xref: /openbmc/linux/arch/x86/mm/tlb.c (revision a99237af)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 #include <linux/gfp.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18 
19 /*
20  *	TLB flushing, formerly SMP-only
21  *		c/o Linus Torvalds.
22  *
23  *	These mean you can really definitely utterly forget about
24  *	writing to user space from interrupts. (Its not allowed anyway).
25  *
26  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
27  *
28  *	More scalable flush, from Andi Kleen
29  *
30  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31  */
32 
33 /*
34  * We get here when we do something requiring a TLB invalidation
35  * but could not go invalidate all of the contexts.  We do the
36  * necessary invalidation by clearing out the 'ctx_id' which
37  * forces a TLB flush when the context is loaded.
38  */
39 static void clear_asid_other(void)
40 {
41 	u16 asid;
42 
43 	/*
44 	 * This is only expected to be set if we have disabled
45 	 * kernel _PAGE_GLOBAL pages.
46 	 */
47 	if (!static_cpu_has(X86_FEATURE_PTI)) {
48 		WARN_ON_ONCE(1);
49 		return;
50 	}
51 
52 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
53 		/* Do not need to flush the current asid */
54 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
55 			continue;
56 		/*
57 		 * Make sure the next time we go to switch to
58 		 * this asid, we do a flush:
59 		 */
60 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
61 	}
62 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
63 }
64 
65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
66 
67 
68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
69 			    u16 *new_asid, bool *need_flush)
70 {
71 	u16 asid;
72 
73 	if (!static_cpu_has(X86_FEATURE_PCID)) {
74 		*new_asid = 0;
75 		*need_flush = true;
76 		return;
77 	}
78 
79 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
80 		clear_asid_other();
81 
82 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
83 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
84 		    next->context.ctx_id)
85 			continue;
86 
87 		*new_asid = asid;
88 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
89 			       next_tlb_gen);
90 		return;
91 	}
92 
93 	/*
94 	 * We don't currently own an ASID slot on this CPU.
95 	 * Allocate a slot.
96 	 */
97 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
98 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
99 		*new_asid = 0;
100 		this_cpu_write(cpu_tlbstate.next_asid, 1);
101 	}
102 	*need_flush = true;
103 }
104 
105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
106 {
107 	unsigned long new_mm_cr3;
108 
109 	if (need_flush) {
110 		invalidate_user_asid(new_asid);
111 		new_mm_cr3 = build_cr3(pgdir, new_asid);
112 	} else {
113 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
114 	}
115 
116 	/*
117 	 * Caution: many callers of this function expect
118 	 * that load_cr3() is serializing and orders TLB
119 	 * fills with respect to the mm_cpumask writes.
120 	 */
121 	write_cr3(new_mm_cr3);
122 }
123 
124 void leave_mm(int cpu)
125 {
126 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
127 
128 	/*
129 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
130 	 * If so, our callers still expect us to flush the TLB, but there
131 	 * aren't any user TLB entries in init_mm to worry about.
132 	 *
133 	 * This needs to happen before any other sanity checks due to
134 	 * intel_idle's shenanigans.
135 	 */
136 	if (loaded_mm == &init_mm)
137 		return;
138 
139 	/* Warn if we're not lazy. */
140 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
141 
142 	switch_mm(NULL, &init_mm, NULL);
143 }
144 EXPORT_SYMBOL_GPL(leave_mm);
145 
146 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
147 	       struct task_struct *tsk)
148 {
149 	unsigned long flags;
150 
151 	local_irq_save(flags);
152 	switch_mm_irqs_off(prev, next, tsk);
153 	local_irq_restore(flags);
154 }
155 
156 static void sync_current_stack_to_mm(struct mm_struct *mm)
157 {
158 	unsigned long sp = current_stack_pointer;
159 	pgd_t *pgd = pgd_offset(mm, sp);
160 
161 	if (pgtable_l5_enabled()) {
162 		if (unlikely(pgd_none(*pgd))) {
163 			pgd_t *pgd_ref = pgd_offset_k(sp);
164 
165 			set_pgd(pgd, *pgd_ref);
166 		}
167 	} else {
168 		/*
169 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
170 		 * the p4d.  This compiles to approximately the same code as
171 		 * the 5-level case.
