1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 14 #include <asm/tlbflush.h> 15 #include <asm/mmu_context.h> 16 #include <asm/nospec-branch.h> 17 #include <asm/cache.h> 18 #include <asm/cacheflush.h> 19 #include <asm/apic.h> 20 #include <asm/perf_event.h> 21 22 #include "mm_internal.h" 23 24 #ifdef CONFIG_PARAVIRT 25 # define STATIC_NOPV 26 #else 27 # define STATIC_NOPV static 28 # define __flush_tlb_local native_flush_tlb_local 29 # define __flush_tlb_global native_flush_tlb_global 30 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 31 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 32 #endif 33 34 /* 35 * TLB flushing, formerly SMP-only 36 * c/o Linus Torvalds. 37 * 38 * These mean you can really definitely utterly forget about 39 * writing to user space from interrupts. (Its not allowed anyway). 40 * 41 * Optimizations Manfred Spraul <manfred@colorfullife.com> 42 * 43 * More scalable flush, from Andi Kleen 44 * 45 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 46 */ 47 48 /* 49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 50 * stored in cpu_tlb_state.last_user_mm_spec. 51 */ 52 #define LAST_USER_MM_IBPB 0x1UL 53 #define LAST_USER_MM_L1D_FLUSH 0x2UL 54 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 55 56 /* Bits to set when tlbstate and flush is (re)initialized */ 57 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 58 59 /* 60 * The x86 feature is called PCID (Process Context IDentifier). It is similar 61 * to what is traditionally called ASID on the RISC processors. 62 * 63 * We don't use the traditional ASID implementation, where each process/mm gets 64 * its own ASID and flush/restart when we run out of ASID space. 65 * 66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 67 * that came by on this CPU, allowing cheaper switch_mm between processes on 68 * this CPU. 69 * 70 * We end up with different spaces for different things. To avoid confusion we 71 * use different names for each of them: 72 * 73 * ASID - [0, TLB_NR_DYN_ASIDS-1] 74 * the canonical identifier for an mm 75 * 76 * kPCID - [1, TLB_NR_DYN_ASIDS] 77 * the value we write into the PCID part of CR3; corresponds to the 78 * ASID+1, because PCID 0 is special. 79 * 80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 81 * for KPTI each mm has two address spaces and thus needs two 82 * PCID values, but we can still do with a single ASID denomination 83 * for each mm. Corresponds to kPCID + 2048. 84 * 85 */ 86 87 /* There are 12 bits of space for ASIDS in CR3 */ 88 #define CR3_HW_ASID_BITS 12 89 90 /* 91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 92 * user/kernel switches 93 */ 94 #ifdef CONFIG_PAGE_TABLE_ISOLATION 95 # define PTI_CONSUMED_PCID_BITS 1 96 #else 97 # define PTI_CONSUMED_PCID_BITS 0 98 #endif 99 100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 101 102 /* 103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 104 * for them being zero-based. Another -1 is because PCID 0 is reserved for 105 * use by non-PCID-aware users. 106 */ 107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 108 109 /* 110 * Given @asid, compute kPCID 111 */ 112 static inline u16 kern_pcid(u16 asid) 113 { 114 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 115 116 #ifdef CONFIG_PAGE_TABLE_ISOLATION 117 /* 118 * Make sure that the dynamic ASID space does not conflict with the 119 * bit we are using to switch between user and kernel ASIDs. 120 */ 121 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 122 123 /* 124 * The ASID being passed in here should have respected the 125 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 126 */ 127 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 128 #endif 129 /* 130 * The dynamically-assigned ASIDs that get passed in are small 131 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 132 * so do not bother to clear it. 133 * 134 * If PCID is on, ASID-aware code paths put the ASID+1 into the 135 * PCID bits. This serves two purposes. It prevents a nasty 136 * situation in which PCID-unaware code saves CR3, loads some other 137 * value (with PCID == 0), and then restores CR3, thus corrupting 138 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 139 * that any bugs involving loading a PCID-enabled CR3 with 140 * CR4.PCIDE off will trigger deterministically. 141 */ 142 return asid + 1; 143 } 144 145 /* 146 * Given @asid, compute uPCID 147 */ 148 static inline u16 user_pcid(u16 asid) 149 { 150 u16 ret = kern_pcid(asid); 151 #ifdef CONFIG_PAGE_TABLE_ISOLATION 152 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 153 #endif 154 return ret; 155 } 156 157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 158 { 159 if (static_cpu_has(X86_FEATURE_PCID)) { 160 return __sme_pa(pgd) | kern_pcid(asid); 161 } else { 162 VM_WARN_ON_ONCE(asid != 0); 163 return __sme_pa(pgd); 164 } 165 } 166 167 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 168 { 169 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 170 /* 171 * Use boot_cpu_has() instead of this_cpu_has() as this function 172 * might be called during early boot. This should work even after 173 * boot because all CPU's the have same capabilities: 174 */ 175 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 176 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 177 } 178 179 /* 180 * We get here when we do something requiring a TLB invalidation 181 * but could not go invalidate all of the contexts. We do the 182 * necessary invalidation by clearing out the 'ctx_id' which 183 * forces a TLB flush when the context is loaded. 