1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/uv/uv.h> 18 19 #include "mm_internal.h" 20 21 #ifdef CONFIG_PARAVIRT 22 # define STATIC_NOPV 23 #else 24 # define STATIC_NOPV static 25 # define __flush_tlb_local native_flush_tlb_local 26 # define __flush_tlb_global native_flush_tlb_global 27 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 28 # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info) 29 #endif 30 31 /* 32 * TLB flushing, formerly SMP-only 33 * c/o Linus Torvalds. 34 * 35 * These mean you can really definitely utterly forget about 36 * writing to user space from interrupts. (Its not allowed anyway). 37 * 38 * Optimizations Manfred Spraul <manfred@colorfullife.com> 39 * 40 * More scalable flush, from Andi Kleen 41 * 42 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 43 */ 44 45 /* 46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 47 * stored in cpu_tlb_state.last_user_mm_ibpb. 48 */ 49 #define LAST_USER_MM_IBPB 0x1UL 50 51 /* 52 * The x86 feature is called PCID (Process Context IDentifier). It is similar 53 * to what is traditionally called ASID on the RISC processors. 54 * 55 * We don't use the traditional ASID implementation, where each process/mm gets 56 * its own ASID and flush/restart when we run out of ASID space. 57 * 58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 59 * that came by on this CPU, allowing cheaper switch_mm between processes on 60 * this CPU. 61 * 62 * We end up with different spaces for different things. To avoid confusion we 63 * use different names for each of them: 64 * 65 * ASID - [0, TLB_NR_DYN_ASIDS-1] 66 * the canonical identifier for an mm 67 * 68 * kPCID - [1, TLB_NR_DYN_ASIDS] 69 * the value we write into the PCID part of CR3; corresponds to the 70 * ASID+1, because PCID 0 is special. 71 * 72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 73 * for KPTI each mm has two address spaces and thus needs two 74 * PCID values, but we can still do with a single ASID denomination 75 * for each mm. Corresponds to kPCID + 2048. 76 * 77 */ 78 79 /* There are 12 bits of space for ASIDS in CR3 */ 80 #define CR3_HW_ASID_BITS 12 81 82 /* 83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 84 * user/kernel switches 85 */ 86 #ifdef CONFIG_PAGE_TABLE_ISOLATION 87 # define PTI_CONSUMED_PCID_BITS 1 88 #else 89 # define PTI_CONSUMED_PCID_BITS 0 90 #endif 91 92 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 93 94 /* 95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 96 * for them being zero-based. Another -1 is because PCID 0 is reserved for 97 * use by non-PCID-aware users. 98 */ 99 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 100 101 /* 102 * Given @asid, compute kPCID 103 */ 104 static inline u16 kern_pcid(u16 asid) 105 { 106 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 107 108 #ifdef CONFIG_PAGE_TABLE_ISOLATION 109 /* 110 * Make sure that the dynamic ASID space does not confict with the 111 * bit we are using to switch between user and kernel ASIDs. 112 */ 113 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 114 115 /* 116 * The ASID being passed in here should have respected the 117 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 118 */ 119 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 120 #endif 121 /* 122 * The dynamically-assigned ASIDs that get passed in are small 123 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 124 * so do not bother to clear it. 125 * 126 * If PCID is on, ASID-aware code paths put the ASID+1 into the 127 * PCID bits. This serves two purposes. It prevents a nasty 128 * situation in which PCID-unaware code saves CR3, loads some other 129 * value (with PCID == 0), and then restores CR3, thus corrupting 130 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 131 * that any bugs involving loading a PCID-enabled CR3 with 132 * CR4.PCIDE off will trigger deterministically. 133 */ 134 return asid + 1; 135 } 136 137 /* 138 * Given @asid, compute uPCID 139 */ 140 static inline u16 user_pcid(u16 asid) 141 { 142 u16 ret = kern_pcid(asid); 143 #ifdef CONFIG_PAGE_TABLE_ISOLATION 144 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 145 #endif 146 return ret; 147 } 148 149 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 150 { 151 if (static_cpu_has(X86_FEATURE_PCID)) { 152 return __sme_pa(pgd) | kern_pcid(asid); 153 } else { 154 VM_WARN_ON_ONCE(asid != 0); 155 return __sme_pa(pgd); 156 } 157 } 158 159 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 160 { 161 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 162 /* 163 * Use boot_cpu_has() instead of this_cpu_has() as this function 164 * might be called during early boot. This should work even after 165 * boot because all CPU's the have same capabilities: 166 */ 167 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 168 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 169 } 170 171 /* 172 * We get here when we do something requiring a TLB invalidation 173 * but could not go invalidate all of the contexts. We do the 174 * necessary invalidation by clearing out the 'ctx_id' which 175 * forces a TLB flush when the context is loaded. 