1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/uv/uv.h> 18 19 #include "mm_internal.h" 20 21 /* 22 * TLB flushing, formerly SMP-only 23 * c/o Linus Torvalds. 24 * 25 * These mean you can really definitely utterly forget about 26 * writing to user space from interrupts. (Its not allowed anyway). 27 * 28 * Optimizations Manfred Spraul <manfred@colorfullife.com> 29 * 30 * More scalable flush, from Andi Kleen 31 * 32 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 33 */ 34 35 /* 36 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 37 * stored in cpu_tlb_state.last_user_mm_ibpb. 38 */ 39 #define LAST_USER_MM_IBPB 0x1UL 40 41 /* 42 * We get here when we do something requiring a TLB invalidation 43 * but could not go invalidate all of the contexts. We do the 44 * necessary invalidation by clearing out the 'ctx_id' which 45 * forces a TLB flush when the context is loaded. 46 */ 47 static void clear_asid_other(void) 48 { 49 u16 asid; 50 51 /* 52 * This is only expected to be set if we have disabled 53 * kernel _PAGE_GLOBAL pages. 54 */ 55 if (!static_cpu_has(X86_FEATURE_PTI)) { 56 WARN_ON_ONCE(1); 57 return; 58 } 59 60 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 61 /* Do not need to flush the current asid */ 62 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 63 continue; 64 /* 65 * Make sure the next time we go to switch to 66 * this asid, we do a flush: 67 */ 68 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 69 } 70 this_cpu_write(cpu_tlbstate.invalidate_other, false); 71 } 72 73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 74 75 76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 77 u16 *new_asid, bool *need_flush) 78 { 79 u16 asid; 80 81 if (!static_cpu_has(X86_FEATURE_PCID)) { 82 *new_asid = 0; 83 *need_flush = true; 84 return; 85 } 86 87 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 88 clear_asid_other(); 89 90 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 91 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 92 next->context.ctx_id) 93 continue; 94 95 *new_asid = asid; 96 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 97 next_tlb_gen); 98 return; 99 } 100 101 /* 102 * We don't currently own an ASID slot on this CPU. 103 * Allocate a slot. 104 */ 105 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 106 if (*new_asid >= TLB_NR_DYN_ASIDS) { 107 *new_asid = 0; 108 this_cpu_write(cpu_tlbstate.next_asid, 1); 109 } 110 *need_flush = true; 111 } 112 113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 114 { 115 unsigned long new_mm_cr3; 116 117 if (need_flush) { 118 invalidate_user_asid(new_asid); 119 new_mm_cr3 = build_cr3(pgdir, new_asid); 120 } else { 121 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 122 } 123 124 /* 125 * Caution: many callers of this function expect 126 * that load_cr3() is serializing and orders TLB 127 * fills with respect to the mm_cpumask writes. 128 */ 129 write_cr3(new_mm_cr3); 130 } 131 132 void leave_mm(int cpu) 133 { 134 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 135 136 /* 137 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 138 * If so, our callers still expect us to flush the TLB, but there 139 * aren't any user TLB entries in init_mm to worry about. 140 * 141 * This needs to happen before any other sanity checks due to 142 * intel_idle's shenanigans. 143 */ 144 if (loaded_mm == &init_mm) 145 return; 146 147 /* Warn if we're not lazy. */ 148 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 149 150 switch_mm(NULL, &init_mm, NULL); 151 } 152 EXPORT_SYMBOL_GPL(leave_mm); 153 154 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 155 struct task_struct *tsk) 156 { 157 unsigned long flags; 158 159 local_irq_save(flags); 160 switch_mm_irqs_off(prev, next, tsk); 161 local_irq_restore(flags); 162 } 163 164 static void sync_current_stack_to_mm(struct mm_struct *mm) 165 { 166 unsigned long sp = current_stack_pointer; 167 pgd_t *pgd = pgd_offset(mm, sp); 168 169 if (pgtable_l5_enabled()) { 170 if (unlikely(pgd_none(*pgd))) { 171 pgd_t *pgd_ref = pgd_offset_k(sp); 172 173 set_pgd(pgd, *pgd_ref); 174 } 175 } else { 176 /* 177 * "pgd" is faked. The top level entries are "p4d"s, so sync 178 * the p4d. This compiles to approximately the same code as 179 * the 5-level case. 180 */ 181 p4d_t *p4d = p4d_offset(pgd, sp); 182 183 if (unlikely(p4d_none(*p4d))) { 184 pgd_t *pgd_ref = pgd_offset_k(sp); 185 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 186 187 set_p4d(p4d, *p4d_ref); 188 } 189 } 190 } 191 192 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 193 { 194 unsigned long next_tif = task_thread_info(next)->flags; 195 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 196 197 return (unsigned long)next->mm | ibpb; 198 } 199 200 static void cond_ibpb(struct task_struct *next) 201 { 202 if (!next || !next->mm) 203 return; 204 205 /* 206 * Both, the conditional and the always IBPB mode use the mm 207 * pointer to avoid the IBPB when switching between tasks of the 208 * same process. Using the mm pointer instead of mm->context.ctx_id 209 * opens a hypothetical hole vs. mm_struct reuse, which is more or 210 * less impossible to control by an attacker. Aside of that it 211 * would only affect the first schedule so the theoretically 212 * exposed data is not really interesting. 