184 */ 185 static void clear_asid_other(void) 186 { 187 u16 asid; 188 189 /* 190 * This is only expected to be set if we have disabled 191 * kernel _PAGE_GLOBAL pages. 192 */ 193 if (!static_cpu_has(X86_FEATURE_PTI)) { 194 WARN_ON_ONCE(1); 195 return; 196 } 197 198 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 199 /* Do not need to flush the current asid */ 200 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 201 continue; 202 /* 203 * Make sure the next time we go to switch to 204 * this asid, we do a flush: 205 */ 206 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 207 } 208 this_cpu_write(cpu_tlbstate.invalidate_other, false); 209 } 210 211 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 212 213 214 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 215 u16 *new_asid, bool *need_flush) 216 { 217 u16 asid; 218 219 if (!static_cpu_has(X86_FEATURE_PCID)) { 220 *new_asid = 0; 221 *need_flush = true; 222 return; 223 } 224 225 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 226 clear_asid_other(); 227 228 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 229 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 230 next->context.ctx_id) 231 continue; 232 233 *new_asid = asid; 234 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 235 next_tlb_gen); 236 return; 237 } 238 239 /* 240 * We don't currently own an ASID slot on this CPU. 241 * Allocate a slot. 242 */ 243 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 244 if (*new_asid >= TLB_NR_DYN_ASIDS) { 245 *new_asid = 0; 246 this_cpu_write(cpu_tlbstate.next_asid, 1); 247 } 248 *need_flush = true; 249 } 250 251 /* 252 * Given an ASID, flush the corresponding user ASID. We can delay this 253 * until the next time we switch to it. 254 * 255 * See SWITCH_TO_USER_CR3. 256 */ 257 static inline void invalidate_user_asid(u16 asid) 258 { 259 /* There is no user ASID if address space separation is off */ 260 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 261 return; 262 263 /* 264 * We only have a single ASID if PCID is off and the CR3 265 * write will have flushed it. 266 */ 267 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 268 return; 269 270 if (!static_cpu_has(X86_FEATURE_PTI)) 271 return; 272 273 __set_bit(kern_pcid(asid), 274 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 275 } 276 277 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 278 { 279 unsigned long new_mm_cr3; 280 281 if (need_flush) { 282 invalidate_user_asid(new_asid); 283 new_mm_cr3 = build_cr3(pgdir, new_asid); 284 } else { 285 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 286 } 287 288 /* 289 * Caution: many callers of this function expect 290 * that load_cr3() is serializing and orders TLB 291 * fills with respect to the mm_cpumask writes. 292 */ 293 write_cr3(new_mm_cr3); 294 } 295 296 void leave_mm(int cpu) 297 { 298 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 299 300 /* 301 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 302 * If so, our callers still expect us to flush the TLB, but there 303 * aren't any user TLB entries in init_mm to worry about. 304 * 305 * This needs to happen before any other sanity checks due to 306 * intel_idle's shenanigans. 307 */ 308 if (loaded_mm == &init_mm) 309 return; 310 311 /* Warn if we're not lazy. */ 312 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 313 314 switch_mm(NULL, &init_mm, NULL); 315 } 316 EXPORT_SYMBOL_GPL(leave_mm); 317 318 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 319 struct task_struct *tsk) 320 { 321 unsigned long flags; 322 323 local_irq_save(flags); 324 switch_mm_irqs_off(prev, next, tsk); 325 local_irq_restore(flags); 326 } 327 328 /* 329 * Invoked from return to user/guest by a task that opted-in to L1D 330 * flushing but ended up running on an SMT enabled core due to wrong 331 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 332 * contract which this task requested. 333 */ 334 static void l1d_flush_force_sigbus(struct callback_head *ch) 335 { 336 force_sig(SIGBUS); 337 } 338 339 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 340 struct task_struct *next) 341 { 342 /* Flush L1D if the outgoing task requests it */ 343 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 344 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 345 346 /* Check whether the incoming task opted in for L1D flush */ 347 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 348 return; 349 350 /* 351 * Validate that it is not running on an SMT sibling as this would 352 * make the excercise pointless because the siblings share L1D. If 353 * it runs on a SMT sibling, notify it with SIGBUS on return to 354 * user/guest 355 */ 356 if (this_cpu_read(cpu_info.smt_active)) { 357 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 358 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 359 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 360 } 361 } 362 363 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 364 { 365 unsigned long next_tif = read_task_thread_flags(next); 366 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 367 368 /* 369 * Ensure that the bit shift above works as expected and the two flags 370 * end up in bit 0 and 1. 