176 */ 177 static void clear_asid_other(void) 178 { 179 u16 asid; 180 181 /* 182 * This is only expected to be set if we have disabled 183 * kernel _PAGE_GLOBAL pages. 184 */ 185 if (!static_cpu_has(X86_FEATURE_PTI)) { 186 WARN_ON_ONCE(1); 187 return; 188 } 189 190 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 191 /* Do not need to flush the current asid */ 192 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 193 continue; 194 /* 195 * Make sure the next time we go to switch to 196 * this asid, we do a flush: 197 */ 198 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 199 } 200 this_cpu_write(cpu_tlbstate.invalidate_other, false); 201 } 202 203 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 204 205 206 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 207 u16 *new_asid, bool *need_flush) 208 { 209 u16 asid; 210 211 if (!static_cpu_has(X86_FEATURE_PCID)) { 212 *new_asid = 0; 213 *need_flush = true; 214 return; 215 } 216 217 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 218 clear_asid_other(); 219 220 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 221 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 222 next->context.ctx_id) 223 continue; 224 225 *new_asid = asid; 226 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 227 next_tlb_gen); 228 return; 229 } 230 231 /* 232 * We don't currently own an ASID slot on this CPU. 233 * Allocate a slot. 234 */ 235 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 236 if (*new_asid >= TLB_NR_DYN_ASIDS) { 237 *new_asid = 0; 238 this_cpu_write(cpu_tlbstate.next_asid, 1); 239 } 240 *need_flush = true; 241 } 242 243 /* 244 * Given an ASID, flush the corresponding user ASID. We can delay this 245 * until the next time we switch to it. 246 * 247 * See SWITCH_TO_USER_CR3. 248 */ 249 static inline void invalidate_user_asid(u16 asid) 250 { 251 /* There is no user ASID if address space separation is off */ 252 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 253 return; 254 255 /* 256 * We only have a single ASID if PCID is off and the CR3 257 * write will have flushed it. 258 */ 259 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 260 return; 261 262 if (!static_cpu_has(X86_FEATURE_PTI)) 263 return; 264 265 __set_bit(kern_pcid(asid), 266 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 267 } 268 269 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 270 { 271 unsigned long new_mm_cr3; 272 273 if (need_flush) { 274 invalidate_user_asid(new_asid); 275 new_mm_cr3 = build_cr3(pgdir, new_asid); 276 } else { 277 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 278 } 279 280 /* 281 * Caution: many callers of this function expect 282 * that load_cr3() is serializing and orders TLB 283 * fills with respect to the mm_cpumask writes. 284 */ 285 write_cr3(new_mm_cr3); 286 } 287 288 void leave_mm(int cpu) 289 { 290 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 291 292 /* 293 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 294 * If so, our callers still expect us to flush the TLB, but there 295 * aren't any user TLB entries in init_mm to worry about. 296 * 297 * This needs to happen before any other sanity checks due to 298 * intel_idle's shenanigans. 299 */ 300 if (loaded_mm == &init_mm) 301 return; 302 303 /* Warn if we're not lazy. */ 304 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 305 306 switch_mm(NULL, &init_mm, NULL); 307 } 308 EXPORT_SYMBOL_GPL(leave_mm); 309 310 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 311 struct task_struct *tsk) 312 { 313 unsigned long flags; 314 315 local_irq_save(flags); 316 switch_mm_irqs_off(prev, next, tsk); 317 local_irq_restore(flags); 318 } 319 320 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 321 { 322 unsigned long next_tif = task_thread_info(next)->flags; 323 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 324 325 return (unsigned long)next->mm | ibpb; 326 } 327 328 static void cond_ibpb(struct task_struct *next) 329 { 330 if (!next || !next->mm) 331 return; 332 333 /* 334 * Both, the conditional and the always IBPB mode use the mm 335 * pointer to avoid the IBPB when switching between tasks of the 336 * same process. Using the mm pointer instead of mm->context.ctx_id 337 * opens a hypothetical hole vs. mm_struct reuse, which is more or 338 * less impossible to control by an attacker. Aside of that it 339 * would only affect the first schedule so the theoretically 340 * exposed data is not really interesting. 