1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 #include <linux/debugfs.h> 10 11 #include <asm/tlbflush.h> 12 #include <asm/mmu_context.h> 13 #include <asm/nospec-branch.h> 14 #include <asm/cache.h> 15 #include <asm/apic.h> 16 #include <asm/uv/uv.h> 17 18 #include "mm_internal.h" 19 20 /* 21 * TLB flushing, formerly SMP-only 22 * c/o Linus Torvalds. 23 * 24 * These mean you can really definitely utterly forget about 25 * writing to user space from interrupts. (Its not allowed anyway). 26 * 27 * Optimizations Manfred Spraul <manfred@colorfullife.com> 28 * 29 * More scalable flush, from Andi Kleen 30 * 31 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 32 */ 33 34 /* 35 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 36 * stored in cpu_tlb_state.last_user_mm_ibpb. 37 */ 38 #define LAST_USER_MM_IBPB 0x1UL 39 40 /* 41 * We get here when we do something requiring a TLB invalidation 42 * but could not go invalidate all of the contexts. We do the 43 * necessary invalidation by clearing out the 'ctx_id' which 44 * forces a TLB flush when the context is loaded. 45 */ 46 static void clear_asid_other(void) 47 { 48 u16 asid; 49 50 /* 51 * This is only expected to be set if we have disabled 52 * kernel _PAGE_GLOBAL pages. 53 */ 54 if (!static_cpu_has(X86_FEATURE_PTI)) { 55 WARN_ON_ONCE(1); 56 return; 57 } 58 59 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 60 /* Do not need to flush the current asid */ 61 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 62 continue; 63 /* 64 * Make sure the next time we go to switch to 65 * this asid, we do a flush: 66 */ 67 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 68 } 69 this_cpu_write(cpu_tlbstate.invalidate_other, false); 70 } 71 72 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 73 74 75 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 76 u16 *new_asid, bool *need_flush) 77 { 78 u16 asid; 79 80 if (!static_cpu_has(X86_FEATURE_PCID)) { 81 *new_asid = 0; 82 *need_flush = true; 83 return; 84 } 85 86 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 87 clear_asid_other(); 88 89 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 90 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 91 next->context.ctx_id) 92 continue; 93 94 *new_asid = asid; 95 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 96 next_tlb_gen); 97 return; 98 } 99 100 /* 101 * We don't currently own an ASID slot on this CPU. 102 * Allocate a slot. 103 */ 104 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 105 if (*new_asid >= TLB_NR_DYN_ASIDS) { 106 *new_asid = 0; 107 this_cpu_write(cpu_tlbstate.next_asid, 1); 108 } 109 *need_flush = true; 110 } 111 112 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 113 { 114 unsigned long new_mm_cr3; 115 116 if (need_flush) { 117 invalidate_user_asid(new_asid); 118 new_mm_cr3 = build_cr3(pgdir, new_asid); 119 } else { 120 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 121 } 122 123 /* 124 * Caution: many callers of this function expect 125 * that load_cr3() is serializing and orders TLB 126 * fills with respect to the mm_cpumask writes. 127 */ 128 write_cr3(new_mm_cr3); 129 } 130 131 void leave_mm(int cpu) 132 { 133 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 134 135 /* 136 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 137 * If so, our callers still expect us to flush the TLB, but there 138 * aren't any user TLB entries in init_mm to worry about. 139 * 140 * This needs to happen before any other sanity checks due to 141 * intel_idle's shenanigans. 142 */ 143 if (loaded_mm == &init_mm) 144 return; 145 146 /* Warn if we're not lazy. */ 147 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 148 149 switch_mm(NULL, &init_mm, NULL); 150 } 151 EXPORT_SYMBOL_GPL(leave_mm); 152 153 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 154 struct task_struct *tsk) 155 { 156 unsigned long flags; 157 158 local_irq_save(flags); 159 switch_mm_irqs_off(prev, next, tsk); 160 local_irq_restore(flags); 161 } 162 163 static void sync_current_stack_to_mm(struct mm_struct *mm) 164 { 165 unsigned long sp = current_stack_pointer; 166 pgd_t *pgd = pgd_offset(mm, sp); 167 168 if (pgtable_l5_enabled()) { 169 if (unlikely(pgd_none(*pgd))) { 170 pgd_t *pgd_ref = pgd_offset_k(sp); 171 172 set_pgd(pgd, *pgd_ref); 173 } 174 } else { 175 /* 176 * "pgd" is faked. The top level entries are "p4d"s, so sync 177 * the p4d. This compiles to approximately the same code as 178 * the 5-level case. 179 */ 180 p4d_t *p4d = p4d_offset(pgd, sp); 181 182 if (unlikely(p4d_none(*p4d))) { 183 pgd_t *pgd_ref = pgd_offset_k(sp); 184 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 185 186 set_p4d(p4d, *p4d_ref); 187 } 188 } 189 } 190 191 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 192 { 193 unsigned long next_tif = task_thread_info(next)->flags; 194 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 195 196 return (unsigned long)next->mm | ibpb; 197 } 198 199 static void cond_ibpb(struct task_struct *next) 200 { 201 if (!next || !next->mm) 202 return; 203 204 /* 205 * Both, the conditional and the always IBPB mode use the mm 206 * pointer to avoid the IBPB when switching between tasks of the 207 * same process. Using the mm pointer instead of mm->context.ctx_id 208 * opens a hypothetical hole vs. mm_struct reuse, which is more or 209 * less impossible to control by an attacker. Aside of that it 210 * would only affect the first schedule so the theoretically 211 * exposed data is not really interesting. 212 */ 213 if (static_branch_likely(&switch_mm_cond_ibpb)) { 214 unsigned long prev_mm, next_mm; 215 216 /* 217 * This is a bit more complex than the always mode because 218 * it has to handle two cases: 219 * 220 * 1) Switch from a user space task (potential attacker) 221 * which has TIF_SPEC_IB set to a user space task 222 * (potential victim) which has TIF_SPEC_IB not set. 223 * 224 * 2) Switch from a user space task (potential attacker) 225 * which has TIF_SPEC_IB not set to a user space task 226 * (potential victim) which has TIF_SPEC_IB set. 227 * 228 * This could be done by unconditionally issuing IBPB when 229 * a task which has TIF_SPEC_IB set is either scheduled in 230 * or out. Though that results in two flushes when: 231 * 232 * - the same user space task is scheduled out and later 233 * scheduled in again and only a kernel thread ran in 234 * between. 235 * 236 * - a user space task belonging to the same process is 237 * scheduled in after a kernel thread ran in between 238 * 239 * - a user space task belonging to the same process is 240 * scheduled in immediately. 241 * 242 * Optimize this with reasonably small overhead for the 243 * above cases. Mangle the TIF_SPEC_IB bit into the mm 244 * pointer of the incoming task which is stored in 245 * cpu_tlbstate.last_user_mm_ibpb for comparison. 246 */ 247 next_mm = mm_mangle_tif_spec_ib(next); 248 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 249 250 /* 251 * Issue IBPB only if the mm's are different and one or 252 * both have the IBPB bit set. 253 */ 254 if (next_mm != prev_mm && 255 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 256 indirect_branch_prediction_barrier(); 257 258 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 259 } 260 261 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 262 /* 263 * Only flush when switching to a user space task with a 264 * different context than the user space task which ran 265 * last on this CPU. 266 */ 267 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 268 indirect_branch_prediction_barrier(); 269 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 270 } 271 } 272 } 273 274 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 275 struct task_struct *tsk) 276 { 277 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 278 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 279 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 280 unsigned cpu = smp_processor_id(); 281 u64 next_tlb_gen; 282 bool need_flush; 283 u16 new_asid; 284 285 /* 286 * NB: The scheduler will call us with prev == next when switching 287 * from lazy TLB mode to normal mode if active_mm isn't changing. 288 * When this happens, we don't assume that CR3 (and hence 289 * cpu_tlbstate.loaded_mm) matches next. 290 * 291 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 292 */ 293 294 /* We don't want flush_tlb_func_* to run concurrently with us. */ 295 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 296 WARN_ON_ONCE(!irqs_disabled()); 297 298 /* 299 * Verify that CR3 is what we think it is. This will catch 300 * hypothetical buggy code that directly switches to swapper_pg_dir 301 * without going through leave_mm() / switch_mm_irqs_off() or that 302 * does something like write_cr3(read_cr3_pa()). 303 * 304 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 305 * isn't free. 306 */ 307 #ifdef CONFIG_DEBUG_VM 308 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 309 /* 310 * If we were to BUG here, we'd be very likely to kill 311 * the system so hard that we don't see the call trace. 312 * Try to recover instead by ignoring the error and doing 313 * a global flush to minimize the chance of corruption. 