213 */ 214 if (static_branch_likely(&switch_mm_cond_ibpb)) { 215 unsigned long prev_mm, next_mm; 216 217 /* 218 * This is a bit more complex than the always mode because 219 * it has to handle two cases: 220 * 221 * 1) Switch from a user space task (potential attacker) 222 * which has TIF_SPEC_IB set to a user space task 223 * (potential victim) which has TIF_SPEC_IB not set. 224 * 225 * 2) Switch from a user space task (potential attacker) 226 * which has TIF_SPEC_IB not set to a user space task 227 * (potential victim) which has TIF_SPEC_IB set. 228 * 229 * This could be done by unconditionally issuing IBPB when 230 * a task which has TIF_SPEC_IB set is either scheduled in 231 * or out. Though that results in two flushes when: 232 * 233 * - the same user space task is scheduled out and later 234 * scheduled in again and only a kernel thread ran in 235 * between. 236 * 237 * - a user space task belonging to the same process is 238 * scheduled in after a kernel thread ran in between 239 * 240 * - a user space task belonging to the same process is 241 * scheduled in immediately. 242 * 243 * Optimize this with reasonably small overhead for the 244 * above cases. Mangle the TIF_SPEC_IB bit into the mm 245 * pointer of the incoming task which is stored in 246 * cpu_tlbstate.last_user_mm_ibpb for comparison. 247 */ 248 next_mm = mm_mangle_tif_spec_ib(next); 249 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 250 251 /* 252 * Issue IBPB only if the mm's are different and one or 253 * both have the IBPB bit set. 254 */ 255 if (next_mm != prev_mm && 256 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 257 indirect_branch_prediction_barrier(); 258 259 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 260 } 261 262 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 263 /* 264 * Only flush when switching to a user space task with a 265 * different context than the user space task which ran 266 * last on this CPU. 267 */ 268 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 269 indirect_branch_prediction_barrier(); 270 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 271 } 272 } 273 } 274 275 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 276 struct task_struct *tsk) 277 { 278 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 279 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 280 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 281 unsigned cpu = smp_processor_id(); 282 u64 next_tlb_gen; 283 bool need_flush; 284 u16 new_asid; 285 286 /* 287 * NB: The scheduler will call us with prev == next when switching 288 * from lazy TLB mode to normal mode if active_mm isn't changing. 289 * When this happens, we don't assume that CR3 (and hence 290 * cpu_tlbstate.loaded_mm) matches next. 291 * 292 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 293 */ 294 295 /* We don't want flush_tlb_func_* to run concurrently with us. */ 296 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 297 WARN_ON_ONCE(!irqs_disabled()); 298 299 /* 300 * Verify that CR3 is what we think it is. This will catch 301 * hypothetical buggy code that directly switches to swapper_pg_dir 302 * without going through leave_mm() / switch_mm_irqs_off() or that 303 * does something like write_cr3(read_cr3_pa()). 304 * 305 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 306 * isn't free. 307 */ 308 #ifdef CONFIG_DEBUG_VM 309 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 310 /* 311 * If we were to BUG here, we'd be very likely to kill 312 * the system so hard that we don't see the call trace. 313 * Try to recover instead by ignoring the error and doing 314 * a global flush to minimize the chance of corruption. 315 * 316 * (This is far from being a fully correct recovery. 317 * Architecturally, the CPU could prefetch something 318 * back into an incorrect ASID slot and leave it there 319 * to cause trouble down the road. It's better than 320 * nothing, though.) 321 */ 322 __flush_tlb_all(); 323 } 324 #endif 325 this_cpu_write(cpu_tlbstate.is_lazy, false); 326 327 /* 328 * The membarrier system call requires a full memory barrier and 329 * core serialization before returning to user-space, after 330 * storing to rq->curr. Writing to CR3 provides that full 331 * memory barrier and core serializing instruction. 