341 */ 342 if (static_branch_likely(&switch_mm_cond_ibpb)) { 343 unsigned long prev_mm, next_mm; 344 345 /* 346 * This is a bit more complex than the always mode because 347 * it has to handle two cases: 348 * 349 * 1) Switch from a user space task (potential attacker) 350 * which has TIF_SPEC_IB set to a user space task 351 * (potential victim) which has TIF_SPEC_IB not set. 352 * 353 * 2) Switch from a user space task (potential attacker) 354 * which has TIF_SPEC_IB not set to a user space task 355 * (potential victim) which has TIF_SPEC_IB set. 356 * 357 * This could be done by unconditionally issuing IBPB when 358 * a task which has TIF_SPEC_IB set is either scheduled in 359 * or out. Though that results in two flushes when: 360 * 361 * - the same user space task is scheduled out and later 362 * scheduled in again and only a kernel thread ran in 363 * between. 364 * 365 * - a user space task belonging to the same process is 366 * scheduled in after a kernel thread ran in between 367 * 368 * - a user space task belonging to the same process is 369 * scheduled in immediately. 370 * 371 * Optimize this with reasonably small overhead for the 372 * above cases. Mangle the TIF_SPEC_IB bit into the mm 373 * pointer of the incoming task which is stored in 374 * cpu_tlbstate.last_user_mm_ibpb for comparison. 375 */ 376 next_mm = mm_mangle_tif_spec_ib(next); 377 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 378 379 /* 380 * Issue IBPB only if the mm's are different and one or 381 * both have the IBPB bit set. 382 */ 383 if (next_mm != prev_mm && 384 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 385 indirect_branch_prediction_barrier(); 386 387 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 388 } 389 390 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 391 /* 392 * Only flush when switching to a user space task with a 393 * different context than the user space task which ran 394 * last on this CPU. 395 */ 396 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 397 indirect_branch_prediction_barrier(); 398 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 399 } 400 } 401 } 402 403 #ifdef CONFIG_PERF_EVENTS 404 static inline void cr4_update_pce_mm(struct mm_struct *mm) 405 { 406 if (static_branch_unlikely(&rdpmc_always_available_key) || 407 (!static_branch_unlikely(&rdpmc_never_available_key) && 408 atomic_read(&mm->context.perf_rdpmc_allowed))) 409 cr4_set_bits_irqsoff(X86_CR4_PCE); 410 else 411 cr4_clear_bits_irqsoff(X86_CR4_PCE); 412 } 413 414 void cr4_update_pce(void *ignored) 415 { 416 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 417 } 418 419 #else 420 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 421 #endif 422 423 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 424 struct task_struct *tsk) 425 { 426 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 427 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 428 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 429 unsigned cpu = smp_processor_id(); 430 u64 next_tlb_gen; 431 bool need_flush; 432 u16 new_asid; 433 434 /* 435 * NB: The scheduler will call us with prev == next when switching 436 * from lazy TLB mode to normal mode if active_mm isn't changing. 437 * When this happens, we don't assume that CR3 (and hence 438 * cpu_tlbstate.loaded_mm) matches next. 439 * 440 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 441 */ 442 443 /* We don't want flush_tlb_func_* to run concurrently with us. */ 444 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 445 WARN_ON_ONCE(!irqs_disabled()); 446 447 /* 448 * Verify that CR3 is what we think it is. This will catch 449 * hypothetical buggy code that directly switches to swapper_pg_dir 450 * without going through leave_mm() / switch_mm_irqs_off() or that 451 * does something like write_cr3(read_cr3_pa()). 452 * 453 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 454 * isn't free. 455 */ 456 #ifdef CONFIG_DEBUG_VM 457 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 458 /* 459 * If we were to BUG here, we'd be very likely to kill 460 * the system so hard that we don't see the call trace. 461 * Try to recover instead by ignoring the error and doing 462 * a global flush to minimize the chance of corruption. 463 * 464 * (This is far from being a fully correct recovery. 465 * Architecturally, the CPU could prefetch something 466 * back into an incorrect ASID slot and leave it there 467 * to cause trouble down the road. It's better than 468 * nothing, though.) 469 */ 470 __flush_tlb_all(); 471 } 472 #endif 473 this_cpu_write(cpu_tlbstate.is_lazy, false); 474 475 /* 476 * The membarrier system call requires a full memory barrier and 477 * core serialization before returning to user-space, after 478 * storing to rq->curr. Writing to CR3 provides that full 479 * memory barrier and core serializing instruction. 