559 		case BPF_ALU | BPF_MUL | BPF_X:
560 		case BPF_ALU64 | BPF_MUL | BPF_K:
561 		case BPF_ALU64 | BPF_MUL | BPF_X:
562 		{
563 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
564 
565 			if (dst_reg != BPF_REG_0)
566 				EMIT1(0x50); /* push rax */
567 			if (dst_reg != BPF_REG_3)
568 				EMIT1(0x52); /* push rdx */
569 
570 			/* mov r11, dst_reg */
571 			EMIT_mov(AUX_REG, dst_reg);
572 
573 			if (BPF_SRC(insn->code) == BPF_X)
574 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
575 			else
576 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
577 
578 			if (is64)
579 				EMIT1(add_1mod(0x48, AUX_REG));
580 			else if (is_ereg(AUX_REG))
581 				EMIT1(add_1mod(0x40, AUX_REG));
582 			/* mul(q) r11 */
583 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
584 
585 			if (dst_reg != BPF_REG_3)
586 				EMIT1(0x5A); /* pop rdx */
587 			if (dst_reg != BPF_REG_0) {
588 				/* mov dst_reg, rax */
589 				EMIT_mov(dst_reg, BPF_REG_0);
590 				EMIT1(0x58); /* pop rax */
591 			}
592 			break;
593 		}
594 			/* Shifts */
595 		case BPF_ALU | BPF_LSH | BPF_K:
596 		case BPF_ALU | BPF_RSH | BPF_K:
597 		case BPF_ALU | BPF_ARSH | BPF_K:
598 		case BPF_ALU64 | BPF_LSH | BPF_K:
599 		case BPF_ALU64 | BPF_RSH | BPF_K:
600 		case BPF_ALU64 | BPF_ARSH | BPF_K:
601 			if (BPF_CLASS(insn->code) == BPF_ALU64)
602 				EMIT1(add_1mod(0x48, dst_reg));
603 			else if (is_ereg(dst_reg))
604 				EMIT1(add_1mod(0x40, dst_reg));
605 
606 			switch (BPF_OP(insn->code)) {
607 			case BPF_LSH: b3 = 0xE0; break;
608 			case BPF_RSH: b3 = 0xE8; break;
609 			case BPF_ARSH: b3 = 0xF8; break;
610 			}
611 
612 			if (imm32 == 1)
613 				EMIT2(0xD1, add_1reg(b3, dst_reg));
614 			else
615 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
616 			break;
617 
618 		case BPF_ALU | BPF_LSH | BPF_X:
619 		case BPF_ALU | BPF_RSH | BPF_X:
620 		case BPF_ALU | BPF_ARSH | BPF_X:
621 		case BPF_ALU64 | BPF_LSH | BPF_X:
622 		case BPF_ALU64 | BPF_RSH | BPF_X:
623 		case BPF_ALU64 | BPF_ARSH | BPF_X:
624 
625 			/* Check for bad case when dst_reg == rcx */
626 			if (dst_reg == BPF_REG_4) {
627 				/* mov r11, dst_reg */
628 				EMIT_mov(AUX_REG, dst_reg);
629 				dst_reg = AUX_REG;
630 			}
631 
632 			if (src_reg != BPF_REG_4) { /* common case */
633 				EMIT1(0x51); /* push rcx */
634 
635 				/* mov rcx, src_reg */
636 				EMIT_mov(BPF_REG_4, src_reg);
637 			}
638 
639 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
640 			if (BPF_CLASS(insn->code) == BPF_ALU64)
641 				EMIT1(add_1mod(0x48, dst_reg));
642 			else if (is_ereg(dst_reg))
643 				EMIT1(add_1mod(0x40, dst_reg));
644 
645 			switch (BPF_OP(insn->code)) {
646 			case BPF_LSH: b3 = 0xE0; break;
647 			case BPF_RSH: b3 = 0xE8; break;
648 			case BPF_ARSH: b3 = 0xF8; break;
649 			}
650 			EMIT2(0xD3, add_1reg(b3, dst_reg));
651 
652 			if (src_reg != BPF_REG_4)
653 				EMIT1(0x59); /* pop rcx */
654 
655 			if (insn->dst_reg == BPF_REG_4)
656 				/* mov dst_reg, r11 */
657 				EMIT_mov(insn->dst_reg, AUX_REG);
658 			break;
659 
660 		case BPF_ALU | BPF_END | BPF_FROM_BE:
661 			switch (imm32) {
662 			case 16:
663 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
664 				EMIT1(0x66);
665 				if (is_ereg(dst_reg))
666 					EMIT1(0x41);
667 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
668 
669 				/* Emit 'movzwl eax, ax' */
670 				if (is_ereg(dst_reg))
671 					EMIT3(0x45, 0x0F, 0xB7);
672 				else
