xref: /openbmc/linux/arch/x86/mm/tlb.c (revision aa1f10e8)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 /*
32  * We get here when we do something requiring a TLB invalidation
33  * but could not go invalidate all of the contexts.  We do the
34  * necessary invalidation by clearing out the 'ctx_id' which
35  * forces a TLB flush when the context is loaded.
36  */
37 void clear_asid_other(void)
38 {
39 	u16 asid;
40 
41 	/*
42 	 * This is only expected to be set if we have disabled
43 	 * kernel _PAGE_GLOBAL pages.
44 	 */
45 	if (!static_cpu_has(X86_FEATURE_PTI)) {
46 		WARN_ON_ONCE(1);
47 		return;
48 	}
49 
50 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
51 		/* Do not need to flush the current asid */
52 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
53 			continue;
54 		/*
55 		 * Make sure the next time we go to switch to
56 		 * this asid, we do a flush:
57 		 */
58 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
59 	}
60 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
61 }
62 
63 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
64 
65 
66 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
67 			    u16 *new_asid, bool *need_flush)
68 {
69 	u16 asid;
70 
71 	if (!static_cpu_has(X86_FEATURE_PCID)) {
72 		*new_asid = 0;
73 		*need_flush = true;
74 		return;
75 	}
76 
77 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
78 		clear_asid_other();
79 
80 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
81 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
82 		    next->context.ctx_id)
83 			continue;
84 
85 		*new_asid = asid;
86 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
87 			       next_tlb_gen);
88 		return;
89 	}
90 
91 	/*
92 	 * We don't currently own an ASID slot on this CPU.
93 	 * Allocate a slot.
94 	 */
95 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
96 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
97 		*new_asid = 0;
98 		this_cpu_write(cpu_tlbstate.next_asid, 1);
99 	}
100 	*need_flush = true;
101 }
102 
103 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
104 {
105 	unsigned long new_mm_cr3;
106 
107 	if (need_flush) {
108 		invalidate_user_asid(new_asid);
109 		new_mm_cr3 = build_cr3(pgdir, new_asid);
110 	} else {
111 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
112 	}
113 
114 	/*
115 	 * Caution: many callers of this function expect
116 	 * that load_cr3() is serializing and orders TLB
117 	 * fills with respect to the mm_cpumask writes.
118 	 */
119 	write_cr3(new_mm_cr3);
120 }
121 
122 void leave_mm(int cpu)
123 {
124 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
125 
126 	/*
127 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
128 	 * If so, our callers still expect us to flush the TLB, but there
129 	 * aren't any user TLB entries in init_mm to worry about.
130 	 *
131 	 * This needs to happen before any other sanity checks due to
132 	 * intel_idle's shenanigans.
133 	 */
134 	if (loaded_mm == &init_mm)
135 		return;
136 
137 	/* Warn if we're not lazy. */
138 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
139 
140 	switch_mm(NULL, &init_mm, NULL);
141 }
142 EXPORT_SYMBOL_GPL(leave_mm);
143 
144 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
145 	       struct task_struct *tsk)
146 {
147 	unsigned long flags;
148 
149 	local_irq_save(flags);
150 	switch_mm_irqs_off(prev, next, tsk);
151 	local_irq_restore(flags);
152 }
153 
154 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
155 			struct task_struct *tsk)
156 {
157 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
158 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
159 	unsigned cpu = smp_processor_id();
160 	u64 next_tlb_gen;
161 
162 	/*
163 	 * NB: The scheduler will call us with prev == next when switching
164 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
165 	 * When this happens, we don't assume that CR3 (and hence
166 	 * cpu_tlbstate.loaded_mm) matches next.
167 	 *
168 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
169 	 */
170 
171 	/* We don't want flush_tlb_func_* to run concurrently with us. */
172 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
173 		WARN_ON_ONCE(!irqs_disabled());
174 
175 	/*
176 	 * Verify that CR3 is what we think it is.  This will catch
177 	 * hypothetical buggy code that directly switches to swapper_pg_dir
178 	 * without going through leave_mm() / switch_mm_irqs_off() or that
179 	 * does something like write_cr3(read_cr3_pa()).