480 */ 481 if (real_prev == next) { 482 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 483 next->context.ctx_id); 484 485 /* 486 * Even in lazy TLB mode, the CPU should stay set in the 487 * mm_cpumask. The TLB shootdown code can figure out from 488 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 489 */ 490 if (WARN_ON_ONCE(real_prev != &init_mm && 491 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 492 cpumask_set_cpu(cpu, mm_cpumask(next)); 493 494 /* 495 * If the CPU is not in lazy TLB mode, we are just switching 496 * from one thread in a process to another thread in the same 497 * process. No TLB flush required. 498 */ 499 if (!was_lazy) 500 return; 501 502 /* 503 * Read the tlb_gen to check whether a flush is needed. 504 * If the TLB is up to date, just use it. 505 * The barrier synchronizes with the tlb_gen increment in 506 * the TLB shootdown code. 507 */ 508 smp_mb(); 509 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 510 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 511 next_tlb_gen) 512 return; 513 514 /* 515 * TLB contents went out of date while we were in lazy 516 * mode. Fall through to the TLB switching code below. 517 */ 518 new_asid = prev_asid; 519 need_flush = true; 520 } else { 521 /* 522 * Avoid user/user BTB poisoning by flushing the branch 523 * predictor when switching between processes. This stops 524 * one process from doing Spectre-v2 attacks on another. 525 */ 526 cond_ibpb(tsk); 527 528 /* 529 * Stop remote flushes for the previous mm. 530 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 531 * but the bitmap manipulation can cause cache line contention. 532 */ 533 if (real_prev != &init_mm) { 534 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 535 mm_cpumask(real_prev))); 536 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 537 } 538 539 /* 540 * Start remote flushes and then read tlb_gen. 541 */ 542 if (next != &init_mm) 543 cpumask_set_cpu(cpu, mm_cpumask(next)); 544 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 545 546 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 547 548 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 549 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 550 barrier(); 551 } 552 553 if (need_flush) { 554 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 555 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 556 load_new_mm_cr3(next->pgd, new_asid, true); 557 558 /* 559 * NB: This gets called via leave_mm() in the idle path 560 * where RCU functions differently. Tracing normally 561 * uses RCU, so we need to use the _rcuidle variant. 562 * 563 * (There is no good reason for this. The idle code should 564 * be rearranged to call this before rcu_idle_enter().) 565 */ 566 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 567 } else { 568 /* The new ASID is already up to date. */ 569 load_new_mm_cr3(next->pgd, new_asid, false); 570 571 /* See above wrt _rcuidle. */ 572 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 573 } 574 575 /* Make sure we write CR3 before loaded_mm. */ 576 barrier(); 577 578 this_cpu_write(cpu_tlbstate.loaded_mm, next); 579 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 580 581 if (next != real_prev) { 582 cr4_update_pce_mm(next); 583 switch_ldt(real_prev, next); 584 } 585 } 586 587 /* 588 * Please ignore the name of this function. It should be called 589 * switch_to_kernel_thread(). 590 * 591 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 592 * kernel thread or other context without an mm. Acceptable implementations 593 * include doing nothing whatsoever, switching to init_mm, or various clever 594 * lazy tricks to try to minimize TLB flushes. 595 * 596 * The scheduler reserves the right to call enter_lazy_tlb() several times 597 * in a row. It will notify us that we're going back to a real mm by 598 * calling switch_mm_irqs_off(). 599 */ 600 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 601 { 602 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 603 return; 604 605 this_cpu_write(cpu_tlbstate.is_lazy, true); 606 } 607 608 /* 609 * Call this when reinitializing a CPU. It fixes the following potential 610 * problems: 611 * 612 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 613 * because the CPU was taken down and came back up with CR3's PCID 614 * bits clear. CPU hotplug can do this. 615 * 616 * - The TLB contains junk in slots corresponding to inactive ASIDs. 617 * 618 * - The CPU went so far out to lunch that it may have missed a TLB 619 * flush. 620 */ 621 void initialize_tlbstate_and_flush(void) 622 { 623 int i; 624 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 625 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 626 unsigned long cr3 = __read_cr3(); 627 628 /* Assert that CR3 already references the right mm. */ 629 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 630 631 /* 632 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 633 * doesn't work like other CR4 bits because it can only be set from 634 * long mode.) 635 */ 636 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 637 !