673 					EMIT2(0x0F, 0xB7);
674 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
675 				break;
676 			case 32:
677 				/* Emit 'bswap eax' to swap lower 4 bytes */
678 				if (is_ereg(dst_reg))
679 					EMIT2(0x41, 0x0F);
680 				else
681 					EMIT1(0x0F);
682 				EMIT1(add_1reg(0xC8, dst_reg));
683 				break;
684 			case 64:
685 				/* Emit 'bswap rax' to swap 8 bytes */
686 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
687 				      add_1reg(0xC8, dst_reg));
688 				break;
689 			}
690 			break;
691 
692 		case BPF_ALU | BPF_END | BPF_FROM_LE:
693 			switch (imm32) {
694 			case 16:
695 				/*
696 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
697 				 * into 64 bit
698 				 */
699 				if (is_ereg(dst_reg))
700 					EMIT3(0x45, 0x0F, 0xB7);
701 				else
702 					EMIT2(0x0F, 0xB7);
703 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
704 				break;
705 			case 32:
706 				/* Emit 'mov eax, eax' to clear upper 32-bits */
707 				if (is_ereg(dst_reg))
708 					EMIT1(0x45);
709 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
710 				break;
711 			case 64:
712 				/* nop */
713 				break;
714 			}
715 			break;
716 
717 			/* ST: *(u8*)(dst_reg + off) = imm */
718 		case BPF_ST | BPF_MEM | BPF_B:
719 			if (is_ereg(dst_reg))
720 				EMIT2(0x41, 0xC6);
721 			else
722 				EMIT1(0xC6);
723 			goto st;
724 		case BPF_ST | BPF_MEM | BPF_H:
725 			if (is_ereg(dst_reg))
726 				EMIT3(0x66, 0x41, 0xC7);
727 			else
728 				EMIT2(0x66, 0xC7);
729 			goto st;
730 		case BPF_ST | BPF_MEM | BPF_W:
731 			if (is_ereg(dst_reg))
732 				EMIT2(0x41, 0xC7);
733 			else
734 				EMIT1(0xC7);
735 			goto st;
736 		case BPF_ST | BPF_MEM | BPF_DW:
737 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
738 
739 st:			if (is_imm8(insn->off))
740 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
741 			else
742 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
743 
744 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
745 			break;
746 
747 			/* STX: *(u8*)(dst_reg + off) = src_reg */
748 		case BPF_STX | BPF_MEM | BPF_B:
749 			/* Emit 'mov byte ptr [rax + off], al' */
750 			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
751 			    /* We have to add extra byte for x86 SIL, DIL regs */
752 			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
753 				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
754 			else
755 				EMIT1(0x88);
756 			goto stx;
757 		case BPF_STX | BPF_MEM | BPF_H:
758 			if (is_ereg(dst_reg) || is_ereg(src_reg))
759 				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
760 			else
761 				EMIT2(0x66, 0x89);
762 			goto stx;
763 		case BPF_STX | BPF_MEM | BPF_W:
764 			if (is_ereg(dst_reg) || is_ereg(src_reg))
765 				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
766 			else
767 				EMIT1(0x89);
768 			goto stx;
769 		case BPF_STX | BPF_MEM | BPF_DW:
770 			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
771 stx:			if (is_imm8(insn->off))
772 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
773 			else
774 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
775 					    insn->off);
776 			break;
777 
778 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
779 		case BPF_LDX | BPF_MEM | BPF_B:
780 			/* Emit 'movzx rax, byte ptr [rax + off]' */
781 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
782 			goto ldx;
783 		case BPF_LDX | BPF_MEM | BPF_H:
784 			/* Emit 'movzx rax, word ptr [rax + off]' */