314 * 315 * (This is far from being a fully correct recovery. 316 * Architecturally, the CPU could prefetch something 317 * back into an incorrect ASID slot and leave it there 318 * to cause trouble down the road. It's better than 319 * nothing, though.) 320 */ 321 __flush_tlb_all(); 322 } 323 #endif 324 this_cpu_write(cpu_tlbstate.is_lazy, false); 325 326 /* 327 * The membarrier system call requires a full memory barrier and 328 * core serialization before returning to user-space, after 329 * storing to rq->curr. Writing to CR3 provides that full 330 * memory barrier and core serializing instruction. 331 */ 332 if (real_prev == next) { 333 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 334 next->context.ctx_id); 335 336 /* 337 * Even in lazy TLB mode, the CPU should stay set in the 338 * mm_cpumask. The TLB shootdown code can figure out from 339 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 340 */ 341 if (WARN_ON_ONCE(real_prev != &init_mm && 342 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 343 cpumask_set_cpu(cpu, mm_cpumask(next)); 344 345 /* 346 * If the CPU is not in lazy TLB mode, we are just switching 347 * from one thread in a process to another thread in the same 348 * process. No TLB flush required. 349 */ 350 if (!was_lazy) 351 return; 352 353 /* 354 * Read the tlb_gen to check whether a flush is needed. 355 * If the TLB is up to date, just use it. 356 * The barrier synchronizes with the tlb_gen increment in 357 * the TLB shootdown code. 358 */ 359 smp_mb(); 360 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 361 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 362 next_tlb_gen) 363 return; 364 365 /* 366 * TLB contents went out of date while we were in lazy 367 * mode. Fall through to the TLB switching code below. 368 */ 369 new_asid = prev_asid; 370 need_flush = true; 371 } else { 372 /* 373 * Avoid user/user BTB poisoning by flushing the branch 374 * predictor when switching between processes. This stops 375 * one process from doing Spectre-v2 attacks on another. 376 */ 377 cond_ibpb(tsk); 378 379 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 380 /* 381 * If our current stack is in vmalloc space and isn't 382 * mapped in the new pgd, we'll double-fault. Forcibly 383 * map it. 384 */ 385 sync_current_stack_to_mm(next); 386 } 387 388 /* 389 * Stop remote flushes for the previous mm. 390 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 391 * but the bitmap manipulation can cause cache line contention. 392 */ 393 if (real_prev != &init_mm) { 394 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 395 mm_cpumask(real_prev))); 396 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 397 } 398 399 /* 400 * Start remote flushes and then read tlb_gen. 401 */ 402 if (next != &init_mm) 403 cpumask_set_cpu(cpu, mm_cpumask(next)); 404 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 405 406 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 407 408 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 409 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 410 barrier(); 411 } 412 413 if (need_flush) { 414 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 415 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 416 load_new_mm_cr3(next->pgd, new_asid, true); 417 418 /* 419 * NB: This gets called via leave_mm() in the idle path 420 * where RCU functions differently. Tracing normally 421 * uses RCU, so we need to use the _rcuidle variant. 422 * 423 * (There is no good reason for this. The idle code should 424 * be rearranged to call this before rcu_idle_enter().) 425 */ 426 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 427 } else { 428 /* The new ASID is already up to date. */ 429 load_new_mm_cr3(next->pgd, new_asid, false); 430 431 /* See above wrt _rcuidle. */ 432 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 433 } 434 435 /* Make sure we write CR3 before loaded_mm. */ 436 barrier(); 437 438 this_cpu_write(cpu_tlbstate.loaded_mm, next); 439 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 440 441 if (next != real_prev) { 442 load_mm_cr4(next); 443 switch_ldt(real_prev, next); 444 } 445 } 446 447 /* 448 * Please ignore the name of this function. It should be called 449 * switch_to_kernel_thread(). 450 * 451 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 452 * kernel thread or other context without an mm. Acceptable implementations 453 * include doing nothing whatsoever, switching to init_mm, or various clever 454 * lazy tricks to try to minimize TLB flushes. 