xref: /openbmc/linux/arch/x86/mm/tlb.c (revision f3a8b664)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	Smarter SMP flushing macros.
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 #ifdef CONFIG_SMP
32 
33 struct flush_tlb_info {
34 	struct mm_struct *flush_mm;
35 	unsigned long flush_start;
36 	unsigned long flush_end;
37 };
38 
39 /*
40  * We cannot call mmdrop() because we are in interrupt context,
41  * instead update mm->cpu_vm_mask.
42  */
43 void leave_mm(int cpu)
44 {
45 	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 		BUG();
48 	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 		load_cr3(swapper_pg_dir);
51 		/*
52 		 * This gets called in the idle path where RCU
53 		 * functions differently.  Tracing normally
54 		 * uses RCU, so we have to call the tracepoint
55 		 * specially here.
56 		 */
57 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58 	}
59 }
60 EXPORT_SYMBOL_GPL(leave_mm);
61 
62 #endif /* CONFIG_SMP */
63 
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 	       struct task_struct *tsk)
66 {
67 	unsigned long flags;
68 
69 	local_irq_save(flags);
70 	switch_mm_irqs_off(prev, next, tsk);
71 	local_irq_restore(flags);
72 }
73 
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 			struct task_struct *tsk)
76 {
77 	unsigned cpu = smp_processor_id();
78 
79 	if (likely(prev != next)) {
80 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
81 			/*
82 			 * If our current stack is in vmalloc space and isn't
83 			 * mapped in the new pgd, we'll double-fault.  Forcibly
84 			 * map it.
85 			 */
86 			unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
87 
88 			pgd_t *pgd = next->pgd + stack_pgd_index;
89 
90 			if (unlikely(pgd_none(*pgd)))
91 				set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
92 		}
93 
94 #ifdef CONFIG_SMP
95 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
96 		this_cpu_write(cpu_tlbstate.active_mm, next);
97 #endif
98 
99 		cpumask_set_cpu(cpu, mm_cpumask(next));
100 
101 		/*
102 		 * Re-load page tables.
103 		 *
104 		 * This logic has an ordering constraint:
105 		 *
106 		 *  CPU 0: Write to a PTE for 'next'
107 		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
108 		 *  CPU 1: set bit 1 in next's mm_cpumask
109 		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
110 		 *
111 		 * We need to prevent an outcome in which CPU 1 observes
112 		 * the new PTE value and CPU 0 observes bit 1 clear in
113 		 * mm_cpumask.  (If that occurs, then the IPI will never
114 		 * be sent, and CPU 0's TLB will contain a stale entry.)
115 		 *
116 		 * The bad outcome can occur if either CPU's load is
117 		 * reordered before that CPU's store, so both CPUs must
118 		 * execute full barriers to prevent this from happening.
119 		 *
120 		 * Thus, switch_mm needs a full barrier between the
121 		 * store to mm_cpumask and any operation that could load
122 		 * from next->pgd.  TLB fills are special and can happen
123 		 * due to instruction fetches or for no reason at all,
124 		 * and neither LOCK nor MFENCE orders them.
125 		 * Fortunately, load_cr3() is serializing and gives the
126 		 * ordering guarantee we need.
127 		 *
128 		 */
129 		load_cr3(next->pgd);
130 
131 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
132 
133 		/* Stop flush ipis for the previous mm */
134 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
135 
136 		/* Load per-mm CR4 state */
137 		load_mm_cr4(next);
138 
139 #ifdef CONFIG_MODIFY_LDT_SYSCALL
140 		/*
141 		 * Load the LDT, if the LDT is different.
142 		 *
143 		 * It's possible that prev->context.ldt doesn't match
144 		 * the LDT register.  This can happen if leave_mm(prev)
145 		 * was called and then modify_ldt changed
146 		 * prev->context.ldt but suppressed an IPI to this CPU.
147 		 * In this case, prev->context.ldt != NULL, because we
148 		 * never set context.ldt to NULL while the mm still
149 		 * exists.  That means that next->context.ldt !=
150 		 * prev->context.ldt, because mms never share an LDT.
151 		 */
152 		if (unlikely(prev->context.ldt != next->context.ldt))
153 			load_mm_ldt(next);
154 #endif
155 	}
156 #ifdef CONFIG_SMP
157 	  else {
158 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
159 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
160 
161 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
162 			/*
163 			 * On established mms, the mm_cpumask is only changed
164 			 * from irq context, from ptep_clear_flush() while in
165 			 * lazy tlb mode, and here. Irqs are blocked during
166 			 * schedule, protecting us from simultaneous changes.