180 	 *
181 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
182 	 * isn't free.
183 	 */
184 #ifdef CONFIG_DEBUG_VM
185 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
186 		/*
187 		 * If we were to BUG here, we'd be very likely to kill
188 		 * the system so hard that we don't see the call trace.
189 		 * Try to recover instead by ignoring the error and doing
190 		 * a global flush to minimize the chance of corruption.
191 		 *
192 		 * (This is far from being a fully correct recovery.
193 		 *  Architecturally, the CPU could prefetch something
194 		 *  back into an incorrect ASID slot and leave it there
195 		 *  to cause trouble down the road.  It's better than
196 		 *  nothing, though.)
197 		 */
198 		__flush_tlb_all();
199 	}
200 #endif
201 	this_cpu_write(cpu_tlbstate.is_lazy, false);
202 
203 	if (real_prev == next) {
204 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
205 			   next->context.ctx_id);
206 
207 		/*
208 		 * We don't currently support having a real mm loaded without
209 		 * our cpu set in mm_cpumask().  We have all the bookkeeping
210 		 * in place to figure out whether we would need to flush
211 		 * if our cpu were cleared in mm_cpumask(), but we don't
212 		 * currently use it.
213 		 */
214 		if (WARN_ON_ONCE(real_prev != &init_mm &&
215 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
216 			cpumask_set_cpu(cpu, mm_cpumask(next));
217 
218 		return;
219 	} else {
220 		u16 new_asid;
221 		bool need_flush;
222 
223 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
224 			/*
225 			 * If our current stack is in vmalloc space and isn't
226 			 * mapped in the new pgd, we'll double-fault.  Forcibly
227 			 * map it.
228 			 */
229 			unsigned int index = pgd_index(current_stack_pointer);
230 			pgd_t *pgd = next->pgd + index;
231 
232 			if (unlikely(pgd_none(*pgd)))
233 				set_pgd(pgd, init_mm.pgd[index]);
234 		}
235 
236 		/* Stop remote flushes for the previous mm */
237 		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
238 				real_prev != &init_mm);
239 		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
240 
241 		/*
242 		 * Start remote flushes and then read tlb_gen.
243 		 */
244 		cpumask_set_cpu(cpu, mm_cpumask(next));
245 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
246 
247 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
248 
249 		if (need_flush) {
250 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
251 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
252 			load_new_mm_cr3(next->pgd, new_asid, true);
253 
254 			/*
255 			 * NB: This gets called via leave_mm() in the idle path
256 			 * where RCU functions differently.  Tracing normally
257 			 * uses RCU, so we need to use the _rcuidle variant.
258 			 *
259 			 * (There is no good reason for this.  The idle code should
260 			 *  be rearranged to call this before rcu_idle_enter().)
261 			 */
262 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
263 		} else {
264 			/* The new ASID is already up to date. */
265 			load_new_mm_cr3(next->pgd, new_asid, false);
266 
267 			/* See above wrt _rcuidle. */
268 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
269 		}
270 
271 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
272 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
273 	}
274 
275 	load_mm_cr4(next);
276 	switch_ldt(real_prev, next);
277 }
278 
279 /*
280  * Please ignore the name of this function.  It should be called
281  * switch_to_kernel_thread().
282  *
283  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
284  * kernel thread or other context without an mm.  Acceptable implementations
285  * include doing nothing whatsoever, switching to init_mm, or various clever
286  * lazy tricks to try to minimize TLB flushes.
287  *
288  * The scheduler reserves the right to call enter_lazy_tlb() several times
289  * in a row.  It will notify us that we're going back to a real mm by
290  * calling switch_mm_irqs_off().