332 */ 333 if (real_prev == next) { 334 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 335 next->context.ctx_id); 336 337 /* 338 * Even in lazy TLB mode, the CPU should stay set in the 339 * mm_cpumask. The TLB shootdown code can figure out from 340 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 341 */ 342 if (WARN_ON_ONCE(real_prev != &init_mm && 343 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 344 cpumask_set_cpu(cpu, mm_cpumask(next)); 345 346 /* 347 * If the CPU is not in lazy TLB mode, we are just switching 348 * from one thread in a process to another thread in the same 349 * process. No TLB flush required. 350 */ 351 if (!was_lazy) 352 return; 353 354 /* 355 * Read the tlb_gen to check whether a flush is needed. 356 * If the TLB is up to date, just use it. 357 * The barrier synchronizes with the tlb_gen increment in 358 * the TLB shootdown code. 359 */ 360 smp_mb(); 361 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 362 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 363 next_tlb_gen) 364 return; 365 366 /* 367 * TLB contents went out of date while we were in lazy 368 * mode. Fall through to the TLB switching code below. 369 */ 370 new_asid = prev_asid; 371 need_flush = true; 372 } else { 373 /* 374 * Avoid user/user BTB poisoning by flushing the branch 375 * predictor when switching between processes. This stops 376 * one process from doing Spectre-v2 attacks on another. 377 */ 378 cond_ibpb(tsk); 379 380 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 381 /* 382 * If our current stack is in vmalloc space and isn't 383 * mapped in the new pgd, we'll double-fault. Forcibly 384 * map it. 385 */ 386 sync_current_stack_to_mm(next); 387 } 388 389 /* 390 * Stop remote flushes for the previous mm. 391 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 392 * but the bitmap manipulation can cause cache line contention. 393 */ 394 if (real_prev != &init_mm) { 395 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 396 mm_cpumask(real_prev))); 397 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 398 } 399 400 /* 401 * Start remote flushes and then read tlb_gen. 402 */ 403 if (next != &init_mm) 404 cpumask_set_cpu(cpu, mm_cpumask(next)); 405 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 406 407 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 408 409 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 410 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 411 barrier(); 412 } 413 414 if (need_flush) { 415 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 416 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 417 load_new_mm_cr3(next->pgd, new_asid, true); 418 419 /* 420 * NB: This gets called via leave_mm() in the idle path 421 * where RCU functions differently. Tracing normally 422 * uses RCU, so we need to use the _rcuidle variant. 423 * 424 * (There is no good reason for this. The idle code should 425 * be rearranged to call this before rcu_idle_enter().) 426 */ 427 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 428 } else { 429 /* The new ASID is already up to date. */ 430 load_new_mm_cr3(next->pgd, new_asid, false); 431 432 /* See above wrt _rcuidle. */ 433 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 434 } 435 436 /* Make sure we write CR3 before loaded_mm. */ 437 barrier(); 438 439 this_cpu_write(cpu_tlbstate.loaded_mm, next); 440 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 441 442 if (next != real_prev) { 443 load_mm_cr4(next); 444 switch_ldt(real_prev, next); 445 } 446 } 447 448 /* 449 * Please ignore the name of this function. It should be called 450 * switch_to_kernel_thread(). 451 * 452 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 453 * kernel thread or other context without an mm. Acceptable implementations 454 * include doing nothing whatsoever, switching to init_mm, or various clever 455 * lazy tricks to try to minimize TLB flushes. 456 * 457 * The scheduler reserves the right to call enter_lazy_tlb() several times 458 * in a row. It will notify us that we're going back to a real mm by 459 * calling switch_mm_irqs_off(). 460 */ 461 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 462 { 463 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 464 return; 465 466 this_cpu_write(cpu_tlbstate.is_lazy, true); 467 } 468 469 /* 470 * Call this when reinitializing a CPU. It fixes the following potential 471 * problems: 472 * 473 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 474 * because the CPU was taken down and came back up with CR3's PCID 475 * bits clear. CPU hotplug can do this. 476 * 477 * - The TLB contains junk in slots corresponding to inactive ASIDs. 478 * 479 * - The CPU went so far out to lunch that it may have missed a TLB 480 * flush. 