(cr4_read_shadow() & X86_CR4_PCIDE)); 638 639 /* Force ASID 0 and force a TLB flush. */ 640 write_cr3(build_cr3(mm->pgd, 0)); 641 642 /* Reinitialize tlbstate. */ 643 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 644 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 645 this_cpu_write(cpu_tlbstate.next_asid, 1); 646 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 647 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 648 649 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 650 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 651 } 652 653 /* 654 * flush_tlb_func_common()'s memory ordering requirement is that any 655 * TLB fills that happen after we flush the TLB are ordered after we 656 * read active_mm's tlb_gen. We don't need any explicit barriers 657 * because all x86 flush operations are serializing and the 658 * atomic64_read operation won't be reordered by the compiler. 659 */ 660 static void flush_tlb_func_common(const struct flush_tlb_info *f, 661 bool local, enum tlb_flush_reason reason) 662 { 663 /* 664 * We have three different tlb_gen values in here. They are: 665 * 666 * - mm_tlb_gen: the latest generation. 667 * - local_tlb_gen: the generation that this CPU has already caught 668 * up to. 669 * - f->new_tlb_gen: the generation that the requester of the flush 670 * wants us to catch up to. 671 */ 672 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 673 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 674 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 675 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 676 677 /* This code cannot presently handle being reentered. */ 678 VM_WARN_ON(!irqs_disabled()); 679 680 if (unlikely(loaded_mm == &init_mm)) 681 return; 682 683 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 684 loaded_mm->context.ctx_id); 685 686 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 687 /* 688 * We're in lazy mode. We need to at least flush our 689 * paging-structure cache to avoid speculatively reading 690 * garbage into our TLB. Since switching to init_mm is barely 691 * slower than a minimal flush, just switch to init_mm. 692 * 693 * This should be rare, with native_flush_tlb_others skipping 694 * IPIs to lazy TLB mode CPUs. 695 */ 696 switch_mm_irqs_off(NULL, &init_mm, NULL); 697 return; 698 } 699 700 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 701 /* 702 * There's nothing to do: we're already up to date. This can 703 * happen if two concurrent flushes happen -- the first flush to 704 * be handled can catch us all the way up, leaving no work for 705 * the second flush. 706 */ 707 trace_tlb_flush(reason, 0); 708 return; 709 } 710 711 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 712 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 713 714 /* 715 * If we get to this point, we know that our TLB is out of date. 716 * This does not strictly imply that we need to flush (it's 717 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 718 * going to need to flush in the very near future, so we might 719 * as well get it over with. 720 * 721 * The only question is whether to do a full or partial flush. 722 * 723 * We do a partial flush if requested and two extra conditions 724 * are met: 725 * 726 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 727 * we've always done all needed flushes to catch up to 728 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 729 * f->new_tlb_gen == 3, then we know that the flush needed to bring 730 * us up to date for tlb_gen 3 is the partial flush we're 731 * processing. 732 * 733 * As an example of why this check is needed, suppose that there 734 * are two concurrent flushes. The first is a full flush that 735 * changes context.tlb_gen from 1 to 2. The second is a partial 736 * flush that changes context.tlb_gen from 2 to 3. If they get 737 * processed on this CPU in reverse order, we'll see 738 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 739 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 740 * 3, we'd be break the invariant: we'd update local_tlb_gen above 741 * 1 without the full flush that's needed for tlb_gen 2. 742 * 743 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 744 * Partial TLB flushes are not all that much cheaper than full TLB 745 * flushes, so it seems unlikely that it would be a performance win 746 * to do a partial flush if that won't bring our TLB fully up to 747 * date. By doing a full flush instead, we can increase 748 * local_tlb_gen all the way to mm_tlb_gen and we can probably 749 * avoid another flush in the very near future. 