785 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
786 			goto ldx;
787 		case BPF_LDX | BPF_MEM | BPF_W:
788 			/* Emit 'mov eax, dword ptr [rax+0x14]' */
789 			if (is_ereg(dst_reg) || is_ereg(src_reg))
790 				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
791 			else
792 				EMIT1(0x8B);
793 			goto ldx;
794 		case BPF_LDX | BPF_MEM | BPF_DW:
795 			/* Emit 'mov rax, qword ptr [rax+0x14]' */
796 			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
797 ldx:			/*
798 			 * If insn->off == 0 we can save one extra byte, but
799 			 * special case of x86 R13 which always needs an offset
800 			 * is not worth the hassle
801 			 */
802 			if (is_imm8(insn->off))
803 				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
804 			else
805 				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
806 					    insn->off);
807 			break;
808 
809 			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
810 		case BPF_STX | BPF_XADD | BPF_W:
811 			/* Emit 'lock add dword ptr [rax + off], eax' */
812 			if (is_ereg(dst_reg) || is_ereg(src_reg))
813 				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
814 			else
815 				EMIT2(0xF0, 0x01);
816 			goto xadd;
817 		case BPF_STX | BPF_XADD | BPF_DW:
818 			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
819 xadd:			if (is_imm8(insn->off))
820 				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
821 			else
822 				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
823 					    insn->off);
824 			break;
825 
826 			/* call */
827 		case BPF_JMP | BPF_CALL:
828 			func = (u8 *) __bpf_call_base + imm32;
829 			jmp_offset = func - (image + addrs[i]);
830 			if (!imm32 || !is_simm32(jmp_offset)) {
831 				pr_err("unsupported BPF func %d addr %p image %p\n",
832 				       imm32, func, image);
833 				return -EINVAL;
834 			}
835 			EMIT1_off32(0xE8, jmp_offset);
836 			break;
837 
838 		case BPF_JMP | BPF_TAIL_CALL:
839 			emit_bpf_tail_call(&prog);
840 			break;
841 
842 			/* cond jump */
843 		case BPF_JMP | BPF_JEQ | BPF_X:
844 		case BPF_JMP | BPF_JNE | BPF_X:
845 		case BPF_JMP | BPF_JGT | BPF_X:
846 		case BPF_JMP | BPF_JLT | BPF_X:
847 		case BPF_JMP | BPF_JGE | BPF_X:
848 		case BPF_JMP | BPF_JLE | BPF_X:
849 		case BPF_JMP | BPF_JSGT | BPF_X:
850 		case BPF_JMP | BPF_JSLT | BPF_X:
851 		case BPF_JMP | BPF_JSGE | BPF_X:
852 		case BPF_JMP | BPF_JSLE | BPF_X:
853 		case BPF_JMP32 | BPF_JEQ | BPF_X:
854 		case BPF_JMP32 | BPF_JNE | BPF_X:
855 		case BPF_JMP32 | BPF_JGT | BPF_X:
856 		case BPF_JMP32 | BPF_JLT | BPF_X:
857 		case BPF_JMP32 | BPF_JGE | BPF_X:
858 		case BPF_JMP32 | BPF_JLE | BPF_X:
859 		case BPF_JMP32 | BPF_JSGT | BPF_X:
860 		case BPF_JMP32 | BPF_JSLT | BPF_X:
861 		case BPF_JMP32 | BPF_JSGE | BPF_X:
862 		case BPF_JMP32 | BPF_JSLE | BPF_X:
863 			/* cmp dst_reg, src_reg */
864 			if (BPF_CLASS(insn->code) == BPF_JMP)
865 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
866 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
867 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
868 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
869 			goto emit_cond_jmp;
870 
871 		case BPF_JMP | BPF_JSET | BPF_X:
872 		case BPF_JMP32 | BPF_JSET | BPF_X:
873 			/* test dst_reg, src_reg */
874 			if (BPF_CLASS(insn->code) == BPF_JMP)
875 				EMIT1(add_2mod(0x48, dst_reg, src_reg));
876 			else if (is_ereg(dst_reg) || is_ereg(src_reg))