455 * 456 * The scheduler reserves the right to call enter_lazy_tlb() several times 457 * in a row. It will notify us that we're going back to a real mm by 458 * calling switch_mm_irqs_off(). 459 */ 460 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 461 { 462 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 463 return; 464 465 this_cpu_write(cpu_tlbstate.is_lazy, true); 466 } 467 468 /* 469 * Call this when reinitializing a CPU. It fixes the following potential 470 * problems: 471 * 472 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 473 * because the CPU was taken down and came back up with CR3's PCID 474 * bits clear. CPU hotplug can do this. 475 * 476 * - The TLB contains junk in slots corresponding to inactive ASIDs. 477 * 478 * - The CPU went so far out to lunch that it may have missed a TLB 479 * flush. 480 */ 481 void initialize_tlbstate_and_flush(void) 482 { 483 int i; 484 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 485 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 486 unsigned long cr3 = __read_cr3(); 487 488 /* Assert that CR3 already references the right mm. */ 489 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 490 491 /* 492 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 493 * doesn't work like other CR4 bits because it can only be set from 494 * long mode.) 495 */ 496 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 497 !(cr4_read_shadow() & X86_CR4_PCIDE)); 498 499 /* Force ASID 0 and force a TLB flush. */ 500 write_cr3(build_cr3(mm->pgd, 0)); 501 502 /* Reinitialize tlbstate. */ 503 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 504 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 505 this_cpu_write(cpu_tlbstate.next_asid, 1); 506 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 507 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 508 509 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 510 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 511 } 512 513 /* 514 * flush_tlb_func_common()'s memory ordering requirement is that any 515 * TLB fills that happen after we flush the TLB are ordered after we 516 * read active_mm's tlb_gen. We don't need any explicit barriers 517 * because all x86 flush operations are serializing and the 518 * atomic64_read operation won't be reordered by the compiler. 519 */ 520 static void flush_tlb_func_common(const struct flush_tlb_info *f, 521 bool local, enum tlb_flush_reason reason) 522 { 523 /* 524 * We have three different tlb_gen values in here. They are: 525 * 526 * - mm_tlb_gen: the latest generation. 527 * - local_tlb_gen: the generation that this CPU has already caught 528 * up to. 529 * - f->new_tlb_gen: the generation that the requester of the flush 530 * wants us to catch up to. 531 */ 532 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 533 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 534 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 535 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 536 537 /* This code cannot presently handle being reentered. */ 538 VM_WARN_ON(!irqs_disabled()); 539 540 if (unlikely(loaded_mm == &init_mm)) 541 return; 542 543 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 544 loaded_mm->context.ctx_id); 545 546 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 547 /* 548 * We're in lazy mode. We need to at least flush our 549 * paging-structure cache to avoid speculatively reading 550 * garbage into our TLB. Since switching to init_mm is barely 551 * slower than a minimal flush, just switch to init_mm. 552 * 553 * This should be rare, with native_flush_tlb_others skipping 554 * IPIs to lazy TLB mode CPUs. 555 */ 556 switch_mm_irqs_off(NULL, &init_mm, NULL); 557 return; 558 } 559 560 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 561 /* 562 * There's nothing to do: we're already up to date. This can 563 * happen if two concurrent flushes happen -- the first flush to 564 * be handled can catch us all the way up, leaving no work for 565 * the second flush. 566 */ 567 trace_tlb_flush(reason, 0); 568 return; 569 } 570 571 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 572 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 573 574 /* 575 * If we get to this point, we know that our TLB is out of date. 576 * This does not strictly imply that we need to flush (it's 577 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 578 * going to need to flush in the very near future, so we might 579 * as well get it over with. 580 * 581 * The only question is whether to do a full or partial flush. 