291  */
292 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
293 {
294 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
295 		return;
296 
297 	if (tlb_defer_switch_to_init_mm()) {
298 		/*
299 		 * There's a significant optimization that may be possible
300 		 * here.  We have accurate enough TLB flush tracking that we
301 		 * don't need to maintain coherence of TLB per se when we're
302 		 * lazy.  We do, however, need to maintain coherence of
303 		 * paging-structure caches.  We could, in principle, leave our
304 		 * old mm loaded and only switch to init_mm when
305 		 * tlb_remove_page() happens.
306 		 */
307 		this_cpu_write(cpu_tlbstate.is_lazy, true);
308 	} else {
309 		switch_mm(NULL, &init_mm, NULL);
310 	}
311 }
312 
313 /*
314  * Call this when reinitializing a CPU.  It fixes the following potential
315  * problems:
316  *
317  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
318  *   because the CPU was taken down and came back up with CR3's PCID
319  *   bits clear.  CPU hotplug can do this.
320  *
321  * - The TLB contains junk in slots corresponding to inactive ASIDs.
322  *
323  * - The CPU went so far out to lunch that it may have missed a TLB
324  *   flush.
325  */
326 void initialize_tlbstate_and_flush(void)
327 {
328 	int i;
329 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
330 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
331 	unsigned long cr3 = __read_cr3();
332 
333 	/* Assert that CR3 already references the right mm. */
334 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
335 
336 	/*
337 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
338 	 * doesn't work like other CR4 bits because it can only be set from
339 	 * long mode.)
340 	 */
341 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
342 		!(cr4_read_shadow() & X86_CR4_PCIDE));
343 
344 	/* Force ASID 0 and force a TLB flush. */
345 	write_cr3(build_cr3(mm->pgd, 0));
346 
347 	/* Reinitialize tlbstate. */
348 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
349 	this_cpu_write(cpu_tlbstate.next_asid, 1);
350 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
351 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
352 
353 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
354 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
355 }
356 
357 /*
358  * flush_tlb_func_common()'s memory ordering requirement is that any
359  * TLB fills that happen after we flush the TLB are ordered after we
360  * read active_mm's tlb_gen.  We don't need any explicit barriers
361  * because all x86 flush operations are serializing and the
362  * atomic64_read operation won't be reordered by the compiler.
363  */
364 static void flush_tlb_func_common(const struct flush_tlb_info *f,
365 				  bool local, enum tlb_flush_reason reason)
366 {
367 	/*
368 	 * We have three different tlb_gen values in here.  They are:
369 	 *
370 	 * - mm_tlb_gen:     the latest generation.
371 	 * - local_tlb_gen:  the generation that this CPU has already caught
372 	 *                   up to.
373 	 * - f->new_tlb_gen: the generation that the requester of the flush
374 	 *                   wants us to catch up to.
375 	 */
376 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
377 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
378 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
379 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
380 
381 	/* This code cannot presently handle being reentered. */
382 	VM_WARN_ON(!irqs_disabled());
383 
384 	if (unlikely(loaded_mm == &init_mm))
385 		return;
386 
387 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
388 		   loaded_mm->context.ctx_id);
389 
390 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
391 		/*
392 		 * We're in lazy mode.  We need to at least flush our
393 		 * paging-structure cache to avoid speculatively reading
394 		 * garbage into our TLB.  Since switching to init_mm is barely
395 		 * slower than a minimal flush, just switch to init_mm.
396 		 */
397 		switch_mm_irqs_off(NULL, &init_mm, NULL);
398 		return;
399 	}
400 
401 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
402 		/*
403 		 * There's nothing to do: we're already up to date.  This can
404 		 * happen if two concurrent flushes happen -- the first flush to
405 		 * be handled can catch us all the way up, leaving no work for
406 		 * the second flush.
407 		 */
408 		trace_tlb_flush(reason, 0);
409 		return;
410 	}
411 
412 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
413 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
414 
415 	/*
416 	 * If we get to this point, we know that our TLB is out of date.
417 	 * This does not strictly imply that we need to flush (it's
418 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
419 	 * going to need to flush in the very near future, so we might
420 	 * as well get it over with.
421 	 *
422 	 * The only question is whether to do a full or partial flush.