877 				EMIT1(add_2mod(0x40, dst_reg, src_reg));
878 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
879 			goto emit_cond_jmp;
880 
881 		case BPF_JMP | BPF_JSET | BPF_K:
882 		case BPF_JMP32 | BPF_JSET | BPF_K:
883 			/* test dst_reg, imm32 */
884 			if (BPF_CLASS(insn->code) == BPF_JMP)
885 				EMIT1(add_1mod(0x48, dst_reg));
886 			else if (is_ereg(dst_reg))
887 				EMIT1(add_1mod(0x40, dst_reg));
888 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
889 			goto emit_cond_jmp;
890 
891 		case BPF_JMP | BPF_JEQ | BPF_K:
892 		case BPF_JMP | BPF_JNE | BPF_K:
893 		case BPF_JMP | BPF_JGT | BPF_K:
894 		case BPF_JMP | BPF_JLT | BPF_K:
895 		case BPF_JMP | BPF_JGE | BPF_K:
896 		case BPF_JMP | BPF_JLE | BPF_K:
897 		case BPF_JMP | BPF_JSGT | BPF_K:
898 		case BPF_JMP | BPF_JSLT | BPF_K:
899 		case BPF_JMP | BPF_JSGE | BPF_K:
900 		case BPF_JMP | BPF_JSLE | BPF_K:
901 		case BPF_JMP32 | BPF_JEQ | BPF_K:
902 		case BPF_JMP32 | BPF_JNE | BPF_K:
903 		case BPF_JMP32 | BPF_JGT | BPF_K:
904 		case BPF_JMP32 | BPF_JLT | BPF_K:
905 		case BPF_JMP32 | BPF_JGE | BPF_K:
906 		case BPF_JMP32 | BPF_JLE | BPF_K:
907 		case BPF_JMP32 | BPF_JSGT | BPF_K:
908 		case BPF_JMP32 | BPF_JSLT | BPF_K:
909 		case BPF_JMP32 | BPF_JSGE | BPF_K:
910 		case BPF_JMP32 | BPF_JSLE | BPF_K:
911 			/* cmp dst_reg, imm8/32 */
912 			if (BPF_CLASS(insn->code) == BPF_JMP)
913 				EMIT1(add_1mod(0x48, dst_reg));
914 			else if (is_ereg(dst_reg))
915 				EMIT1(add_1mod(0x40, dst_reg));
916 
917 			if (is_imm8(imm32))
918 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
919 			else
920 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
921 
922 emit_cond_jmp:		/* Convert BPF opcode to x86 */
923 			switch (BPF_OP(insn->code)) {
924 			case BPF_JEQ:
925 				jmp_cond = X86_JE;
926 				break;
927 			case BPF_JSET:
928 			case BPF_JNE:
929 				jmp_cond = X86_JNE;
930 				break;
931 			case BPF_JGT:
932 				/* GT is unsigned '>', JA in x86 */
933 				jmp_cond = X86_JA;
934 				break;
935 			case BPF_JLT:
936 				/* LT is unsigned '<', JB in x86 */
937 				jmp_cond = X86_JB;
938 				break;
939 			case BPF_JGE:
940 				/* GE is unsigned '>=', JAE in x86 */
941 				jmp_cond = X86_JAE;
942 				break;
943 			case BPF_JLE:
944 				/* LE is unsigned '<=', JBE in x86 */
945 				jmp_cond = X86_JBE;
946 				break;
947 			case BPF_JSGT:
948 				/* Signed '>', GT in x86 */
949 				jmp_cond = X86_JG;
950 				break;
951 			case BPF_JSLT:
952 				/* Signed '<', LT in x86 */
953 				jmp_cond = X86_JL;
954 				break;
955 			case BPF_JSGE:
956 				/* Signed '>=', GE in x86 */
957 				jmp_cond = X86_JGE;
958 				break;
959 			case BPF_JSLE:
960 				/* Signed '<=', LE in x86 */
961 				jmp_cond = X86_JLE;
962 				break;
963 			default: /* to silence GCC warning */
964 				return -EFAULT;
965 			}
966 			jmp_offset = addrs[i + insn->off] - addrs[i];
967 			if (is_imm8(jmp_offset)) {
968 				EMIT2(jmp_cond, jmp_offset);
969 			} else if (is_simm32(jmp_offset)) {
970 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
971 			} else {
972 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
973 				return -EFAULT;
974 			}
975 
976 			break;
977 
978 		case BPF_JMP | BPF_JA:
979 			if (insn->off == -1)
980 				/* -1 jmp instructions will always jump
981 				 * backwards two bytes. Explicitly handling
982 				 * this case avoids wasting too many passes
983 				 * when there are long sequences of replaced
984 				 * dead code.