582 * 583 * We do a partial flush if requested and two extra conditions 584 * are met: 585 * 586 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 587 * we've always done all needed flushes to catch up to 588 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 589 * f->new_tlb_gen == 3, then we know that the flush needed to bring 590 * us up to date for tlb_gen 3 is the partial flush we're 591 * processing. 592 * 593 * As an example of why this check is needed, suppose that there 594 * are two concurrent flushes. The first is a full flush that 595 * changes context.tlb_gen from 1 to 2. The second is a partial 596 * flush that changes context.tlb_gen from 2 to 3. If they get 597 * processed on this CPU in reverse order, we'll see 598 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 599 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 600 * 3, we'd be break the invariant: we'd update local_tlb_gen above 601 * 1 without the full flush that's needed for tlb_gen 2. 602 * 603 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 604 * Partial TLB flushes are not all that much cheaper than full TLB 605 * flushes, so it seems unlikely that it would be a performance win 606 * to do a partial flush if that won't bring our TLB fully up to 607 * date. By doing a full flush instead, we can increase 608 * local_tlb_gen all the way to mm_tlb_gen and we can probably 609 * avoid another flush in the very near future. 610 */ 611 if (f->end != TLB_FLUSH_ALL && 612 f->new_tlb_gen == local_tlb_gen + 1 && 613 f->new_tlb_gen == mm_tlb_gen) { 614 /* Partial flush */ 615 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 616 unsigned long addr = f->start; 617 618 while (addr < f->end) { 619 __flush_tlb_one_user(addr); 620 addr += 1UL << f->stride_shift; 621 } 622 if (local) 623 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 624 trace_tlb_flush(reason, nr_invalidate); 625 } else { 626 /* Full flush. */ 627 local_flush_tlb(); 628 if (local) 629 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 630 trace_tlb_flush(reason, TLB_FLUSH_ALL); 631 } 632 633 /* Both paths above update our state to mm_tlb_gen. */ 634 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 635 } 636 637 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 638 { 639 const struct flush_tlb_info *f = info; 640 641 flush_tlb_func_common(f, true, reason); 642 } 643 644 static void flush_tlb_func_remote(void *info) 645 { 646 const struct flush_tlb_info *f = info; 647 648 inc_irq_stat(irq_tlb_count); 649 650 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 651 return; 652 653 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 654 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 655 } 656 657 static bool tlb_is_not_lazy(int cpu, void *data) 658 { 659 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 660 } 661 662 void native_flush_tlb_others(const struct cpumask *cpumask, 663 const struct flush_tlb_info *info) 664 { 665 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 666 if (info->end == TLB_FLUSH_ALL) 667 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 668 else 669 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 670 (info->end - info->start) >> PAGE_SHIFT); 671 672 if (is_uv_system()) { 673 /* 674 * This whole special case is confused. UV has a "Broadcast 675 * Assist Unit", which seems to be a fancy way to send IPIs. 676 * Back when x86 used an explicit TLB flush IPI, UV was 677 * optimized to use its own mechanism. These days, x86 uses 678 * smp_call_function_many(), but UV still uses a manual IPI, 679 * and that IPI's action is out of date -- it does a manual 680 * flush instead of calling flush_tlb_func_remote(). This 681 * means that the percpu tlb_gen variables won't be updated 682 * and we'll do pointless flushes on future context switches. 683 * 684 * Rather than hooking native_flush_tlb_others() here, I think 685 * that UV should be updated so that smp_call_function_many(), 686 * etc, are optimal on UV. 687 */ 688 unsigned int cpu; 689 690 cpu = smp_processor_id(); 691 cpumask = uv_flush_tlb_others(cpumask, info); 692 if (cpumask) 693 smp_call_function_many(cpumask, flush_tlb_func_remote, 694 (void *)info, 1); 695 return; 696 } 697 698 /* 699 * If no page tables were freed, we can skip sending IPIs to 700 * CPUs in lazy TLB mode. They will flush the CPU themselves 701 * at the next context switch. 702 * 703 * However, if page tables are getting freed, we need to send the 704 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 705 * up on the new contents of what used to be page tables, while 706 * doing a speculative memory access. 