481 */ 482 void initialize_tlbstate_and_flush(void) 483 { 484 int i; 485 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 486 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 487 unsigned long cr3 = __read_cr3(); 488 489 /* Assert that CR3 already references the right mm. */ 490 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 491 492 /* 493 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 494 * doesn't work like other CR4 bits because it can only be set from 495 * long mode.) 496 */ 497 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 498 !(cr4_read_shadow() & X86_CR4_PCIDE)); 499 500 /* Force ASID 0 and force a TLB flush. */ 501 write_cr3(build_cr3(mm->pgd, 0)); 502 503 /* Reinitialize tlbstate. */ 504 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 505 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 506 this_cpu_write(cpu_tlbstate.next_asid, 1); 507 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 508 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 509 510 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 511 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 512 } 513 514 /* 515 * flush_tlb_func_common()'s memory ordering requirement is that any 516 * TLB fills that happen after we flush the TLB are ordered after we 517 * read active_mm's tlb_gen. We don't need any explicit barriers 518 * because all x86 flush operations are serializing and the 519 * atomic64_read operation won't be reordered by the compiler. 520 */ 521 static void flush_tlb_func_common(const struct flush_tlb_info *f, 522 bool local, enum tlb_flush_reason reason) 523 { 524 /* 525 * We have three different tlb_gen values in here. They are: 526 * 527 * - mm_tlb_gen: the latest generation. 528 * - local_tlb_gen: the generation that this CPU has already caught 529 * up to. 530 * - f->new_tlb_gen: the generation that the requester of the flush 531 * wants us to catch up to. 532 */ 533 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 534 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 535 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 536 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 537 538 /* This code cannot presently handle being reentered. */ 539 VM_WARN_ON(!irqs_disabled()); 540 541 if (unlikely(loaded_mm == &init_mm)) 542 return; 543 544 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 545 loaded_mm->context.ctx_id); 546 547 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 548 /* 549 * We're in lazy mode. We need to at least flush our 550 * paging-structure cache to avoid speculatively reading 551 * garbage into our TLB. Since switching to init_mm is barely 552 * slower than a minimal flush, just switch to init_mm. 553 * 554 * This should be rare, with native_flush_tlb_others skipping 555 * IPIs to lazy TLB mode CPUs. 556 */ 557 switch_mm_irqs_off(NULL, &init_mm, NULL); 558 return; 559 } 560 561 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 562 /* 563 * There's nothing to do: we're already up to date. This can 564 * happen if two concurrent flushes happen -- the first flush to 565 * be handled can catch us all the way up, leaving no work for 566 * the second flush. 567 */ 568 trace_tlb_flush(reason, 0); 569 return; 570 } 571 572 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 573 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 574 575 /* 576 * If we get to this point, we know that our TLB is out of date. 577 * This does not strictly imply that we need to flush (it's 578 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 579 * going to need to flush in the very near future, so we might 580 * as well get it over with. 581 * 582 * The only question is whether to do a full or partial flush. 583 * 584 * We do a partial flush if requested and two extra conditions 585 * are met: 586 * 587 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 588 * we've always done all needed flushes to catch up to 589 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 590 * f->new_tlb_gen == 3, then we know that the flush needed to bring 591 * us up to date for tlb_gen 3 is the partial flush we're 592 * processing. 593 * 594 * As an example of why this check is needed, suppose that there 595 * are two concurrent flushes. The first is a full flush that 596 * changes context.tlb_gen from 1 to 2. The second is a partial 597 * flush that changes context.tlb_gen from 2 to 3. If they get 598 * processed on this CPU in reverse order, we'll see 599 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 600 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 601 * 3, we'd be break the invariant: we'd update local_tlb_gen above 602 * 1 without the full flush that's needed for tlb_gen 2. 