167 			 */
168 			cpumask_set_cpu(cpu, mm_cpumask(next));
169 
170 			/*
171 			 * We were in lazy tlb mode and leave_mm disabled
172 			 * tlb flush IPI delivery. We must reload CR3
173 			 * to make sure to use no freed page tables.
174 			 *
175 			 * As above, load_cr3() is serializing and orders TLB
176 			 * fills with respect to the mm_cpumask write.
177 			 */
178 			load_cr3(next->pgd);
179 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
180 			load_mm_cr4(next);
181 			load_mm_ldt(next);
182 		}
183 	}
184 #endif
185 }
186 
187 #ifdef CONFIG_SMP
188 
189 /*
190  * The flush IPI assumes that a thread switch happens in this order:
191  * [cpu0: the cpu that switches]
192  * 1) switch_mm() either 1a) or 1b)
193  * 1a) thread switch to a different mm
194  * 1a1) set cpu_tlbstate to TLBSTATE_OK
195  *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
196  *	if cpu0 was in lazy tlb mode.
197  * 1a2) update cpu active_mm
198  *	Now cpu0 accepts tlb flushes for the new mm.
199  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
200  *	Now the other cpus will send tlb flush ipis.
201  * 1a4) change cr3.
202  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
203  *	Stop ipi delivery for the old mm. This is not synchronized with
204  *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
205  *	mm, and in the worst case we perform a superfluous tlb flush.
206  * 1b) thread switch without mm change
207  *	cpu active_mm is correct, cpu0 already handles flush ipis.
208  * 1b1) set cpu_tlbstate to TLBSTATE_OK
209  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
210  *	Atomically set the bit [other cpus will start sending flush ipis],
211  *	and test the bit.
212  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
213  * 2) switch %%esp, ie current
214  *
215  * The interrupt must handle 2 special cases:
216  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
217  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
218  *   runs in kernel space, the cpu could load tlb entries for user space
219  *   pages.
220  *
221  * The good news is that cpu_tlbstate is local to each cpu, no
222  * write/read ordering problems.
223  */
224 
225 /*
226  * TLB flush funcation:
227  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
228  * 2) Leave the mm if we are in the lazy tlb mode.
229  */
230 static void flush_tlb_func(void *info)
231 {
232 	struct flush_tlb_info *f = info;
233 
234 	inc_irq_stat(irq_tlb_count);
235 
236 	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
237 		return;
238 
239 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
241 		if (f->flush_end == TLB_FLUSH_ALL) {
242 			local_flush_tlb();
243 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
244 		} else {
245 			unsigned long addr;
246 			unsigned long nr_pages =
247 				(f->flush_end - f->flush_start) / PAGE_SIZE;
248 			addr = f->flush_start;
249 			while (addr < f->flush_end) {
250 				__flush_tlb_single(addr);
251 				addr += PAGE_SIZE;
252 			}
253 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
254 		}
255 	} else
256 		leave_mm(smp_processor_id());
257 
258 }
259 
260 void native_flush_tlb_others(const struct cpumask *cpumask,
261 				 struct mm_struct *mm, unsigned long start,
262 				 unsigned long end)
263 {
264 	struct flush_tlb_info info;
265 
266 	if (end == 0)
267 		end = start + PAGE_SIZE;
268 	info.flush_mm = mm;
269 	info.flush_start = start;
270 	info.flush_end = end;
271 
272 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
273 	if (end == TLB_FLUSH_ALL)
274 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
275 	else
276 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
277 				(end - start) >> PAGE_SHIFT);
278 
279 	if (is_uv_system()) {
280 		unsigned int cpu;
281 
282 		cpu = smp_processor_id();
283 		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
284 		if (cpumask)
285 			smp_call_function_many(cpumask, flush_tlb_func,
286 								&info, 1);
287 		return;
288 	}
289 	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
290 }
291 
292 void flush_tlb_current_task(void)
293 {
294 	struct mm_struct *mm = current->mm;
295 
296 	preempt_disable();
297 
298 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
299 
300 	/* This is an implicit full barrier that synchronizes with switch_mm. */
301 	local_flush_tlb();
302 
303 	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
304 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
305 		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
306 	preempt_enable();
307 }
308 
309 /*
310  * See Documentation/x86/tlb.txt for details.  We choose 33
311  * because it is large enough to cover the vast majority (at
312  * least 95%) of allocations, and is small enough that we are
313  * confident it will not cause too much overhead.  Each single
314  * flush is about 100 ns, so this caps the maximum overhead at
315  * _about_ 3,000 ns.