371 */ 372 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 373 374 return (unsigned long)next->mm | spec_bits; 375 } 376 377 static void cond_mitigation(struct task_struct *next) 378 { 379 unsigned long prev_mm, next_mm; 380 381 if (!next || !next->mm) 382 return; 383 384 next_mm = mm_mangle_tif_spec_bits(next); 385 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 386 387 /* 388 * Avoid user/user BTB poisoning by flushing the branch predictor 389 * when switching between processes. This stops one process from 390 * doing Spectre-v2 attacks on another. 391 * 392 * Both, the conditional and the always IBPB mode use the mm 393 * pointer to avoid the IBPB when switching between tasks of the 394 * same process. Using the mm pointer instead of mm->context.ctx_id 395 * opens a hypothetical hole vs. mm_struct reuse, which is more or 396 * less impossible to control by an attacker. Aside of that it 397 * would only affect the first schedule so the theoretically 398 * exposed data is not really interesting. 399 */ 400 if (static_branch_likely(&switch_mm_cond_ibpb)) { 401 /* 402 * This is a bit more complex than the always mode because 403 * it has to handle two cases: 404 * 405 * 1) Switch from a user space task (potential attacker) 406 * which has TIF_SPEC_IB set to a user space task 407 * (potential victim) which has TIF_SPEC_IB not set. 408 * 409 * 2) Switch from a user space task (potential attacker) 410 * which has TIF_SPEC_IB not set to a user space task 411 * (potential victim) which has TIF_SPEC_IB set. 412 * 413 * This could be done by unconditionally issuing IBPB when 414 * a task which has TIF_SPEC_IB set is either scheduled in 415 * or out. Though that results in two flushes when: 416 * 417 * - the same user space task is scheduled out and later 418 * scheduled in again and only a kernel thread ran in 419 * between. 420 * 421 * - a user space task belonging to the same process is 422 * scheduled in after a kernel thread ran in between 423 * 424 * - a user space task belonging to the same process is 425 * scheduled in immediately. 426 * 427 * Optimize this with reasonably small overhead for the 428 * above cases. Mangle the TIF_SPEC_IB bit into the mm 429 * pointer of the incoming task which is stored in 430 * cpu_tlbstate.last_user_mm_spec for comparison. 431 * 432 * Issue IBPB only if the mm's are different and one or 433 * both have the IBPB bit set. 434 */ 435 if (next_mm != prev_mm && 436 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 437 indirect_branch_prediction_barrier(); 438 } 439 440 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 441 /* 442 * Only flush when switching to a user space task with a 443 * different context than the user space task which ran 444 * last on this CPU. 445 */ 446 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != 447 (unsigned long)next->mm) 448 indirect_branch_prediction_barrier(); 449 } 450 451 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 452 /* 453 * Flush L1D when the outgoing task requested it and/or 454 * check whether the incoming task requested L1D flushing 455 * and ended up on an SMT sibling. 456 */ 457 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 458 l1d_flush_evaluate(prev_mm, next_mm, next); 459 } 460 461 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 462 } 463 464 #ifdef CONFIG_PERF_EVENTS 465 static inline void cr4_update_pce_mm(struct mm_struct *mm) 466 { 467 if (static_branch_unlikely(&rdpmc_always_available_key) || 468 (!static_branch_unlikely(&rdpmc_never_available_key) && 469 atomic_read(&mm->context.perf_rdpmc_allowed))) { 470 /* 471 * Clear the existing dirty counters to 472 * prevent the leak for an RDPMC task. 473 */ 474 perf_clear_dirty_counters(); 475 cr4_set_bits_irqsoff(X86_CR4_PCE); 476 } else 477 cr4_clear_bits_irqsoff(X86_CR4_PCE); 478 } 479 480 void cr4_update_pce(void *ignored) 481 { 482 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 483 } 484 485 #else 486 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 487 #endif 488 489 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 490 struct task_struct *tsk) 491 { 492 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 493 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 494 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 495 unsigned cpu = smp_processor_id(); 496 u64 next_tlb_gen; 497 bool need_flush; 498 u16 new_asid; 499 500 /* 501 * NB: The scheduler will call us with prev == next when switching 502 * from lazy TLB mode to normal mode if active_mm isn't changing. 