xref: /openbmc/linux/arch/x86/mm/tlb.c (revision e639c869)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32 
33 
34 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
35 			    u16 *new_asid, bool *need_flush)
36 {
37 	u16 asid;
38 
39 	if (!static_cpu_has(X86_FEATURE_PCID)) {
40 		*new_asid = 0;
41 		*need_flush = true;
42 		return;
43 	}
44 
45 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
46 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
47 		    next->context.ctx_id)
48 			continue;
49 
50 		*new_asid = asid;
51 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
52 			       next_tlb_gen);
53 		return;
54 	}
55 
56 	/*
57 	 * We don't currently own an ASID slot on this CPU.
58 	 * Allocate a slot.
59 	 */
60 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
61 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
62 		*new_asid = 0;
63 		this_cpu_write(cpu_tlbstate.next_asid, 1);
64 	}
65 	*need_flush = true;
66 }
67 
68 void leave_mm(int cpu)
69 {
70 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
71 
72 	/*
73 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
74 	 * If so, our callers still expect us to flush the TLB, but there
75 	 * aren't any user TLB entries in init_mm to worry about.
76 	 *
77 	 * This needs to happen before any other sanity checks due to
78 	 * intel_idle's shenanigans.
79 	 */
80 	if (loaded_mm == &init_mm)
81 		return;
82 
83 	/* Warn if we're not lazy. */
84 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
85 
86 	switch_mm(NULL, &init_mm, NULL);
87 }
88 EXPORT_SYMBOL_GPL(leave_mm);
89 
90 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
91 	       struct task_struct *tsk)
92 {
93 	unsigned long flags;
94 
95 	local_irq_save(flags);
96 	switch_mm_irqs_off(prev, next, tsk);
97 	local_irq_restore(flags);
98 }
99 
100 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
101 			struct task_struct *tsk)
102 {
103 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
104 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
105 	unsigned cpu = smp_processor_id();
106 	u64 next_tlb_gen;
107 
108 	/*
109 	 * NB: The scheduler will call us with prev == next when switching
110 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
111 	 * When this happens, we don't assume that CR3 (and hence
112 	 * cpu_tlbstate.loaded_mm) matches next.
113 	 *
114 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
115 	 */
116 
117 	/* We don't want flush_tlb_func_* to run concurrently with us. */
118 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
119 		WARN_ON_ONCE(!irqs_disabled());
120 
121 	/*
122 	 * Verify that CR3 is what we think it is.  This will catch
123 	 * hypothetical buggy code that directly switches to swapper_pg_dir
124 	 * without going through leave_mm() / switch_mm_irqs_off() or that
125 	 * does something like write_cr3(read_cr3_pa()).
126 	 *
127 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
128 	 * isn't free.
129 	 */
130 #ifdef CONFIG_DEBUG_VM
131 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
132 		/*
133 		 * If we were to BUG here, we'd be very likely to kill
134 		 * the system so hard that we don't see the call trace.
135 		 * Try to recover instead by ignoring the error and doing
136 		 * a global flush to minimize the chance of corruption.
137 		 *
138 		 * (This is far from being a fully correct recovery.
139 		 *  Architecturally, the CPU could prefetch something
140 		 *  back into an incorrect ASID slot and leave it there
141 		 *  to cause trouble down the road.  It's better than
142 		 *  nothing, though.)
143 		 */
144 		__flush_tlb_all();
145 	}
146 #endif
147 	this_cpu_write(cpu_tlbstate.is_lazy, false);
148 
149 	if (real_prev == next) {
150 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
151 			   next->context.ctx_id);
152 
153 		/*
154 		 * We don't currently support having a real mm loaded without
155 		 * our cpu set in mm_cpumask().  We have all the bookkeeping
156 		 * in place to figure out whether we would need to flush
157 		 * if our cpu were cleared in mm_cpumask(), but we don't
158 		 * currently use it.
159 		 */
160 		if (WARN_ON_ONCE(real_prev != &init_mm &&
161 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
162 			cpumask_set_cpu(cpu, mm_cpumask(next));
163 
164 		return;
165 	} else {
166 		u16 new_asid;
167 		bool need_flush;
168 
169 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
170 			/*
171 			 * If our current stack is in vmalloc space and isn't
172 			 * mapped in the new pgd, we'll double-fault.  Forcibly
173 			 * map it.
174 			 */
175 			unsigned int index = pgd_index(current_stack_pointer);
176 			pgd_t *pgd = next->pgd + index;
177 
178 			if (unlikely(pgd_none(*pgd)))
179 				set_pgd(pgd, init_mm.pgd[index]);
180 		}
181 
182 		/* Stop remote flushes for the previous mm */
183 		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
184 				real_prev != &init_mm);
185 		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
186 
187 		/*
188 		 * Start remote flushes and then read tlb_gen.