172 		 */
173 		p4d_t *p4d = p4d_offset(pgd, sp);
174 
175 		if (unlikely(p4d_none(*p4d))) {
176 			pgd_t *pgd_ref = pgd_offset_k(sp);
177 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
178 
179 			set_p4d(p4d, *p4d_ref);
180 		}
181 	}
182 }
183 
184 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
185 			struct task_struct *tsk)
186 {
187 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
188 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
189 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
190 	unsigned cpu = smp_processor_id();
191 	u64 next_tlb_gen;
192 	bool need_flush;
193 	u16 new_asid;
194 
195 	/*
196 	 * NB: The scheduler will call us with prev == next when switching
197 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
198 	 * When this happens, we don't assume that CR3 (and hence
199 	 * cpu_tlbstate.loaded_mm) matches next.
200 	 *
201 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
202 	 */
203 
204 	/* We don't want flush_tlb_func_* to run concurrently with us. */
205 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
206 		WARN_ON_ONCE(!irqs_disabled());
207 
208 	/*
209 	 * Verify that CR3 is what we think it is.  This will catch
210 	 * hypothetical buggy code that directly switches to swapper_pg_dir
211 	 * without going through leave_mm() / switch_mm_irqs_off() or that
212 	 * does something like write_cr3(read_cr3_pa()).
213 	 *
214 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
215 	 * isn't free.
216 	 */
217 #ifdef CONFIG_DEBUG_VM
218 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
219 		/*
220 		 * If we were to BUG here, we'd be very likely to kill
221 		 * the system so hard that we don't see the call trace.
222 		 * Try to recover instead by ignoring the error and doing
223 		 * a global flush to minimize the chance of corruption.
224 		 *
225 		 * (This is far from being a fully correct recovery.
226 		 *  Architecturally, the CPU could prefetch something
227 		 *  back into an incorrect ASID slot and leave it there
228 		 *  to cause trouble down the road.  It's better than
229 		 *  nothing, though.)
230 		 */
231 		__flush_tlb_all();
232 	}
233 #endif
234 	this_cpu_write(cpu_tlbstate.is_lazy, false);
235 
236 	/*
237 	 * The membarrier system call requires a full memory barrier and
238 	 * core serialization before returning to user-space, after
239 	 * storing to rq->curr. Writing to CR3 provides that full
240 	 * memory barrier and core serializing instruction.
241 	 */
242 	if (real_prev == next) {
243 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
244 			   next->context.ctx_id);
245 
246 		/*
247 		 * Even in lazy TLB mode, the CPU should stay set in the
248 		 * mm_cpumask. The TLB shootdown code can figure out from
249 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
250 		 */
251 		if (WARN_ON_ONCE(real_prev != &init_mm &&
252 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
253 			cpumask_set_cpu(cpu, mm_cpumask(next));
254 
255 		/*
256 		 * If the CPU is not in lazy TLB mode, we are just switching
257 		 * from one thread in a process to another thread in the same
258 		 * process. No TLB flush required.
259 		 */
260 		if (!was_lazy)
261 			return;
262 
263 		/*
264 		 * Read the tlb_gen to check whether a flush is needed.
265 		 * If the TLB is up to date, just use it.
266 		 * The barrier synchronizes with the tlb_gen increment in
267 		 * the TLB shootdown code.
268 		 */
269 		smp_mb();
270 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
271 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
272 				next_tlb_gen)
273 			return;
274 
275 		/*
276 		 * TLB contents went out of date while we were in lazy
277 		 * mode. Fall through to the TLB switching code below.
278 		 */
279 		new_asid = prev_asid;
280 		need_flush = true;
281 	} else {
282 		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
283 
284 		/*
285 		 * Avoid user/user BTB poisoning by flushing the branch
286 		 * predictor when switching between processes. This stops
287 		 * one process from doing Spectre-v2 attacks on another.
288 		 *
289 		 * As an optimization, flush indirect branches only when
290 		 * switching into processes that disable dumping. This
291 		 * protects high value processes like gpg, without having
292 		 * too high performance overhead. IBPB is *expensive*!
293 		 *
294 		 * This will not flush branches when switching into kernel
295 		 * threads. It will also not flush if we switch to idle
296 		 * thread and back to the same process. It will flush if we
297 		 * switch to a different non-dumpable process.
298 		 */
299 		if (tsk && tsk->mm &&
300 		    tsk->mm->context.ctx_id != last_ctx_id &&
301 		    get_dumpable(tsk->mm) != SUID_DUMP_USER)
302 			indirect_branch_prediction_barrier();
303 
304 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
305 			/*
306 			 * If our current stack is in vmalloc space and isn't
307 			 * mapped in the new pgd, we'll double-fault.  Forcibly
308 			 * map it.