503 * When this happens, we don't assume that CR3 (and hence 504 * cpu_tlbstate.loaded_mm) matches next. 505 * 506 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 507 */ 508 509 /* We don't want flush_tlb_func() to run concurrently with us. */ 510 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 511 WARN_ON_ONCE(!irqs_disabled()); 512 513 /* 514 * Verify that CR3 is what we think it is. This will catch 515 * hypothetical buggy code that directly switches to swapper_pg_dir 516 * without going through leave_mm() / switch_mm_irqs_off() or that 517 * does something like write_cr3(read_cr3_pa()). 518 * 519 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 520 * isn't free. 521 */ 522 #ifdef CONFIG_DEBUG_VM 523 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 524 /* 525 * If we were to BUG here, we'd be very likely to kill 526 * the system so hard that we don't see the call trace. 527 * Try to recover instead by ignoring the error and doing 528 * a global flush to minimize the chance of corruption. 529 * 530 * (This is far from being a fully correct recovery. 531 * Architecturally, the CPU could prefetch something 532 * back into an incorrect ASID slot and leave it there 533 * to cause trouble down the road. It's better than 534 * nothing, though.) 535 */ 536 __flush_tlb_all(); 537 } 538 #endif 539 if (was_lazy) 540 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 541 542 /* 543 * The membarrier system call requires a full memory barrier and 544 * core serialization before returning to user-space, after 545 * storing to rq->curr, when changing mm. This is because 546 * membarrier() sends IPIs to all CPUs that are in the target mm 547 * to make them issue memory barriers. However, if another CPU 548 * switches to/from the target mm concurrently with 549 * membarrier(), it can cause that CPU not to receive an IPI 550 * when it really should issue a memory barrier. Writing to CR3 551 * provides that full memory barrier and core serializing 552 * instruction. 553 */ 554 if (real_prev == next) { 555 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 556 next->context.ctx_id); 557 558 /* 559 * Even in lazy TLB mode, the CPU should stay set in the 560 * mm_cpumask. The TLB shootdown code can figure out from 561 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 562 */ 563 if (WARN_ON_ONCE(real_prev != &init_mm && 564 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 565 cpumask_set_cpu(cpu, mm_cpumask(next)); 566 567 /* 568 * If the CPU is not in lazy TLB mode, we are just switching 569 * from one thread in a process to another thread in the same 570 * process. No TLB flush required. 571 */ 572 if (!was_lazy) 573 return; 574 575 /* 576 * Read the tlb_gen to check whether a flush is needed. 577 * If the TLB is up to date, just use it. 578 * The barrier synchronizes with the tlb_gen increment in 579 * the TLB shootdown code. 580 */ 581 smp_mb(); 582 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 583 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 584 next_tlb_gen) 585 return; 586 587 /* 588 * TLB contents went out of date while we were in lazy 589 * mode. Fall through to the TLB switching code below. 590 */ 591 new_asid = prev_asid; 592 need_flush = true; 593 } else { 594 /* 595 * Apply process to process speculation vulnerability 596 * mitigations if applicable. 597 */ 598 cond_mitigation(tsk); 599 600 /* 601 * Stop remote flushes for the previous mm. 602 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 603 * but the bitmap manipulation can cause cache line contention. 604 */ 605 if (real_prev != &init_mm) { 606 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 607 mm_cpumask(real_prev))); 608 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 609 } 610 611 /* 612 * Start remote flushes and then read tlb_gen. 613 */ 614 if (next != &init_mm) 615 cpumask_set_cpu(cpu, mm_cpumask(next)); 616 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 617 618 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 619 620 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 621 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 622 barrier(); 623 } 624 625 if (need_flush) { 626 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 627 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 628 load_new_mm_cr3(next->pgd, new_asid, true); 629 630 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 631 } else { 632 /* The new ASID is already up to date. */ 633 load_new_mm_cr3(next->pgd, new_asid, false); 634 635 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 636 } 637 638 /* Make sure we write CR3 before loaded_mm. */ 639 barrier(); 640 641 this_cpu_write(cpu_tlbstate.loaded_mm, next); 642 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 643 644 if (next != real_prev) { 645 cr4_update_pce_mm(next); 646 switch_ldt(real_prev, next); 647 } 648 } 649 650 /* 651 * Please ignore the name of this function. It should be called 652 * switch_to_kernel_thread(). 653 * 654 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 655 * kernel thread or other context without an mm. Acceptable implementations 656 * include doing nothing whatsoever, switching to init_mm, or various clever 657 * lazy tricks to try to minimize TLB flushes. 658 * 659 * The scheduler reserves the right to call enter_lazy_tlb() several times 660 * in a row. It will notify us that we're going back to a real mm by 661 * calling switch_mm_irqs_off(). 