750 */ 751 if (f->end != TLB_FLUSH_ALL && 752 f->new_tlb_gen == local_tlb_gen + 1 && 753 f->new_tlb_gen == mm_tlb_gen) { 754 /* Partial flush */ 755 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 756 unsigned long addr = f->start; 757 758 while (addr < f->end) { 759 flush_tlb_one_user(addr); 760 addr += 1UL << f->stride_shift; 761 } 762 if (local) 763 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 764 trace_tlb_flush(reason, nr_invalidate); 765 } else { 766 /* Full flush. */ 767 flush_tlb_local(); 768 if (local) 769 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 770 trace_tlb_flush(reason, TLB_FLUSH_ALL); 771 } 772 773 /* Both paths above update our state to mm_tlb_gen. */ 774 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 775 } 776 777 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason) 778 { 779 const struct flush_tlb_info *f = info; 780 781 flush_tlb_func_common(f, true, reason); 782 } 783 784 static void flush_tlb_func_remote(void *info) 785 { 786 const struct flush_tlb_info *f = info; 787 788 inc_irq_stat(irq_tlb_count); 789 790 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 791 return; 792 793 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 794 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 795 } 796 797 static bool tlb_is_not_lazy(int cpu, void *data) 798 { 799 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 800 } 801 802 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask, 803 const struct flush_tlb_info *info) 804 { 805 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 806 if (info->end == TLB_FLUSH_ALL) 807 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 808 else 809 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 810 (info->end - info->start) >> PAGE_SHIFT); 811 812 if (is_uv_system()) { 813 /* 814 * This whole special case is confused. UV has a "Broadcast 815 * Assist Unit", which seems to be a fancy way to send IPIs. 816 * Back when x86 used an explicit TLB flush IPI, UV was 817 * optimized to use its own mechanism. These days, x86 uses 818 * smp_call_function_many(), but UV still uses a manual IPI, 819 * and that IPI's action is out of date -- it does a manual 820 * flush instead of calling flush_tlb_func_remote(). This 821 * means that the percpu tlb_gen variables won't be updated 822 * and we'll do pointless flushes on future context switches. 823 * 824 * Rather than hooking native_flush_tlb_others() here, I think 825 * that UV should be updated so that smp_call_function_many(), 826 * etc, are optimal on UV. 827 */ 828 cpumask = uv_flush_tlb_others(cpumask, info); 829 if (cpumask) 830 smp_call_function_many(cpumask, flush_tlb_func_remote, 831 (void *)info, 1); 832 return; 833 } 834 835 /* 836 * If no page tables were freed, we can skip sending IPIs to 837 * CPUs in lazy TLB mode. They will flush the CPU themselves 838 * at the next context switch. 839 * 840 * However, if page tables are getting freed, we need to send the 841 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 842 * up on the new contents of what used to be page tables, while 843 * doing a speculative memory access. 844 */ 845 if (info->freed_tables) 846 smp_call_function_many(cpumask, flush_tlb_func_remote, 847 (void *)info, 1); 848 else 849 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 850 (void *)info, 1, cpumask); 851 } 852 853 void flush_tlb_others(const struct cpumask *cpumask, 854 const struct flush_tlb_info *info) 855 { 856 __flush_tlb_others(cpumask, info); 857 } 858 859 /* 860 * See Documentation/x86/tlb.rst for details. We choose 33 861 * because it is large enough to cover the vast majority (at 862 * least 95%) of allocations, and is small enough that we are 863 * confident it will not cause too much overhead. Each single 864 * flush is about 100 ns, so this caps the maximum overhead at 865 * _about_ 3,000 ns. 866 * 867 * This is in units of pages. 868 */ 869 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 870 871 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 872 873 #ifdef CONFIG_DEBUG_VM 874 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 875 #endif 876 877 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 878 unsigned long start, unsigned long end, 879 unsigned int stride_shift, bool freed_tables, 880 u64 new_tlb_gen) 881 { 882 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 883 884 #ifdef CONFIG_DEBUG_VM 885 /* 886 * Ensure that the following code is non-reentrant and flush_tlb_info 887 * is not overwritten. This means no TLB flushing is initiated by 888 * interrupt handlers and machine-check exception handlers. 