309 			 */
310 			sync_current_stack_to_mm(next);
311 		}
312 
313 		/*
314 		 * Stop remote flushes for the previous mm.
315 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
316 		 * but the bitmap manipulation can cause cache line contention.
317 		 */
318 		if (real_prev != &init_mm) {
319 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
320 						mm_cpumask(real_prev)));
321 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
322 		}
323 
324 		/*
325 		 * Start remote flushes and then read tlb_gen.
326 		 */
327 		if (next != &init_mm)
328 			cpumask_set_cpu(cpu, mm_cpumask(next));
329 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
330 
331 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
332 	}
333 
334 	if (need_flush) {
335 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
336 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
337 		load_new_mm_cr3(next->pgd, new_asid, true);
338 
339 		/*
340 		 * NB: This gets called via leave_mm() in the idle path
341 		 * where RCU functions differently.  Tracing normally
342 		 * uses RCU, so we need to use the _rcuidle variant.
343 		 *
344 		 * (There is no good reason for this.  The idle code should
345 		 *  be rearranged to call this before rcu_idle_enter().)
346 		 */
347 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
348 	} else {
349 		/* The new ASID is already up to date. */
350 		load_new_mm_cr3(next->pgd, new_asid, false);
351 
352 		/* See above wrt _rcuidle. */
353 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
354 	}
355 
356 	/*
357 	 * Record last user mm's context id, so we can avoid
358 	 * flushing branch buffer with IBPB if we switch back
359 	 * to the same user.
360 	 */
361 	if (next != &init_mm)
362 		this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
363 
364 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
365 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
366 
367 	load_mm_cr4(next);
368 	switch_ldt(real_prev, next);
369 }
370 
371 /*
372  * Please ignore the name of this function.  It should be called
373  * switch_to_kernel_thread().
374  *
375  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
376  * kernel thread or other context without an mm.  Acceptable implementations
377  * include doing nothing whatsoever, switching to init_mm, or various clever
378  * lazy tricks to try to minimize TLB flushes.
379  *
380  * The scheduler reserves the right to call enter_lazy_tlb() several times
381  * in a row.  It will notify us that we're going back to a real mm by
382  * calling switch_mm_irqs_off().
383  */
384 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
385 {
386 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
387 		return;
388 
389 	this_cpu_write(cpu_tlbstate.is_lazy, true);
390 }
391 
392 /*
393  * Call this when reinitializing a CPU.  It fixes the following potential
394  * problems:
395  *
396  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
397  *   because the CPU was taken down and came back up with CR3's PCID
398  *   bits clear.  CPU hotplug can do this.
399  *
400  * - The TLB contains junk in slots corresponding to inactive ASIDs.
401  *
402  * - The CPU went so far out to lunch that it may have missed a TLB
403  *   flush.
404  */
405 void initialize_tlbstate_and_flush(void)
406 {
407 	int i;
408 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
409 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
410 	unsigned long cr3 = __read_cr3();
411 
412 	/* Assert that CR3 already references the right mm. */
413 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
414 
415 	/*
416 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
417 	 * doesn't work like other CR4 bits because it can only be set from
418 	 * long mode.)
419 	 */
420 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
421 		!(cr4_read_shadow() & X86_CR4_PCIDE));
422 
423 	/* Force ASID 0 and force a TLB flush. */
424 	write_cr3(build_cr3(mm->pgd, 0));
425 
426 	/* Reinitialize tlbstate. */
427 	this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
428 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
429 	this_cpu_write(cpu_tlbstate.next_asid, 1);
430 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
431 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
432 
433 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
434 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
435 }
436 
437 /*
438  * flush_tlb_func_common()'s memory ordering requirement is that any
439  * TLB fills that happen after we flush the TLB are ordered after we
440  * read active_mm's tlb_gen.  We don't need any explicit barriers
441  * because all x86 flush operations are serializing and the
442  * atomic64_read operation won't be reordered by the compiler.
443  */
444 static void flush_tlb_func_common(const struct flush_tlb_info *f,
445 				  bool local, enum tlb_flush_reason reason)
446 {
447 	/*
448 	 * We have three different tlb_gen values in here.  They are:
449 	 *
450 	 * - mm_tlb_gen:     the latest generation.