662 */ 663 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 664 { 665 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 666 return; 667 668 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 669 } 670 671 /* 672 * Call this when reinitializing a CPU. It fixes the following potential 673 * problems: 674 * 675 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 676 * because the CPU was taken down and came back up with CR3's PCID 677 * bits clear. CPU hotplug can do this. 678 * 679 * - The TLB contains junk in slots corresponding to inactive ASIDs. 680 * 681 * - The CPU went so far out to lunch that it may have missed a TLB 682 * flush. 683 */ 684 void initialize_tlbstate_and_flush(void) 685 { 686 int i; 687 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 688 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 689 unsigned long cr3 = __read_cr3(); 690 691 /* Assert that CR3 already references the right mm. */ 692 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 693 694 /* 695 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 696 * doesn't work like other CR4 bits because it can only be set from 697 * long mode.) 698 */ 699 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 700 !(cr4_read_shadow() & X86_CR4_PCIDE)); 701 702 /* Force ASID 0 and force a TLB flush. */ 703 write_cr3(build_cr3(mm->pgd, 0)); 704 705 /* Reinitialize tlbstate. */ 706 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 707 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 708 this_cpu_write(cpu_tlbstate.next_asid, 1); 709 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 710 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 711 712 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 713 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 714 } 715 716 /* 717 * flush_tlb_func()'s memory ordering requirement is that any 718 * TLB fills that happen after we flush the TLB are ordered after we 719 * read active_mm's tlb_gen. We don't need any explicit barriers 720 * because all x86 flush operations are serializing and the 721 * atomic64_read operation won't be reordered by the compiler. 722 */ 723 static void flush_tlb_func(void *info) 724 { 725 /* 726 * We have three different tlb_gen values in here. They are: 727 * 728 * - mm_tlb_gen: the latest generation. 729 * - local_tlb_gen: the generation that this CPU has already caught 730 * up to. 731 * - f->new_tlb_gen: the generation that the requester of the flush 732 * wants us to catch up to. 733 */ 734 const struct flush_tlb_info *f = info; 735 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 736 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 737 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 738 bool local = smp_processor_id() == f->initiating_cpu; 739 unsigned long nr_invalidate = 0; 740 u64 mm_tlb_gen; 741 742 /* This code cannot presently handle being reentered. */ 743 VM_WARN_ON(!irqs_disabled()); 744 745 if (!local) { 746 inc_irq_stat(irq_tlb_count); 747 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 748 749 /* Can only happen on remote CPUs */ 750 if (f->mm && f->mm != loaded_mm) 751 return; 752 } 753 754 if (unlikely(loaded_mm == &init_mm)) 755 return; 756 757 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 758 loaded_mm->context.ctx_id); 759 760 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 761 /* 762 * We're in lazy mode. We need to at least flush our 763 * paging-structure cache to avoid speculatively reading 764 * garbage into our TLB. Since switching to init_mm is barely 765 * slower than a minimal flush, just switch to init_mm. 766 * 767 * This should be rare, with native_flush_tlb_multi() skipping 768 * IPIs to lazy TLB mode CPUs. 769 */ 770 switch_mm_irqs_off(NULL, &init_mm, NULL); 771 return; 772 } 773 774 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 775 f->new_tlb_gen <= local_tlb_gen)) { 776 /* 777 * The TLB is already up to date in respect to f->new_tlb_gen. 778 * While the core might be still behind mm_tlb_gen, checking 779 * mm_tlb_gen unnecessarily would have negative caching effects 780 * so avoid it. 781 */ 782 return; 783 } 784 785 /* 786 * Defer mm_tlb_gen reading as long as possible to avoid cache 787 * contention. 788 */ 789 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 790 791 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 792 /* 793 * There's nothing to do: we're already up to date. This can 794 * happen if two concurrent flushes happen -- the first flush to 795 * be handled can catch us all the way up, leaving no work for 796 * the second flush. 797 */ 798 goto done; 799 } 800 801 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 802 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 803 804 /* 805 * If we get to this point, we know that our TLB is out of date. 806 * This does not strictly imply that we need to flush (it's 807 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 808 * going to need to flush in the very near future, so we might 809 * as well get it over with. 810 * 811 * The only question is whether to do a full or partial flush. 