985 				 */
986 				jmp_offset = -2;
987 			else
988 				jmp_offset = addrs[i + insn->off] - addrs[i];
989 
990 			if (!jmp_offset)
991 				/* Optimize out nop jumps */
992 				break;
993 emit_jmp:
994 			if (is_imm8(jmp_offset)) {
995 				EMIT2(0xEB, jmp_offset);
996 			} else if (is_simm32(jmp_offset)) {
997 				EMIT1_off32(0xE9, jmp_offset);
998 			} else {
999 				pr_err("jmp gen bug %llx\n", jmp_offset);
1000 				return -EFAULT;
1001 			}
1002 			break;
1003 
1004 		case BPF_JMP | BPF_EXIT:
1005 			if (seen_exit) {
1006 				jmp_offset = ctx->cleanup_addr - addrs[i];
1007 				goto emit_jmp;
1008 			}
1009 			seen_exit = true;
1010 			/* Update cleanup_addr */
1011 			ctx->cleanup_addr = proglen;
1012 			if (!bpf_prog_was_classic(bpf_prog))
1013 				EMIT1(0x5B); /* get rid of tail_call_cnt */
1014 			EMIT2(0x41, 0x5F);   /* pop r15 */
1015 			EMIT2(0x41, 0x5E);   /* pop r14 */
1016 			EMIT2(0x41, 0x5D);   /* pop r13 */
1017 			EMIT1(0x5B);         /* pop rbx */
1018 			EMIT1(0xC9);         /* leave */
1019 			EMIT1(0xC3);         /* ret */
1020 			break;
1021 
1022 		default:
1023 			/*
1024 			 * By design x86-64 JIT should support all BPF instructions.
1025 			 * This error will be seen if new instruction was added
1026 			 * to the interpreter, but not to the JIT, or if there is
1027 			 * junk in bpf_prog.
1028 			 */
1029 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1030 			return -EINVAL;
1031 		}
1032 
1033 		ilen = prog - temp;
1034 		if (ilen > BPF_MAX_INSN_SIZE) {
1035 			pr_err("bpf_jit: fatal insn size error\n");
1036 			return -EFAULT;
1037 		}
1038 
1039 		if (image) {
1040 			if (unlikely(proglen + ilen > oldproglen)) {
1041 				pr_err("bpf_jit: fatal error\n");
1042 				return -EFAULT;
1043 			}
1044 			memcpy(image + proglen, temp, ilen);
1045 		}
1046 		proglen += ilen;
1047 		addrs[i] = proglen;
1048 		prog = temp;
1049 	}
1050 	return proglen;
1051 }
1052 
1053 struct x64_jit_data {
1054 	struct bpf_binary_header *header;
1055 	int *addrs;
1056 	u8 *image;
1057 	int proglen;
1058 	struct jit_context ctx;
1059 };
1060 
1061 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1062 {
1063 	struct bpf_binary_header *header = NULL;
1064 	struct bpf_prog *tmp, *orig_prog = prog;
1065 	struct x64_jit_data *jit_data;
1066 	int proglen, oldproglen = 0;
1067 	struct jit_context ctx = {};
1068 	bool tmp_blinded = false;
1069 	bool extra_pass = false;
1070 	u8 *image = NULL;
1071 	int *addrs;
1072 	int pass;
1073 	int i;
1074 
1075 	if (!prog->jit_requested)
1076 		return orig_prog;
1077 
1078 	tmp = bpf_jit_blind_constants(prog);
1079 	/*
1080 	 * If blinding was requested and we failed during blinding,
1081 	 * we must fall back to the interpreter.