451 	 * - local_tlb_gen:  the generation that this CPU has already caught
452 	 *                   up to.
453 	 * - f->new_tlb_gen: the generation that the requester of the flush
454 	 *                   wants us to catch up to.
455 	 */
456 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
457 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
458 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
459 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
460 
461 	/* This code cannot presently handle being reentered. */
462 	VM_WARN_ON(!irqs_disabled());
463 
464 	if (unlikely(loaded_mm == &init_mm))
465 		return;
466 
467 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
468 		   loaded_mm->context.ctx_id);
469 
470 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
471 		/*
472 		 * We're in lazy mode.  We need to at least flush our
473 		 * paging-structure cache to avoid speculatively reading
474 		 * garbage into our TLB.  Since switching to init_mm is barely
475 		 * slower than a minimal flush, just switch to init_mm.
476 		 *
477 		 * This should be rare, with native_flush_tlb_others skipping
478 		 * IPIs to lazy TLB mode CPUs.
479 		 */
480 		switch_mm_irqs_off(NULL, &init_mm, NULL);
481 		return;
482 	}
483 
484 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
485 		/*
486 		 * There's nothing to do: we're already up to date.  This can
487 		 * happen if two concurrent flushes happen -- the first flush to
488 		 * be handled can catch us all the way up, leaving no work for
489 		 * the second flush.
490 		 */
491 		trace_tlb_flush(reason, 0);
492 		return;
493 	}
494 
495 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
496 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
497 
498 	/*
499 	 * If we get to this point, we know that our TLB is out of date.
500 	 * This does not strictly imply that we need to flush (it's
501 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
502 	 * going to need to flush in the very near future, so we might
503 	 * as well get it over with.
504 	 *
505 	 * The only question is whether to do a full or partial flush.
506 	 *
507 	 * We do a partial flush if requested and two extra conditions
508 	 * are met:
509 	 *
510 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
511 	 *    we've always done all needed flushes to catch up to
512 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
513 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
514 	 *    us up to date for tlb_gen 3 is the partial flush we're
515 	 *    processing.
516 	 *
517 	 *    As an example of why this check is needed, suppose that there
518 	 *    are two concurrent flushes.  The first is a full flush that
519 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
520 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
521 	 *    processed on this CPU in reverse order, we'll see
522 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
523 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
524 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
525 	 *    1 without the full flush that's needed for tlb_gen 2.
526 	 *
527 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
528 	 *    Partial TLB flushes are not all that much cheaper than full TLB
529 	 *    flushes, so it seems unlikely that it would be a performance win
530 	 *    to do a partial flush if that won't bring our TLB fully up to
531 	 *    date.  By doing a full flush instead, we can increase
532 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
533 	 *    avoid another flush in the very near future.
534 	 */
535 	if (f->end != TLB_FLUSH_ALL &&
536 	    f->new_tlb_gen == local_tlb_gen + 1 &&
537 	    f->new_tlb_gen == mm_tlb_gen) {
538 		/* Partial flush */
539 		unsigned long addr;
540 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
541 
542 		addr = f->start;
543 		while (addr < f->end) {
544 			__flush_tlb_one_user(addr);
545 			addr += PAGE_SIZE;
546 		}
547 		if (local)
548 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
549 		trace_tlb_flush(reason, nr_pages);
550 	} else {
551 		/* Full flush. */
552 		local_flush_tlb();
553 		if (local)
554 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
555 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
556 	}
557 
558 	/* Both paths above update our state to mm_tlb_gen. */
559 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
560 }
561 
562 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
563 {
564 	const struct flush_tlb_info *f = info;
565 
566 	flush_tlb_func_common(f, true, reason);
567 }
568 
569 static void flush_tlb_func_remote(void *info)
570 {
571 	const struct flush_tlb_info *f = info;
572 
573 	inc_irq_stat(irq_tlb_count);
574 
575 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
576 		return;
577 
578 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
579 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
580 }
581 
582 void native_flush_tlb_others(const struct cpumask *cpumask,
583 			     const struct flush_tlb_info *info)
584 {
585 	cpumask_var_t lazymask;
586 	unsigned int cpu;
587 
588 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
589 	if (info->end == TLB_FLUSH_ALL)
590 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
591 	else
592 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
593 				(info->end - info->start) >> PAGE_SHIFT);
594 
595 	if (is_uv_system()) {
596 		/*
597 		 * This whole special case is confused.  UV has a "Broadcast
598 		 * Assist Unit", which seems to be a fancy way to send IPIs.