812 * 813 * We do a partial flush if requested and two extra conditions 814 * are met: 815 * 816 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 817 * we've always done all needed flushes to catch up to 818 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 819 * f->new_tlb_gen == 3, then we know that the flush needed to bring 820 * us up to date for tlb_gen 3 is the partial flush we're 821 * processing. 822 * 823 * As an example of why this check is needed, suppose that there 824 * are two concurrent flushes. The first is a full flush that 825 * changes context.tlb_gen from 1 to 2. The second is a partial 826 * flush that changes context.tlb_gen from 2 to 3. If they get 827 * processed on this CPU in reverse order, we'll see 828 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 829 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 830 * 3, we'd be break the invariant: we'd update local_tlb_gen above 831 * 1 without the full flush that's needed for tlb_gen 2. 832 * 833 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 834 * Partial TLB flushes are not all that much cheaper than full TLB 835 * flushes, so it seems unlikely that it would be a performance win 836 * to do a partial flush if that won't bring our TLB fully up to 837 * date. By doing a full flush instead, we can increase 838 * local_tlb_gen all the way to mm_tlb_gen and we can probably 839 * avoid another flush in the very near future. 840 */ 841 if (f->end != TLB_FLUSH_ALL && 842 f->new_tlb_gen == local_tlb_gen + 1 && 843 f->new_tlb_gen == mm_tlb_gen) { 844 /* Partial flush */ 845 unsigned long addr = f->start; 846 847 /* Partial flush cannot have invalid generations */ 848 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 849 850 /* Partial flush must have valid mm */ 851 VM_WARN_ON(f->mm == NULL); 852 853 nr_invalidate = (f->end - f->start) >> f->stride_shift; 854 855 while (addr < f->end) { 856 flush_tlb_one_user(addr); 857 addr += 1UL << f->stride_shift; 858 } 859 if (local) 860 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 861 } else { 862 /* Full flush. */ 863 nr_invalidate = TLB_FLUSH_ALL; 864 865 flush_tlb_local(); 866 if (local) 867 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 868 } 869 870 /* Both paths above update our state to mm_tlb_gen. */ 871 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 872 873 /* Tracing is done in a unified manner to reduce the code size */ 874 done: 875 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 876 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 877 TLB_LOCAL_MM_SHOOTDOWN, 878 nr_invalidate); 879 } 880 881 static bool tlb_is_not_lazy(int cpu, void *data) 882 { 883 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 884 } 885 886 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 887 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 888 889 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 890 const struct flush_tlb_info *info) 891 { 892 /* 893 * Do accounting and tracing. Note that there are (and have always been) 894 * cases in which a remote TLB flush will be traced, but eventually 895 * would not happen. 896 */ 897 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 898 if (info->end == TLB_FLUSH_ALL) 899 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 900 else 901 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 902 (info->end - info->start) >> PAGE_SHIFT); 903 904 /* 905 * If no page tables were freed, we can skip sending IPIs to 906 * CPUs in lazy TLB mode. They will flush the CPU themselves 907 * at the next context switch. 908 * 909 * However, if page tables are getting freed, we need to send the 910 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 911 * up on the new contents of what used to be page tables, while 912 * doing a speculative memory access. 913 */ 914 if (info->freed_tables) 915 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 916 else 917 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func, 918 (void *)info, 1, cpumask); 919 } 920 921 void flush_tlb_multi(const struct cpumask *cpumask, 922 const struct flush_tlb_info *info) 923 { 924 __flush_tlb_multi(cpumask, info); 925 } 926 927 /* 928 * See Documentation/x86/tlb.rst for details. We choose 33 929 * because it is large enough to cover the vast majority (at 930 * least 95%) of allocations, and is small enough that we are 931 * confident it will not cause too much overhead. Each single 932 * flush is about 100 ns, so this caps the maximum overhead at 933 * _about_ 3,000 ns. 934 * 935 * This is in units of pages. 936 */ 937 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 938 939 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 940 941 #ifdef CONFIG_DEBUG_VM 942 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 943 #endif 944 945 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 946 unsigned long start, unsigned long end, 947 unsigned int stride_shift, bool freed_tables, 948 u64 new_tlb_gen) 949 { 950 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 951 952 #ifdef CONFIG_DEBUG_VM 953 /* 954 * Ensure that the following code is non-reentrant and flush_tlb_info 955 * is not overwritten. This means no TLB flushing is initiated by 956 * interrupt handlers and machine-check exception handlers. 