1082 	 */
1083 	if (IS_ERR(tmp))
1084 		return orig_prog;
1085 	if (tmp != prog) {
1086 		tmp_blinded = true;
1087 		prog = tmp;
1088 	}
1089 
1090 	jit_data = prog->aux->jit_data;
1091 	if (!jit_data) {
1092 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1093 		if (!jit_data) {
1094 			prog = orig_prog;
1095 			goto out;
1096 		}
1097 		prog->aux->jit_data = jit_data;
1098 	}
1099 	addrs = jit_data->addrs;
1100 	if (addrs) {
1101 		ctx = jit_data->ctx;
1102 		oldproglen = jit_data->proglen;
1103 		image = jit_data->image;
1104 		header = jit_data->header;
1105 		extra_pass = true;
1106 		goto skip_init_addrs;
1107 	}
1108 	addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
1109 	if (!addrs) {
1110 		prog = orig_prog;
1111 		goto out_addrs;
1112 	}
1113 
1114 	/*
1115 	 * Before first pass, make a rough estimation of addrs[]
1116 	 * each BPF instruction is translated to less than 64 bytes
1117 	 */
1118 	for (proglen = 0, i = 0; i < prog->len; i++) {
1119 		proglen += 64;
1120 		addrs[i] = proglen;
1121 	}
1122 	ctx.cleanup_addr = proglen;
1123 skip_init_addrs:
1124 
1125 	/*
1126 	 * JITed image shrinks with every pass and the loop iterates
1127 	 * until the image stops shrinking. Very large BPF programs
1128 	 * may converge on the last pass. In such case do one more
1129 	 * pass to emit the final image.
1130 	 */
1131 	for (pass = 0; pass < 20 || image; pass++) {
1132 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1133 		if (proglen <= 0) {
1134 out_image:
1135 			image = NULL;
1136 			if (header)
1137 				bpf_jit_binary_free(header);
1138 			prog = orig_prog;
1139 			goto out_addrs;
1140 		}
1141 		if (image) {
1142 			if (proglen != oldproglen) {
1143 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1144 				       proglen, oldproglen);
1145 				goto out_image;
1146 			}
1147 			break;
1148 		}
1149 		if (proglen == oldproglen) {
1150 			header = bpf_jit_binary_alloc(proglen, &image,
1151 						      1, jit_fill_hole);
1152 			if (!header) {
1153 				prog = orig_prog;
1154 				goto out_addrs;
1155 			}
1156 		}
1157 		oldproglen = proglen;
1158 		cond_resched();
1159 	}
1160 
1161 	if (bpf_jit_enable > 1)
1162 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1163 
1164 	if (image) {
1165 		if (!prog->is_func || extra_pass) {
1166 			bpf_jit_binary_lock_ro(header);
1167 		} else {
1168 			jit_data->addrs = addrs;
1169 			jit_data->ctx = ctx;
1170 			jit_data->proglen = proglen;
1171 			jit_data->image = image;
1172 			jit_data->header = header;
1173 		}
1174 		prog->bpf_func = (void *)image;
1175 		prog->jited = 1;
1176 		prog->jited_len = proglen;
1177 	} else {
1178 		prog = orig_prog;
1179 	}
1180 
1181 	if (!image || !prog->is_func || extra_pass) {
1182 		if (image)
1183 			bpf_prog_fill_jited_linfo(prog, addrs);
1184 out_addrs:
1185 		kfree(addrs);
1186 		kfree(jit_data);
1187 		prog->aux->jit_data = NULL;
1188 	}
1189 out:
1190 	if (tmp_blinded)
1191 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1192 					   tmp : orig_prog);
1193 	return prog;
1194 }
1195