603 * 604 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 605 * Partial TLB flushes are not all that much cheaper than full TLB 606 * flushes, so it seems unlikely that it would be a performance win 607 * to do a partial flush if that won't bring our TLB fully up to 608 * date. By doing a full flush instead, we can increase 609 * local_tlb_gen all the way to mm_tlb_gen and we can probably 610 * avoid another flush in the very near future. 611 */ 612 if (f->end != TLB_FLUSH_ALL && 613 f->new_tlb_gen == local_tlb_gen + 1 && 614 f->new_tlb_gen == mm_tlb_gen) { 615 /* Partial flush */ 616 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 617 unsigned long addr = f->start; 618 619 while (addr < f->end) { 620 __flush_tlb_one_user(addr); 621 addr += 1UL << f->stride_shift; 622 } 623 if (local) 624 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 625 trace_tlb_flush(reason, nr_invalidate); 626 } else { 627 /* Full flush. */ 628 local_flush_tlb(); 629 if (local) 630 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 631 trace_tlb_flush(reason, TLB_FLUSH_ALL); 632 } 633 634 /* Both paths above update our state to mm_tlb_gen. */ 635 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 636 } 637 638 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason) 639 { 640 const struct flush_tlb_info *f = info; 641 642 flush_tlb_func_common(f, true, reason); 643 } 644 645 static void flush_tlb_func_remote(void *info) 646 { 647 const struct flush_tlb_info *f = info; 648 649 inc_irq_stat(irq_tlb_count); 650 651 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 652 return; 653 654 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 655 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 656 } 657 658 static bool tlb_is_not_lazy(int cpu, void *data) 659 { 660 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 661 } 662 663 void native_flush_tlb_others(const struct cpumask *cpumask, 664 const struct flush_tlb_info *info) 665 { 666 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 667 if (info->end == TLB_FLUSH_ALL) 668 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 669 else 670 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 671 (info->end - info->start) >> PAGE_SHIFT); 672 673 if (is_uv_system()) { 674 /* 675 * This whole special case is confused. UV has a "Broadcast 676 * Assist Unit", which seems to be a fancy way to send IPIs. 677 * Back when x86 used an explicit TLB flush IPI, UV was 678 * optimized to use its own mechanism. These days, x86 uses 679 * smp_call_function_many(), but UV still uses a manual IPI, 680 * and that IPI's action is out of date -- it does a manual 681 * flush instead of calling flush_tlb_func_remote(). This 682 * means that the percpu tlb_gen variables won't be updated 683 * and we'll do pointless flushes on future context switches. 684 * 685 * Rather than hooking native_flush_tlb_others() here, I think 686 * that UV should be updated so that smp_call_function_many(), 687 * etc, are optimal on UV. 688 */ 689 cpumask = uv_flush_tlb_others(cpumask, info); 690 if (cpumask) 691 smp_call_function_many(cpumask, flush_tlb_func_remote, 692 (void *)info, 1); 693 return; 694 } 695 696 /* 697 * If no page tables were freed, we can skip sending IPIs to 698 * CPUs in lazy TLB mode. They will flush the CPU themselves 699 * at the next context switch. 700 * 701 * However, if page tables are getting freed, we need to send the 702 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 703 * up on the new contents of what used to be page tables, while 704 * doing a speculative memory access. 705 */ 706 if (info->freed_tables) 707 smp_call_function_many(cpumask, flush_tlb_func_remote, 708 (void *)info, 1); 709 else 710 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 711 (void *)info, 1, GFP_ATOMIC, cpumask); 712 } 713 714 /* 715 * See Documentation/x86/tlb.rst for details. We choose 33 716 * because it is large enough to cover the vast majority (at 717 * least 95%) of allocations, and is small enough that we are 718 * confident it will not cause too much overhead. Each single 719 * flush is about 100 ns, so this caps the maximum overhead at 720 * _about_ 3,000 ns. 721 * 722 * This is in units of pages. 723 */ 724 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 725 726 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 727 728 #ifdef CONFIG_DEBUG_VM 729 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 730 #endif 731 732 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 733 unsigned long start, unsigned long end, 734 unsigned int stride_shift, bool freed_tables, 735 u64 new_tlb_gen) 736 { 737 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 738 739 #ifdef CONFIG_DEBUG_VM 740 /* 741 * Ensure that the following code is non-reentrant and flush_tlb_info 742 * is not overwritten. This means no TLB flushing is initiated by 743 * interrupt handlers and machine-check exception handlers. 