957 */ 958 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 959 #endif 960 961 info->start = start; 962 info->end = end; 963 info->mm = mm; 964 info->stride_shift = stride_shift; 965 info->freed_tables = freed_tables; 966 info->new_tlb_gen = new_tlb_gen; 967 info->initiating_cpu = smp_processor_id(); 968 969 return info; 970 } 971 972 static void put_flush_tlb_info(void) 973 { 974 #ifdef CONFIG_DEBUG_VM 975 /* Complete reentrancy prevention checks */ 976 barrier(); 977 this_cpu_dec(flush_tlb_info_idx); 978 #endif 979 } 980 981 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 982 unsigned long end, unsigned int stride_shift, 983 bool freed_tables) 984 { 985 struct flush_tlb_info *info; 986 u64 new_tlb_gen; 987 int cpu; 988 989 cpu = get_cpu(); 990 991 /* Should we flush just the requested range? */ 992 if ((end == TLB_FLUSH_ALL) || 993 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 994 start = 0; 995 end = TLB_FLUSH_ALL; 996 } 997 998 /* This is also a barrier that synchronizes with switch_mm(). */ 999 new_tlb_gen = inc_mm_tlb_gen(mm); 1000 1001 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1002 new_tlb_gen); 1003 1004 /* 1005 * flush_tlb_multi() is not optimized for the common case in which only 1006 * a local TLB flush is needed. Optimize this use-case by calling 1007 * flush_tlb_func_local() directly in this case. 1008 */ 1009 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1010 flush_tlb_multi(mm_cpumask(mm), info); 1011 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1012 lockdep_assert_irqs_enabled(); 1013 local_irq_disable(); 1014 flush_tlb_func(info); 1015 local_irq_enable(); 1016 } 1017 1018 put_flush_tlb_info(); 1019 put_cpu(); 1020 } 1021 1022 1023 static void do_flush_tlb_all(void *info) 1024 { 1025 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1026 __flush_tlb_all(); 1027 } 1028 1029 void flush_tlb_all(void) 1030 { 1031 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1032 on_each_cpu(do_flush_tlb_all, NULL, 1); 1033 } 1034 1035 static void do_kernel_range_flush(void *info) 1036 { 1037 struct flush_tlb_info *f = info; 1038 unsigned long addr; 1039 1040 /* flush range by one by one 'invlpg' */ 1041 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1042 flush_tlb_one_kernel(addr); 1043 } 1044 1045 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1046 { 1047 /* Balance as user space task's flush, a bit conservative */ 1048 if (end == TLB_FLUSH_ALL || 1049 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 1050 on_each_cpu(do_flush_tlb_all, NULL, 1); 1051 } else { 1052 struct flush_tlb_info *info; 1053 1054 preempt_disable(); 1055 info = get_flush_tlb_info(NULL, start, end, 0, false, 1056 TLB_GENERATION_INVALID); 1057 1058 on_each_cpu(do_kernel_range_flush, info, 1); 1059 1060 put_flush_tlb_info(); 1061 preempt_enable(); 1062 } 1063 } 1064 1065 /* 1066 * This can be used from process context to figure out what the value of 1067 * CR3 is without needing to do a (slow) __read_cr3(). 1068 * 1069 * It's intended to be used for code like KVM that sneakily changes CR3 1070 * and needs to restore it. It needs to be used very carefully. 1071 */ 1072 unsigned long __get_current_cr3_fast(void) 1073 { 1074 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1075 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1076 1077 /* For now, be very restrictive about when this can be called. */ 1078 VM_WARN_ON(in_nmi() || preemptible()); 1079 1080 VM_BUG_ON(cr3 != __read_cr3()); 1081 return cr3; 1082 } 1083 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1084 1085 /* 1086 * Flush one page in the kernel mapping 1087 */ 1088 void flush_tlb_one_kernel(unsigned long addr) 1089 { 1090 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1091 1092 /* 1093 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1094 * paravirt equivalent. Even with PCID, this is sufficient: we only 1095 * use PCID if we also use global PTEs for the kernel mapping, and 1096 * INVLPG flushes global translations across all address spaces. 1097 * 1098 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1099 * __flush_tlb_one_user() will flush the given address for the current 1100 * kernel address space and for its usermode counterpart, but it does 1101 * not flush it for other address spaces. 1102 */ 1103 flush_tlb_one_user(addr); 1104 1105 if (!static_cpu_has(X86_FEATURE_PTI)) 1106 return; 1107 1108 /* 1109 * See above. We need to propagate the flush to all other address 1110 * spaces. In principle, we only need to propagate it to kernelmode 1111 * address spaces, but the extra bookkeeping we would need is not 1112 * worth it. 1113 */ 1114 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1115 } 1116 1117 /* 1118 * Flush one page in the user mapping 1119 */ 1120 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1121 { 1122 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1123 1124 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1125 1126 if (!static_cpu_has(X86_FEATURE_PTI)) 1127 return; 1128 1129 /* 1130 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1131 * Just use invalidate_user_asid() in case we are called early. 