707 */ 708 if (info->freed_tables) 709 smp_call_function_many(cpumask, flush_tlb_func_remote, 710 (void *)info, 1); 711 else 712 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 713 (void *)info, 1, GFP_ATOMIC, cpumask); 714 } 715 716 /* 717 * See Documentation/x86/tlb.txt for details. We choose 33 718 * because it is large enough to cover the vast majority (at 719 * least 95%) of allocations, and is small enough that we are 720 * confident it will not cause too much overhead. Each single 721 * flush is about 100 ns, so this caps the maximum overhead at 722 * _about_ 3,000 ns. 723 * 724 * This is in units of pages. 725 */ 726 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 727 728 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 729 unsigned long end, unsigned int stride_shift, 730 bool freed_tables) 731 { 732 int cpu; 733 734 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = { 735 .mm = mm, 736 .stride_shift = stride_shift, 737 .freed_tables = freed_tables, 738 }; 739 740 cpu = get_cpu(); 741 742 /* This is also a barrier that synchronizes with switch_mm(). */ 743 info.new_tlb_gen = inc_mm_tlb_gen(mm); 744 745 /* Should we flush just the requested range? */ 746 if ((end != TLB_FLUSH_ALL) && 747 ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) { 748 info.start = start; 749 info.end = end; 750 } else { 751 info.start = 0UL; 752 info.end = TLB_FLUSH_ALL; 753 } 754 755 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 756 VM_WARN_ON(irqs_disabled()); 757 local_irq_disable(); 758 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 759 local_irq_enable(); 760 } 761 762 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 763 flush_tlb_others(mm_cpumask(mm), &info); 764 765 put_cpu(); 766 } 767 768 769 static void do_flush_tlb_all(void *info) 770 { 771 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 772 __flush_tlb_all(); 773 } 774 775 void flush_tlb_all(void) 776 { 777 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 778 on_each_cpu(do_flush_tlb_all, NULL, 1); 779 } 780 781 static void do_kernel_range_flush(void *info) 782 { 783 struct flush_tlb_info *f = info; 784 unsigned long addr; 785 786 /* flush range by one by one 'invlpg' */ 787 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 788 __flush_tlb_one_kernel(addr); 789 } 790 791 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 792 { 793 794 /* Balance as user space task's flush, a bit conservative */ 795 if (end == TLB_FLUSH_ALL || 796 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 797 on_each_cpu(do_flush_tlb_all, NULL, 1); 798 } else { 799 struct flush_tlb_info info; 800 info.start = start; 801 info.end = end; 802 on_each_cpu(do_kernel_range_flush, &info, 1); 803 } 804 } 805 806 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 807 { 808 struct flush_tlb_info info = { 809 .mm = NULL, 810 .start = 0UL, 811 .end = TLB_FLUSH_ALL, 812 }; 813 814 int cpu = get_cpu(); 815 816 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 817 VM_WARN_ON(irqs_disabled()); 818 local_irq_disable(); 819 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 820 local_irq_enable(); 821 } 822 823 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 824 flush_tlb_others(&batch->cpumask, &info); 825 826 cpumask_clear(&batch->cpumask); 827 828 put_cpu(); 829 } 830 831 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 832 size_t count, loff_t *ppos) 833 { 834 char buf[32]; 835 unsigned int len; 836 837 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 838 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 839 } 840 841 static ssize_t tlbflush_write_file(struct file *file, 842 const char __user *user_buf, size_t count, loff_t *ppos) 843 { 844 char buf[32]; 845 ssize_t len; 846 int ceiling; 847 848 len = min(count, sizeof(buf) - 1); 849 if (copy_from_user(buf, user_buf, len)) 850 return -EFAULT; 851 852 buf[len] = '\0'; 853 if (kstrtoint(buf, 0, &ceiling)) 854 return -EINVAL; 855 856 if (ceiling < 0) 857 return -EINVAL; 858 859 tlb_single_page_flush_ceiling = ceiling; 860 return count; 861 } 862 863 static const struct file_operations fops_tlbflush = { 864 .read = tlbflush_read_file, 865 .write = tlbflush_write_file, 866 .llseek = default_llseek, 867 }; 868 869 static int __init create_tlb_single_page_flush_ceiling(void) 870 { 871 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 872 arch_debugfs_dir, NULL, &fops_tlbflush); 873 return 0; 874 } 875 late_initcall(create_tlb_single_page_flush_ceiling); 876