744 */ 745 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 746 #endif 747 748 info->start = start; 749 info->end = end; 750 info->mm = mm; 751 info->stride_shift = stride_shift; 752 info->freed_tables = freed_tables; 753 info->new_tlb_gen = new_tlb_gen; 754 755 return info; 756 } 757 758 static inline void put_flush_tlb_info(void) 759 { 760 #ifdef CONFIG_DEBUG_VM 761 /* Complete reentrency prevention checks */ 762 barrier(); 763 this_cpu_dec(flush_tlb_info_idx); 764 #endif 765 } 766 767 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 768 unsigned long end, unsigned int stride_shift, 769 bool freed_tables) 770 { 771 struct flush_tlb_info *info; 772 u64 new_tlb_gen; 773 int cpu; 774 775 cpu = get_cpu(); 776 777 /* Should we flush just the requested range? */ 778 if ((end == TLB_FLUSH_ALL) || 779 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 780 start = 0; 781 end = TLB_FLUSH_ALL; 782 } 783 784 /* This is also a barrier that synchronizes with switch_mm(). */ 785 new_tlb_gen = inc_mm_tlb_gen(mm); 786 787 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 788 new_tlb_gen); 789 790 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 791 lockdep_assert_irqs_enabled(); 792 local_irq_disable(); 793 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN); 794 local_irq_enable(); 795 } 796 797 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 798 flush_tlb_others(mm_cpumask(mm), info); 799 800 put_flush_tlb_info(); 801 put_cpu(); 802 } 803 804 805 static void do_flush_tlb_all(void *info) 806 { 807 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 808 __flush_tlb_all(); 809 } 810 811 void flush_tlb_all(void) 812 { 813 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 814 on_each_cpu(do_flush_tlb_all, NULL, 1); 815 } 816 817 static void do_kernel_range_flush(void *info) 818 { 819 struct flush_tlb_info *f = info; 820 unsigned long addr; 821 822 /* flush range by one by one 'invlpg' */ 823 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 824 __flush_tlb_one_kernel(addr); 825 } 826 827 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 828 { 829 /* Balance as user space task's flush, a bit conservative */ 830 if (end == TLB_FLUSH_ALL || 831 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 832 on_each_cpu(do_flush_tlb_all, NULL, 1); 833 } else { 834 struct flush_tlb_info *info; 835 836 preempt_disable(); 837 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 838 839 on_each_cpu(do_kernel_range_flush, info, 1); 840 841 put_flush_tlb_info(); 842 preempt_enable(); 843 } 844 } 845 846 /* 847 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm. 848 * This means that the 'struct flush_tlb_info' that describes which mappings to 849 * flush is actually fixed. We therefore set a single fixed struct and use it in 850 * arch_tlbbatch_flush(). 851 */ 852 static const struct flush_tlb_info full_flush_tlb_info = { 853 .mm = NULL, 854 .start = 0, 855 .end = TLB_FLUSH_ALL, 856 }; 857 858 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 859 { 860 int cpu = get_cpu(); 861 862 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 863 lockdep_assert_irqs_enabled(); 864 local_irq_disable(); 865 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN); 866 local_irq_enable(); 867 } 868 869 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 870 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info); 871 872 cpumask_clear(&batch->cpumask); 873 874 put_cpu(); 875 } 876 877 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 878 size_t count, loff_t *ppos) 879 { 880 char buf[32]; 881 unsigned int len; 882 883 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 884 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 885 } 886 887 static ssize_t tlbflush_write_file(struct file *file, 888 const char __user *user_buf, size_t count, loff_t *ppos) 889 { 890 char buf[32]; 891 ssize_t len; 892 int ceiling; 893 894 len = min(count, sizeof(buf) - 1); 895 if (copy_from_user(buf, user_buf, len)) 896 return -EFAULT; 897 898 buf[len] = '\0'; 899 if (kstrtoint(buf, 0, &ceiling)) 900 return -EINVAL; 901 902 if (ceiling < 0) 903 return -EINVAL; 904 905 tlb_single_page_flush_ceiling = ceiling; 906 return count; 907 } 908 909 static const struct file_operations fops_tlbflush = { 910 .read = tlbflush_read_file, 911 .write = tlbflush_write_file, 912 .llseek = default_llseek, 913 }; 914 915 static int __init create_tlb_single_page_flush_ceiling(void) 916 { 917 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 918 arch_debugfs_dir, NULL, &fops_tlbflush); 919 return 0; 920 } 921 late_initcall(create_tlb_single_page_flush_ceiling); 922