423 	 *
424 	 * We do a partial flush if requested and two extra conditions
425 	 * are met:
426 	 *
427 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
428 	 *    we've always done all needed flushes to catch up to
429 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
430 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
431 	 *    us up to date for tlb_gen 3 is the partial flush we're
432 	 *    processing.
433 	 *
434 	 *    As an example of why this check is needed, suppose that there
435 	 *    are two concurrent flushes.  The first is a full flush that
436 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
437 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
438 	 *    processed on this CPU in reverse order, we'll see
439 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
440 	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
441 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
442 	 *    1 without the full flush that's needed for tlb_gen 2.
443 	 *
444 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
445 	 *    Partial TLB flushes are not all that much cheaper than full TLB
446 	 *    flushes, so it seems unlikely that it would be a performance win
447 	 *    to do a partial flush if that won't bring our TLB fully up to
448 	 *    date.  By doing a full flush instead, we can increase
449 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
450 	 *    avoid another flush in the very near future.
451 	 */
452 	if (f->end != TLB_FLUSH_ALL &&
453 	    f->new_tlb_gen == local_tlb_gen + 1 &&
454 	    f->new_tlb_gen == mm_tlb_gen) {
455 		/* Partial flush */
456 		unsigned long addr;
457 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
458 
459 		addr = f->start;
460 		while (addr < f->end) {
461 			__flush_tlb_single(addr);
462 			addr += PAGE_SIZE;
463 		}
464 		if (local)
465 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
466 		trace_tlb_flush(reason, nr_pages);
467 	} else {
468 		/* Full flush. */
469 		local_flush_tlb();
470 		if (local)
471 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
472 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
473 	}
474 
475 	/* Both paths above update our state to mm_tlb_gen. */
476 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
477 }
478 
479 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
480 {
481 	const struct flush_tlb_info *f = info;
482 
483 	flush_tlb_func_common(f, true, reason);
484 }
485 
486 static void flush_tlb_func_remote(void *info)
487 {
488 	const struct flush_tlb_info *f = info;
489 
490 	inc_irq_stat(irq_tlb_count);
491 
492 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
493 		return;
494 
495 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
496 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
497 }
498 
499 void native_flush_tlb_others(const struct cpumask *cpumask,
500 			     const struct flush_tlb_info *info)
501 {
502 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
503 	if (info->end == TLB_FLUSH_ALL)
504 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
505 	else
506 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
507 				(info->end - info->start) >> PAGE_SHIFT);
508 
509 	if (is_uv_system()) {
510 		/*
511 		 * This whole special case is confused.  UV has a "Broadcast
512 		 * Assist Unit", which seems to be a fancy way to send IPIs.
513 		 * Back when x86 used an explicit TLB flush IPI, UV was
514 		 * optimized to use its own mechanism.  These days, x86 uses
515 		 * smp_call_function_many(), but UV still uses a manual IPI,
516 		 * and that IPI's action is out of date -- it does a manual
517 		 * flush instead of calling flush_tlb_func_remote().  This
518 		 * means that the percpu tlb_gen variables won't be updated
519 		 * and we'll do pointless flushes on future context switches.
520 		 *
521 		 * Rather than hooking native_flush_tlb_others() here, I think
522 		 * that UV should be updated so that smp_call_function_many(),
523 		 * etc, are optimal on UV.
524 		 */
525 		unsigned int cpu;
526 
527 		cpu = smp_processor_id();
528 		cpumask = uv_flush_tlb_others(cpumask, info);
529 		if (cpumask)
530 			smp_call_function_many(cpumask, flush_tlb_func_remote,
531 					       (void *)info, 1);
532 		return;
533 	}
534 	smp_call_function_many(cpumask, flush_tlb_func_remote,
535 			       (void *)info, 1);
536 }
537 
538 /*
539  * See Documentation/x86/tlb.txt for details.  We choose 33
540  * because it is large enough to cover the vast majority (at
541  * least 95%) of allocations, and is small enough that we are
542  * confident it will not cause too much overhead.  Each single
543  * flush is about 100 ns, so this caps the maximum overhead at
544  * _about_ 3,000 ns.