599 		 * Back when x86 used an explicit TLB flush IPI, UV was
600 		 * optimized to use its own mechanism.  These days, x86 uses
601 		 * smp_call_function_many(), but UV still uses a manual IPI,
602 		 * and that IPI's action is out of date -- it does a manual
603 		 * flush instead of calling flush_tlb_func_remote().  This
604 		 * means that the percpu tlb_gen variables won't be updated
605 		 * and we'll do pointless flushes on future context switches.
606 		 *
607 		 * Rather than hooking native_flush_tlb_others() here, I think
608 		 * that UV should be updated so that smp_call_function_many(),
609 		 * etc, are optimal on UV.
610 		 */
611 		cpu = smp_processor_id();
612 		cpumask = uv_flush_tlb_others(cpumask, info);
613 		if (cpumask)
614 			smp_call_function_many(cpumask, flush_tlb_func_remote,
615 					       (void *)info, 1);
616 		return;
617 	}
618 
619 	/*
620 	 * A temporary cpumask is used in order to skip sending IPIs
621 	 * to CPUs in lazy TLB state, while keeping them in mm_cpumask(mm).
622 	 * If the allocation fails, simply IPI every CPU in mm_cpumask.
623 	 */
624 	if (!alloc_cpumask_var(&lazymask, GFP_ATOMIC)) {
625 		smp_call_function_many(cpumask, flush_tlb_func_remote,
626 			       (void *)info, 1);
627 		return;
628 	}
629 
630 	cpumask_copy(lazymask, cpumask);
631 
632 	for_each_cpu(cpu, lazymask) {
633 		if (per_cpu(cpu_tlbstate.is_lazy, cpu))
634 			cpumask_clear_cpu(cpu, lazymask);
635 	}
636 
637 	smp_call_function_many(lazymask, flush_tlb_func_remote,
638 			       (void *)info, 1);
639 
640 	free_cpumask_var(lazymask);
641 }
642 
643 /*
644  * See Documentation/x86/tlb.txt for details.  We choose 33
645  * because it is large enough to cover the vast majority (at
646  * least 95%) of allocations, and is small enough that we are
647  * confident it will not cause too much overhead.  Each single
648  * flush is about 100 ns, so this caps the maximum overhead at
649  * _about_ 3,000 ns.
650  *
651  * This is in units of pages.
652  */
653 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
654 
655 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
656 				unsigned long end, unsigned long vmflag)
657 {
658 	int cpu;
659 
660 	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
661 		.mm = mm,
662 	};
663 
664 	cpu = get_cpu();
665 
666 	/* This is also a barrier that synchronizes with switch_mm(). */
667 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
668 
669 	/* Should we flush just the requested range? */
670 	if ((end != TLB_FLUSH_ALL) &&
671 	    !(vmflag & VM_HUGETLB) &&
672 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
673 		info.start = start;
674 		info.end = end;
675 	} else {
676 		info.start = 0UL;
677 		info.end = TLB_FLUSH_ALL;
678 	}
679 
680 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
681 		VM_WARN_ON(irqs_disabled());
682 		local_irq_disable();
683 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
684 		local_irq_enable();
685 	}
686 
687 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
688 		flush_tlb_others(mm_cpumask(mm), &info);
689 
690 	put_cpu();
691 }
692 
693 void tlb_flush_remove_tables_local(void *arg)
694 {
695 	struct mm_struct *mm = arg;
696 
697 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm &&
698 			this_cpu_read(cpu_tlbstate.is_lazy)) {
699 		/*
700 		 * We're in lazy mode.  We need to at least flush our
701 		 * paging-structure cache to avoid speculatively reading
702 		 * garbage into our TLB.  Since switching to init_mm is barely
703 		 * slower than a minimal flush, just switch to init_mm.