1132 */ 1133 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1134 invalidate_user_asid(loaded_mm_asid); 1135 else 1136 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1137 } 1138 1139 void flush_tlb_one_user(unsigned long addr) 1140 { 1141 __flush_tlb_one_user(addr); 1142 } 1143 1144 /* 1145 * Flush everything 1146 */ 1147 STATIC_NOPV void native_flush_tlb_global(void) 1148 { 1149 unsigned long flags; 1150 1151 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1152 /* 1153 * Using INVPCID is considerably faster than a pair of writes 1154 * to CR4 sandwiched inside an IRQ flag save/restore. 1155 * 1156 * Note, this works with CR4.PCIDE=0 or 1. 1157 */ 1158 invpcid_flush_all(); 1159 return; 1160 } 1161 1162 /* 1163 * Read-modify-write to CR4 - protect it from preemption and 1164 * from interrupts. (Use the raw variant because this code can 1165 * be called from deep inside debugging code.) 1166 */ 1167 raw_local_irq_save(flags); 1168 1169 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1170 1171 raw_local_irq_restore(flags); 1172 } 1173 1174 /* 1175 * Flush the entire current user mapping 1176 */ 1177 STATIC_NOPV void native_flush_tlb_local(void) 1178 { 1179 /* 1180 * Preemption or interrupts must be disabled to protect the access 1181 * to the per CPU variable and to prevent being preempted between 1182 * read_cr3() and write_cr3(). 1183 */ 1184 WARN_ON_ONCE(preemptible()); 1185 1186 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1187 1188 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1189 native_write_cr3(__native_read_cr3()); 1190 } 1191 1192 void flush_tlb_local(void) 1193 { 1194 __flush_tlb_local(); 1195 } 1196 1197 /* 1198 * Flush everything 1199 */ 1200 void __flush_tlb_all(void) 1201 { 1202 /* 1203 * This is to catch users with enabled preemption and the PGE feature 1204 * and don't trigger the warning in __native_flush_tlb(). 1205 */ 1206 VM_WARN_ON_ONCE(preemptible()); 1207 1208 if (boot_cpu_has(X86_FEATURE_PGE)) { 1209 __flush_tlb_global(); 1210 } else { 1211 /* 1212 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1213 */ 1214 flush_tlb_local(); 1215 } 1216 } 1217 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1218 1219 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1220 { 1221 struct flush_tlb_info *info; 1222 1223 int cpu = get_cpu(); 1224 1225 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1226 TLB_GENERATION_INVALID); 1227 /* 1228 * flush_tlb_multi() is not optimized for the common case in which only 1229 * a local TLB flush is needed. Optimize this use-case by calling 1230 * flush_tlb_func_local() directly in this case. 1231 */ 1232 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1233 flush_tlb_multi(&batch->cpumask, info); 1234 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1235 lockdep_assert_irqs_enabled(); 1236 local_irq_disable(); 1237 flush_tlb_func(info); 1238 local_irq_enable(); 1239 } 1240 1241 cpumask_clear(&batch->cpumask); 1242 1243 put_flush_tlb_info(); 1244 put_cpu(); 1245 } 1246 1247 /* 1248 * Blindly accessing user memory from NMI context can be dangerous 1249 * if we're in the middle of switching the current user task or 1250 * switching the loaded mm. It can also be dangerous if we 1251 * interrupted some kernel code that was temporarily using a 1252 * different mm. 1253 */ 1254 bool nmi_uaccess_okay(void) 1255 { 1256 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1257 struct mm_struct *current_mm = current->mm; 1258 1259 VM_WARN_ON_ONCE(!loaded_mm); 1260 1261 /* 1262 * The condition we want to check is 1263 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1264 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1265 * is supposed to be reasonably fast. 1266 * 1267 * Instead, we check the almost equivalent but somewhat conservative 1268 * condition below, and we rely on the fact that switch_mm_irqs_off() 1269 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1270 */ 1271 if (loaded_mm != current_mm) 1272 return false; 1273 1274 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1275 1276 return true; 1277 } 1278 1279 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1280 size_t count, loff_t *ppos) 1281 { 1282 char buf[32]; 1283 unsigned int len; 1284 1285 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1286 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1287 } 1288 1289 static ssize_t tlbflush_write_file(struct file *file, 1290 const char __user *user_buf, size_t count, loff_t *ppos) 1291 { 1292 char buf[32]; 1293 ssize_t len; 1294 int ceiling; 1295 1296 len = min(count, sizeof(buf) - 1); 1297 if (copy_from_user(buf, user_buf, len)) 1298 return -EFAULT; 1299 1300 buf[len] = '\0'; 1301 if (kstrtoint(buf, 0, &ceiling)) 1302 return -EINVAL; 1303 1304 if (ceiling < 0) 1305 return -EINVAL; 1306 1307 tlb_single_page_flush_ceiling = ceiling; 1308 return count; 1309 } 1310 1311 static const struct file_operations fops_tlbflush = { 1312 .read = tlbflush_read_file, 1313 .write = tlbflush_write_file, 1314 .llseek = default_llseek, 1315 }; 1316 1317 static int __init create_tlb_single_page_flush_ceiling(void) 1318 { 1319 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1320 arch_debugfs_dir, NULL, &fops_tlbflush); 1321 return 0; 1322 } 1323 late_initcall(create_tlb_single_page_flush_ceiling); 1324