545  *
546  * This is in units of pages.
547  */
548 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
549 
550 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
551 				unsigned long end, unsigned long vmflag)
552 {
553 	int cpu;
554 
555 	struct flush_tlb_info info = {
556 		.mm = mm,
557 	};
558 
559 	cpu = get_cpu();
560 
561 	/* This is also a barrier that synchronizes with switch_mm(). */
562 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
563 
564 	/* Should we flush just the requested range? */
565 	if ((end != TLB_FLUSH_ALL) &&
566 	    !(vmflag & VM_HUGETLB) &&
567 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
568 		info.start = start;
569 		info.end = end;
570 	} else {
571 		info.start = 0UL;
572 		info.end = TLB_FLUSH_ALL;
573 	}
574 
575 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
576 		VM_WARN_ON(irqs_disabled());
577 		local_irq_disable();
578 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
579 		local_irq_enable();
580 	}
581 
582 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
583 		flush_tlb_others(mm_cpumask(mm), &info);
584 
585 	put_cpu();
586 }
587 
588 
589 static void do_flush_tlb_all(void *info)
590 {
591 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
592 	__flush_tlb_all();
593 }
594 
595 void flush_tlb_all(void)
596 {
597 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
598 	on_each_cpu(do_flush_tlb_all, NULL, 1);
599 }
600 
601 static void do_kernel_range_flush(void *info)
602 {
603 	struct flush_tlb_info *f = info;
604 	unsigned long addr;
605 
606 	/* flush range by one by one 'invlpg' */
607 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
608 		__flush_tlb_one(addr);
609 }
610 
611 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
612 {
613 
614 	/* Balance as user space task's flush, a bit conservative */
615 	if (end == TLB_FLUSH_ALL ||
616 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
617 		on_each_cpu(do_flush_tlb_all, NULL, 1);
618 	} else {
619 		struct flush_tlb_info info;
620 		info.start = start;
621 		info.end = end;
622 		on_each_cpu(do_kernel_range_flush, &info, 1);
623 	}
624 }
625 
626 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
627 {
628 	struct flush_tlb_info info = {
629 		.mm = NULL,
630 		.start = 0UL,
631 		.end = TLB_FLUSH_ALL,
632 	};
633 
634 	int cpu = get_cpu();
635 
636 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
637 		VM_WARN_ON(irqs_disabled());
638 		local_irq_disable();
639 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
640 		local_irq_enable();
641 	}
642 
643 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
644 		flush_tlb_others(&batch->cpumask, &info);
645 
646 	cpumask_clear(&batch->cpumask);
647 
648 	put_cpu();
649 }
650 
651 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
652 			     size_t count, loff_t *ppos)
653 {
654 	char buf[32];
655 	unsigned int len;
656 
657 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
658 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
659 }
660 
661 static ssize_t tlbflush_write_file(struct file *file,
662 		 const char __user *user_buf, size_t count, loff_t *ppos)
663 {
664 	char buf[32];
665 	ssize_t len;
666 	int ceiling;
667 
668 	len = min(count, sizeof(buf) - 1);
669 	if (copy_from_user(buf, user_buf, len))
670 		return -EFAULT;
671 
672 	buf[len] = '\0';
673 	if (kstrtoint(buf, 0, &ceiling))
674 		return -EINVAL;
675 
676 	if (ceiling < 0)
677 		return -EINVAL;
678 
679 	tlb_single_page_flush_ceiling = ceiling;
680 	return count;
681 }
682 
683 static const struct file_operations fops_tlbflush = {
684 	.read = tlbflush_read_file,
685 	.write = tlbflush_write_file,
686 	.llseek = default_llseek,
687 };
688 
689 static int __init create_tlb_single_page_flush_ceiling(void)
690 {
691 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
692 			    arch_debugfs_dir, NULL, &fops_tlbflush);
693 	return 0;
694 }
695 late_initcall(create_tlb_single_page_flush_ceiling);
696