189 		 */
190 		cpumask_set_cpu(cpu, mm_cpumask(next));
191 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
192 
193 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
194 
195 		if (need_flush) {
196 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
197 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
198 			write_cr3(build_cr3(next, new_asid));
199 
200 			/*
201 			 * NB: This gets called via leave_mm() in the idle path
202 			 * where RCU functions differently.  Tracing normally
203 			 * uses RCU, so we need to use the _rcuidle variant.
204 			 *
205 			 * (There is no good reason for this.  The idle code should
206 			 *  be rearranged to call this before rcu_idle_enter().)
207 			 */
208 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
209 		} else {
210 			/* The new ASID is already up to date. */
211 			write_cr3(build_cr3_noflush(next, new_asid));
212 
213 			/* See above wrt _rcuidle. */
214 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
215 		}
216 
217 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
218 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
219 	}
220 
221 	load_mm_cr4(next);
222 	switch_ldt(real_prev, next);
223 }
224 
225 /*
226  * Please ignore the name of this function.  It should be called
227  * switch_to_kernel_thread().
228  *
229  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
230  * kernel thread or other context without an mm.  Acceptable implementations
231  * include doing nothing whatsoever, switching to init_mm, or various clever
232  * lazy tricks to try to minimize TLB flushes.
233  *
234  * The scheduler reserves the right to call enter_lazy_tlb() several times
235  * in a row.  It will notify us that we're going back to a real mm by
236  * calling switch_mm_irqs_off().
237  */
238 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
239 {
240 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
241 		return;
242 
243 	if (tlb_defer_switch_to_init_mm()) {
244 		/*
245 		 * There's a significant optimization that may be possible
246 		 * here.  We have accurate enough TLB flush tracking that we
247 		 * don't need to maintain coherence of TLB per se when we're
248 		 * lazy.  We do, however, need to maintain coherence of
249 		 * paging-structure caches.  We could, in principle, leave our
250 		 * old mm loaded and only switch to init_mm when
251 		 * tlb_remove_page() happens.
252 		 */
253 		this_cpu_write(cpu_tlbstate.is_lazy, true);
254 	} else {
255 		switch_mm(NULL, &init_mm, NULL);
256 	}
257 }
258 
259 /*
260  * Call this when reinitializing a CPU.  It fixes the following potential
261  * problems:
262  *
263  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
264  *   because the CPU was taken down and came back up with CR3's PCID
265  *   bits clear.  CPU hotplug can do this.
266  *
267  * - The TLB contains junk in slots corresponding to inactive ASIDs.
268  *
269  * - The CPU went so far out to lunch that it may have missed a TLB
270  *   flush.
271  */
272 void initialize_tlbstate_and_flush(void)
273 {
274 	int i;
275 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
276 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
277 	unsigned long cr3 = __read_cr3();
278 
279 	/* Assert that CR3 already references the right mm. */
280 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
281 
282 	/*
283 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
284 	 * doesn't work like other CR4 bits because it can only be set from
285 	 * long mode.)
286 	 */
287 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
288 		!(cr4_read_shadow() & X86_CR4_PCIDE));
289 
290 	/* Force ASID 0 and force a TLB flush. */
291 	write_cr3(build_cr3(mm, 0));
292 
293 	/* Reinitialize tlbstate. */
294 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
295 	this_cpu_write(cpu_tlbstate.next_asid, 1);
296 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
297 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
298 
299 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
300 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
301 }
302 
303 /*
304  * flush_tlb_func_common()'s memory ordering requirement is that any
305  * TLB fills that happen after we flush the TLB are ordered after we
306  * read active_mm's tlb_gen.  We don't need any explicit barriers
307  * because all x86 flush operations are serializing and the
308  * atomic64_read operation won't be reordered by the compiler.
309  */
310 static void flush_tlb_func_common(const struct flush_tlb_info *f,
311 				  bool local, enum tlb_flush_reason reason)
312 {
313 	/*
314 	 * We have three different tlb_gen values in here.  They are:
315 	 *
316 	 * - mm_tlb_gen:     the latest generation.
317 	 * - local_tlb_gen:  the generation that this CPU has already caught
318 	 *                   up to.
319 	 * - f->new_tlb_gen: the generation that the requester of the flush
320 	 *                   wants us to catch up to.