704 		 */
705 		switch_mm_irqs_off(NULL, &init_mm, NULL);
706 	}
707 }
708 
709 static void mm_fill_lazy_tlb_cpu_mask(struct mm_struct *mm,
710 				      struct cpumask *lazy_cpus)
711 {
712 	int cpu;
713 
714 	for_each_cpu(cpu, mm_cpumask(mm)) {
715 		if (!per_cpu(cpu_tlbstate.is_lazy, cpu))
716 			cpumask_set_cpu(cpu, lazy_cpus);
717 	}
718 }
719 
720 void tlb_flush_remove_tables(struct mm_struct *mm)
721 {
722 	int cpu = get_cpu();
723 	cpumask_var_t lazy_cpus;
724 
725 	if (cpumask_any_but(mm_cpumask(mm), cpu) >= nr_cpu_ids) {
726 		put_cpu();
727 		return;
728 	}
729 
730 	if (!zalloc_cpumask_var(&lazy_cpus, GFP_ATOMIC)) {
731 		/*
732 		 * If the cpumask allocation fails, do a brute force flush
733 		 * on all the CPUs that have this mm loaded.
734 		 */
735 		smp_call_function_many(mm_cpumask(mm),
736 				tlb_flush_remove_tables_local, (void *)mm, 1);
737 		put_cpu();
738 		return;
739 	}
740 
741 	/*
742 	 * CPUs with !is_lazy either received a TLB flush IPI while the user
743 	 * pages in this address range were unmapped, or have context switched
744 	 * and reloaded %CR3 since then.
745 	 *
746 	 * Shootdown IPIs at page table freeing time only need to be sent to
747 	 * CPUs that may have out of date TLB contents.
748 	 */
749 	mm_fill_lazy_tlb_cpu_mask(mm, lazy_cpus);
750 	smp_call_function_many(lazy_cpus,
751 				tlb_flush_remove_tables_local, (void *)mm, 1);
752 	free_cpumask_var(lazy_cpus);
753 	put_cpu();
754 }
755 
756 static void do_flush_tlb_all(void *info)
757 {
758 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
759 	__flush_tlb_all();
760 }
761 
762 void flush_tlb_all(void)
763 {
764 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
765 	on_each_cpu(do_flush_tlb_all, NULL, 1);
766 }
767 
768 static void do_kernel_range_flush(void *info)
769 {
770 	struct flush_tlb_info *f = info;
771 	unsigned long addr;
772 
773 	/* flush range by one by one 'invlpg' */
774 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
775 		__flush_tlb_one_kernel(addr);
776 }
777 
778 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
779 {
780 
781 	/* Balance as user space task's flush, a bit conservative */
782 	if (end == TLB_FLUSH_ALL ||
783 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
784 		on_each_cpu(do_flush_tlb_all, NULL, 1);
785 	} else {
786 		struct flush_tlb_info info;
787 		info.start = start;
788 		info.end = end;
789 		on_each_cpu(do_kernel_range_flush, &info, 1);
790 	}
791 }
792 
793 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
794 {
795 	struct flush_tlb_info info = {
796 		.mm = NULL,
797 		.start = 0UL,
798 		.end = TLB_FLUSH_ALL,
799 	};
800 
801 	int cpu = get_cpu();
802 
803 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
804 		VM_WARN_ON(irqs_disabled());
805 		local_irq_disable();
806 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
807 		local_irq_enable();
808 	}
809 
810 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
811 		flush_tlb_others(&batch->cpumask, &info);
812 
813 	cpumask_clear(&batch->cpumask);
814 
815 	put_cpu();
816 }
817 
818 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
819 			     size_t count, loff_t *ppos)
820 {
821 	char buf[32];
822 	unsigned int len;
823 
824 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
825 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
826 }
827 
828 static ssize_t tlbflush_write_file(struct file *file,
829 		 const char __user *user_buf, size_t count, loff_t *ppos)
830 {
831 	char buf[32];
832 	ssize_t len;
833 	int ceiling;
834 
835 	len = min(count, sizeof(buf) - 1);
836 	if (copy_from_user(buf, user_buf, len))
837 		return -EFAULT;
838 
839 	buf[len] = '\0';
840 	if (kstrtoint(buf, 0, &ceiling))
841 		return -EINVAL;
842 
843 	if (ceiling < 0)
844 		return -EINVAL;
845 
846 	tlb_single_page_flush_ceiling = ceiling;
847 	return count;
848 }
849 
850 static const struct file_operations fops_tlbflush = {
851 	.read = tlbflush_read_file,
852 	.write = tlbflush_write_file,
853 	.llseek = default_llseek,
854 };
855 
856 static int __init create_tlb_single_page_flush_ceiling(void)
857 {
858 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
859 			    arch_debugfs_dir, NULL, &fops_tlbflush);
860 	return 0;
861 }
862 late_initcall(create_tlb_single_page_flush_ceiling);
863