889 */ 890 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 891 #endif 892 893 info->start = start; 894 info->end = end; 895 info->mm = mm; 896 info->stride_shift = stride_shift; 897 info->freed_tables = freed_tables; 898 info->new_tlb_gen = new_tlb_gen; 899 900 return info; 901 } 902 903 static inline void put_flush_tlb_info(void) 904 { 905 #ifdef CONFIG_DEBUG_VM 906 /* Complete reentrency prevention checks */ 907 barrier(); 908 this_cpu_dec(flush_tlb_info_idx); 909 #endif 910 } 911 912 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 913 unsigned long end, unsigned int stride_shift, 914 bool freed_tables) 915 { 916 struct flush_tlb_info *info; 917 u64 new_tlb_gen; 918 int cpu; 919 920 cpu = get_cpu(); 921 922 /* Should we flush just the requested range? */ 923 if ((end == TLB_FLUSH_ALL) || 924 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 925 start = 0; 926 end = TLB_FLUSH_ALL; 927 } 928 929 /* This is also a barrier that synchronizes with switch_mm(). */ 930 new_tlb_gen = inc_mm_tlb_gen(mm); 931 932 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 933 new_tlb_gen); 934 935 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 936 lockdep_assert_irqs_enabled(); 937 local_irq_disable(); 938 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN); 939 local_irq_enable(); 940 } 941 942 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 943 flush_tlb_others(mm_cpumask(mm), info); 944 945 put_flush_tlb_info(); 946 put_cpu(); 947 } 948 949 950 static void do_flush_tlb_all(void *info) 951 { 952 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 953 __flush_tlb_all(); 954 } 955 956 void flush_tlb_all(void) 957 { 958 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 959 on_each_cpu(do_flush_tlb_all, NULL, 1); 960 } 961 962 static void do_kernel_range_flush(void *info) 963 { 964 struct flush_tlb_info *f = info; 965 unsigned long addr; 966 967 /* flush range by one by one 'invlpg' */ 968 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 969 flush_tlb_one_kernel(addr); 970 } 971 972 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 973 { 974 /* Balance as user space task's flush, a bit conservative */ 975 if (end == TLB_FLUSH_ALL || 976 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 977 on_each_cpu(do_flush_tlb_all, NULL, 1); 978 } else { 979 struct flush_tlb_info *info; 980 981 preempt_disable(); 982 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 983 984 on_each_cpu(do_kernel_range_flush, info, 1); 985 986 put_flush_tlb_info(); 987 preempt_enable(); 988 } 989 } 990 991 /* 992 * This can be used from process context to figure out what the value of 993 * CR3 is without needing to do a (slow) __read_cr3(). 994 * 995 * It's intended to be used for code like KVM that sneakily changes CR3 996 * and needs to restore it. It needs to be used very carefully. 997 */ 998 unsigned long __get_current_cr3_fast(void) 999 { 1000 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1001 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1002 1003 /* For now, be very restrictive about when this can be called. */ 1004 VM_WARN_ON(in_nmi() || preemptible()); 1005 1006 VM_BUG_ON(cr3 != __read_cr3()); 1007 return cr3; 1008 } 1009 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1010 1011 /* 1012 * Flush one page in the kernel mapping 1013 */ 1014 void flush_tlb_one_kernel(unsigned long addr) 1015 { 1016 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1017 1018 /* 1019 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1020 * paravirt equivalent. Even with PCID, this is sufficient: we only 1021 * use PCID if we also use global PTEs for the kernel mapping, and 1022 * INVLPG flushes global translations across all address spaces. 1023 * 1024 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1025 * __flush_tlb_one_user() will flush the given address for the current 1026 * kernel address space and for its usermode counterpart, but it does 1027 * not flush it for other address spaces. 1028 */ 1029 flush_tlb_one_user(addr); 1030 1031 if (!static_cpu_has(X86_FEATURE_PTI)) 1032 return; 1033 1034 /* 1035 * See above. We need to propagate the flush to all other address 1036 * spaces. In principle, we only need to propagate it to kernelmode 1037 * address spaces, but the extra bookkeeping we would need is not 1038 * worth it. 1039 */ 1040 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1041 } 1042 1043 /* 1044 * Flush one page in the user mapping 1045 */ 1046 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1047 { 1048 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1049 1050 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1051 1052 if (!static_cpu_has(X86_FEATURE_PTI)) 1053 return; 1054 1055 /* 1056 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1057 * Just use invalidate_user_asid() in case we are called early. 1058 */ 1059 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1060 invalidate_user_asid(loaded_mm_asid); 1061 else 1062 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1063 } 1064 1065 void flush_tlb_one_user(unsigned long addr) 1066 { 1067 __flush_tlb_one_user(addr); 1068 } 1069 1070 /* 1071 * Flush everything 1072 */ 1073 STATIC_NOPV void native_flush_tlb_global(void) 1074 { 1075 unsigned long cr4, flags; 1076 1077 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1078 /* 1079 * Using INVPCID is considerably faster than a pair of writes 1080 * to CR4 sandwiched inside an IRQ flag save/restore. 1081 * 1082 * Note, this works with CR4.PCIDE=0 or 1. 