321 	 */
322 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
323 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
324 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
325 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
326 
327 	/* This code cannot presently handle being reentered. */
328 	VM_WARN_ON(!irqs_disabled());
329 
330 	if (unlikely(loaded_mm == &init_mm))
331 		return;
332 
333 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
334 		   loaded_mm->context.ctx_id);
335 
336 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
337 		/*
338 		 * We're in lazy mode.  We need to at least flush our
339 		 * paging-structure cache to avoid speculatively reading
340 		 * garbage into our TLB.  Since switching to init_mm is barely
341 		 * slower than a minimal flush, just switch to init_mm.
342 		 */
343 		switch_mm_irqs_off(NULL, &init_mm, NULL);
344 		return;
345 	}
346 
347 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
348 		/*
349 		 * There's nothing to do: we're already up to date.  This can
350 		 * happen if two concurrent flushes happen -- the first flush to
351 		 * be handled can catch us all the way up, leaving no work for
352 		 * the second flush.
353 		 */
354 		trace_tlb_flush(reason, 0);
355 		return;
356 	}
357 
358 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
359 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
360 
361 	/*
362 	 * If we get to this point, we know that our TLB is out of date.
363 	 * This does not strictly imply that we need to flush (it's
364 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
365 	 * going to need to flush in the very near future, so we might
366 	 * as well get it over with.
367 	 *
368 	 * The only question is whether to do a full or partial flush.
369 	 *
370 	 * We do a partial flush if requested and two extra conditions
371 	 * are met:
372 	 *
373 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
374 	 *    we've always done all needed flushes to catch up to
375 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
376 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
377 	 *    us up to date for tlb_gen 3 is the partial flush we're
378 	 *    processing.
379 	 *
380 	 *    As an example of why this check is needed, suppose that there
381 	 *    are two concurrent flushes.  The first is a full flush that
382 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
383 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
384 	 *    processed on this CPU in reverse order, we'll see
385 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
386 	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
387 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
388 	 *    1 without the full flush that's needed for tlb_gen 2.
389 	 *
390 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
391 	 *    Partial TLB flushes are not all that much cheaper than full TLB
392 	 *    flushes, so it seems unlikely that it would be a performance win
393 	 *    to do a partial flush if that won't bring our TLB fully up to
394 	 *    date.  By doing a full flush instead, we can increase
395 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
396 	 *    avoid another flush in the very near future.
397 	 */
398 	if (f->end != TLB_FLUSH_ALL &&
399 	    f->new_tlb_gen == local_tlb_gen + 1 &&
400 	    f->new_tlb_gen == mm_tlb_gen) {
401 		/* Partial flush */
402 		unsigned long addr;
403 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
404 
405 		addr = f->start;
406 		while (addr < f->end) {
407 			__flush_tlb_single(addr);
408 			addr += PAGE_SIZE;
409 		}
410 		if (local)
411 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
412 		trace_tlb_flush(reason, nr_pages);
413 	} else {
414 		/* Full flush. */
415 		local_flush_tlb();
416 		if (local)
417 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
418 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
419 	}
420 
421 	/* Both paths above update our state to mm_tlb_gen. */
422 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
423 }
424 
425 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
426 {
427 	const struct flush_tlb_info *f = info;
428 
429 	flush_tlb_func_common(f, true, reason);
430 }
431 
432 static void flush_tlb_func_remote(void *info)
433 {
434 	const struct flush_tlb_info *f = info;
435 
436 	inc_irq_stat(irq_tlb_count);
437 
438 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
439 		return;
440 
441 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
442 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
443 }
444 
445 void native_flush_tlb_others(const struct cpumask *cpumask,
446 			     const struct flush_tlb_info *info)
447 {
448 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
449 	if (info->end == TLB_FLUSH_ALL)
450 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
451 	else
452 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
453 				(info->end - info->start) >> PAGE_SHIFT);
454 
455 	if (is_uv_system()) {
456 		/*
457 		 * This whole special case is confused.  UV has a "Broadcast
458 		 * Assist Unit", which seems to be a fancy way to send IPIs.
459 		 * Back when x86 used an explicit TLB flush IPI, UV was
460 		 * optimized to use its own mechanism.  These days, x86 uses
461 		 * smp_call_function_many(), but UV still uses a manual IPI,
462 		 * and that IPI's action is out of date -- it does a manual
463 		 * flush instead of calling flush_tlb_func_remote().  This
464 		 * means that the percpu tlb_gen variables won't be updated
465 		 * and we'll do pointless flushes on future context switches.
466 		 *
467 		 * Rather than hooking native_flush_tlb_others() here, I think
468 		 * that UV should be updated so that smp_call_function_many(),
469 		 * etc, are optimal on UV.