316  *
317  * This is in units of pages.
318  */
319 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
320 
321 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
322 				unsigned long end, unsigned long vmflag)
323 {
324 	unsigned long addr;
325 	/* do a global flush by default */
326 	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
327 
328 	preempt_disable();
329 	if (current->active_mm != mm) {
330 		/* Synchronize with switch_mm. */
331 		smp_mb();
332 
333 		goto out;
334 	}
335 
336 	if (!current->mm) {
337 		leave_mm(smp_processor_id());
338 
339 		/* Synchronize with switch_mm. */
340 		smp_mb();
341 
342 		goto out;
343 	}
344 
345 	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
346 		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
347 
348 	/*
349 	 * Both branches below are implicit full barriers (MOV to CR or
350 	 * INVLPG) that synchronize with switch_mm.
351 	 */
352 	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
353 		base_pages_to_flush = TLB_FLUSH_ALL;
354 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
355 		local_flush_tlb();
356 	} else {
357 		/* flush range by one by one 'invlpg' */
358 		for (addr = start; addr < end;	addr += PAGE_SIZE) {
359 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
360 			__flush_tlb_single(addr);
361 		}
362 	}
363 	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
364 out:
365 	if (base_pages_to_flush == TLB_FLUSH_ALL) {
366 		start = 0UL;
367 		end = TLB_FLUSH_ALL;
368 	}
369 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
370 		flush_tlb_others(mm_cpumask(mm), mm, start, end);
371 	preempt_enable();
372 }
373 
374 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
375 {
376 	struct mm_struct *mm = vma->vm_mm;
377 
378 	preempt_disable();
379 
380 	if (current->active_mm == mm) {
381 		if (current->mm) {
382 			/*
383 			 * Implicit full barrier (INVLPG) that synchronizes
384 			 * with switch_mm.
385 			 */
386 			__flush_tlb_one(start);
387 		} else {
388 			leave_mm(smp_processor_id());
389 
390 			/* Synchronize with switch_mm. */
391 			smp_mb();
392 		}
393 	}
394 
395 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
396 		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
397 
398 	preempt_enable();
399 }
400 
401 static void do_flush_tlb_all(void *info)
402 {
403 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
404 	__flush_tlb_all();
405 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
406 		leave_mm(smp_processor_id());
407 }
408 
409 void flush_tlb_all(void)
410 {
411 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
412 	on_each_cpu(do_flush_tlb_all, NULL, 1);
413 }
414 
415 static void do_kernel_range_flush(void *info)
416 {
417 	struct flush_tlb_info *f = info;
418 	unsigned long addr;
419 
420 	/* flush range by one by one 'invlpg' */
421 	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
422 		__flush_tlb_single(addr);
423 }
424 
425 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
426 {
427 
428 	/* Balance as user space task's flush, a bit conservative */
429 	if (end == TLB_FLUSH_ALL ||
430 	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
431 		on_each_cpu(do_flush_tlb_all, NULL, 1);
432 	} else {
433 		struct flush_tlb_info info;
434 		info.flush_start = start;
435 		info.flush_end = end;
436 		on_each_cpu(do_kernel_range_flush, &info, 1);
437 	}
438 }
439 
440 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
441 			     size_t count, loff_t *ppos)
442 {
443 	char buf[32];
444 	unsigned int len;
445 
446 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
447 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
448 }
449 
450 static ssize_t tlbflush_write_file(struct file *file,
451 		 const char __user *user_buf, size_t count, loff_t *ppos)
452 {
453 	char buf[32];
454 	ssize_t len;
455 	int ceiling;
456 
457 	len = min(count, sizeof(buf) - 1);
458 	if (copy_from_user(buf, user_buf, len))
459 		return -EFAULT;
460 
461 	buf[len] = '\0';
462 	if (kstrtoint(buf, 0, &ceiling))
463 		return -EINVAL;
464 
465 	if (ceiling < 0)
466 		return -EINVAL;
467 
468 	tlb_single_page_flush_ceiling = ceiling;
469 	return count;
470 }
471 
472 static const struct file_operations fops_tlbflush = {
473 	.read = tlbflush_read_file,
474 	.write = tlbflush_write_file,
475 	.llseek = default_llseek,
476 };
477 
478 static int __init create_tlb_single_page_flush_ceiling(void)
479 {
480 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
481 			    arch_debugfs_dir, NULL, &fops_tlbflush);
482 	return 0;
483 }
484 late_initcall(create_tlb_single_page_flush_ceiling);
485 
486 #endif /* CONFIG_SMP */
487