1083 */ 1084 invpcid_flush_all(); 1085 return; 1086 } 1087 1088 /* 1089 * Read-modify-write to CR4 - protect it from preemption and 1090 * from interrupts. (Use the raw variant because this code can 1091 * be called from deep inside debugging code.) 1092 */ 1093 raw_local_irq_save(flags); 1094 1095 cr4 = this_cpu_read(cpu_tlbstate.cr4); 1096 /* toggle PGE */ 1097 native_write_cr4(cr4 ^ X86_CR4_PGE); 1098 /* write old PGE again and flush TLBs */ 1099 native_write_cr4(cr4); 1100 1101 raw_local_irq_restore(flags); 1102 } 1103 1104 /* 1105 * Flush the entire current user mapping 1106 */ 1107 STATIC_NOPV void native_flush_tlb_local(void) 1108 { 1109 /* 1110 * Preemption or interrupts must be disabled to protect the access 1111 * to the per CPU variable and to prevent being preempted between 1112 * read_cr3() and write_cr3(). 1113 */ 1114 WARN_ON_ONCE(preemptible()); 1115 1116 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1117 1118 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1119 native_write_cr3(__native_read_cr3()); 1120 } 1121 1122 void flush_tlb_local(void) 1123 { 1124 __flush_tlb_local(); 1125 } 1126 1127 /* 1128 * Flush everything 1129 */ 1130 void __flush_tlb_all(void) 1131 { 1132 /* 1133 * This is to catch users with enabled preemption and the PGE feature 1134 * and don't trigger the warning in __native_flush_tlb(). 1135 */ 1136 VM_WARN_ON_ONCE(preemptible()); 1137 1138 if (boot_cpu_has(X86_FEATURE_PGE)) { 1139 __flush_tlb_global(); 1140 } else { 1141 /* 1142 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1143 */ 1144 flush_tlb_local(); 1145 } 1146 } 1147 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1148 1149 /* 1150 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm. 1151 * This means that the 'struct flush_tlb_info' that describes which mappings to 1152 * flush is actually fixed. We therefore set a single fixed struct and use it in 1153 * arch_tlbbatch_flush(). 1154 */ 1155 static const struct flush_tlb_info full_flush_tlb_info = { 1156 .mm = NULL, 1157 .start = 0, 1158 .end = TLB_FLUSH_ALL, 1159 }; 1160 1161 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1162 { 1163 int cpu = get_cpu(); 1164 1165 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1166 lockdep_assert_irqs_enabled(); 1167 local_irq_disable(); 1168 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN); 1169 local_irq_enable(); 1170 } 1171 1172 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 1173 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info); 1174 1175 cpumask_clear(&batch->cpumask); 1176 1177 put_cpu(); 1178 } 1179 1180 /* 1181 * Blindly accessing user memory from NMI context can be dangerous 1182 * if we're in the middle of switching the current user task or 1183 * switching the loaded mm. It can also be dangerous if we 1184 * interrupted some kernel code that was temporarily using a 1185 * different mm. 1186 */ 1187 bool nmi_uaccess_okay(void) 1188 { 1189 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1190 struct mm_struct *current_mm = current->mm; 1191 1192 VM_WARN_ON_ONCE(!loaded_mm); 1193 1194 /* 1195 * The condition we want to check is 1196 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1197 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1198 * is supposed to be reasonably fast. 1199 * 1200 * Instead, we check the almost equivalent but somewhat conservative 1201 * condition below, and we rely on the fact that switch_mm_irqs_off() 1202 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1203 */ 1204 if (loaded_mm != current_mm) 1205 return false; 1206 1207 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1208 1209 return true; 1210 } 1211 1212 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1213 size_t count, loff_t *ppos) 1214 { 1215 char buf[32]; 1216 unsigned int len; 1217 1218 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1219 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1220 } 1221 1222 static ssize_t tlbflush_write_file(struct file *file, 1223 const char __user *user_buf, size_t count, loff_t *ppos) 1224 { 1225 char buf[32]; 1226 ssize_t len; 1227 int ceiling; 1228 1229 len = min(count, sizeof(buf) - 1); 1230 if (copy_from_user(buf, user_buf, len)) 1231 return -EFAULT; 1232 1233 buf[len] = '\0'; 1234 if (kstrtoint(buf, 0, &ceiling)) 1235 return -EINVAL; 1236 1237 if (ceiling < 0) 1238 return -EINVAL; 1239 1240 tlb_single_page_flush_ceiling = ceiling; 1241 return count; 1242 } 1243 1244 static const struct file_operations fops_tlbflush = { 1245 .read = tlbflush_read_file, 1246 .write = tlbflush_write_file, 1247 .llseek = default_llseek, 1248 }; 1249 1250 static int __init create_tlb_single_page_flush_ceiling(void) 1251 { 1252 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1253 arch_debugfs_dir, NULL, &fops_tlbflush); 1254 return 0; 1255 } 1256 late_initcall(create_tlb_single_page_flush_ceiling); 1257