470 		 */
471 		unsigned int cpu;
472 
473 		cpu = smp_processor_id();
474 		cpumask = uv_flush_tlb_others(cpumask, info);
475 		if (cpumask)
476 			smp_call_function_many(cpumask, flush_tlb_func_remote,
477 					       (void *)info, 1);
478 		return;
479 	}
480 	smp_call_function_many(cpumask, flush_tlb_func_remote,
481 			       (void *)info, 1);
482 }
483 
484 /*
485  * See Documentation/x86/tlb.txt for details.  We choose 33
486  * because it is large enough to cover the vast majority (at
487  * least 95%) of allocations, and is small enough that we are
488  * confident it will not cause too much overhead.  Each single
489  * flush is about 100 ns, so this caps the maximum overhead at
490  * _about_ 3,000 ns.
491  *
492  * This is in units of pages.
493  */
494 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
495 
496 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
497 				unsigned long end, unsigned long vmflag)
498 {
499 	int cpu;
500 
501 	struct flush_tlb_info info = {
502 		.mm = mm,
503 	};
504 
505 	cpu = get_cpu();
506 
507 	/* This is also a barrier that synchronizes with switch_mm(). */
508 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
509 
510 	/* Should we flush just the requested range? */
511 	if ((end != TLB_FLUSH_ALL) &&
512 	    !(vmflag & VM_HUGETLB) &&
513 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
514 		info.start = start;
515 		info.end = end;
516 	} else {
517 		info.start = 0UL;
518 		info.end = TLB_FLUSH_ALL;
519 	}
520 
521 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
522 		VM_WARN_ON(irqs_disabled());
523 		local_irq_disable();
524 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
525 		local_irq_enable();
526 	}
527 
528 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
529 		flush_tlb_others(mm_cpumask(mm), &info);
530 
531 	put_cpu();
532 }
533 
534 
535 static void do_flush_tlb_all(void *info)
536 {
537 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
538 	__flush_tlb_all();
539 }
540 
541 void flush_tlb_all(void)
542 {
543 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
544 	on_each_cpu(do_flush_tlb_all, NULL, 1);
545 }
546 
547 static void do_kernel_range_flush(void *info)
548 {
549 	struct flush_tlb_info *f = info;
550 	unsigned long addr;
551 
552 	/* flush range by one by one 'invlpg' */
553 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
554 		__flush_tlb_single(addr);
555 }
556 
557 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
558 {
559 
560 	/* Balance as user space task's flush, a bit conservative */
561 	if (end == TLB_FLUSH_ALL ||
562 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
563 		on_each_cpu(do_flush_tlb_all, NULL, 1);
564 	} else {
565 		struct flush_tlb_info info;
566 		info.start = start;
567 		info.end = end;
568 		on_each_cpu(do_kernel_range_flush, &info, 1);
569 	}
570 }
571 
572 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
573 {
574 	struct flush_tlb_info info = {
575 		.mm = NULL,
576 		.start = 0UL,
577 		.end = TLB_FLUSH_ALL,
578 	};
579 
580 	int cpu = get_cpu();
581 
582 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
583 		VM_WARN_ON(irqs_disabled());
584 		local_irq_disable();
585 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
586 		local_irq_enable();
587 	}
588 
589 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
590 		flush_tlb_others(&batch->cpumask, &info);
591 
592 	cpumask_clear(&batch->cpumask);
593 
594 	put_cpu();
595 }
596 
597 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
598 			     size_t count, loff_t *ppos)
599 {
600 	char buf[32];
601 	unsigned int len;
602 
603 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
604 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
605 }
606 
607 static ssize_t tlbflush_write_file(struct file *file,
608 		 const char __user *user_buf, size_t count, loff_t *ppos)
609 {
610 	char buf[32];
611 	ssize_t len;
612 	int ceiling;
613 
614 	len = min(count, sizeof(buf) - 1);
615 	if (copy_from_user(buf, user_buf, len))
616 		return -EFAULT;
617 
618 	buf[len] = '\0';
619 	if (kstrtoint(buf, 0, &ceiling))
620 		return -EINVAL;
621 
622 	if (ceiling < 0)
623 		return -EINVAL;
624 
625 	tlb_single_page_flush_ceiling = ceiling;
626 	return count;
627 }
628 
629 static const struct file_operations fops_tlbflush = {
630 	.read = tlbflush_read_file,
631 	.write = tlbflush_write_file,
632 	.llseek = default_llseek,
633 };
634 
635 static int __init create_tlb_single_page_flush_ceiling(void)
636 {
637 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
638 			    arch_debugfs_dir, NULL, &fops_tlbflush);
639 	return 0;
640 }
641 late_initcall(create_tlb_single_page_flush_ceiling);
642