1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 #include <linux/debugfs.h> 10 #include <linux/gfp.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/uv/uv.h> 18 19 /* 20 * TLB flushing, formerly SMP-only 21 * c/o Linus Torvalds. 22 * 23 * These mean you can really definitely utterly forget about 24 * writing to user space from interrupts. (Its not allowed anyway). 25 * 26 * Optimizations Manfred Spraul <manfred@colorfullife.com> 27 * 28 * More scalable flush, from Andi Kleen 29 * 30 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 31 */ 32 33 /* 34 * We get here when we do something requiring a TLB invalidation 35 * but could not go invalidate all of the contexts. We do the 36 * necessary invalidation by clearing out the 'ctx_id' which 37 * forces a TLB flush when the context is loaded. 38 */ 39 static void clear_asid_other(void) 40 { 41 u16 asid; 42 43 /* 44 * This is only expected to be set if we have disabled 45 * kernel _PAGE_GLOBAL pages. 46 */ 47 if (!static_cpu_has(X86_FEATURE_PTI)) { 48 WARN_ON_ONCE(1); 49 return; 50 } 51 52 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 53 /* Do not need to flush the current asid */ 54 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 55 continue; 56 /* 57 * Make sure the next time we go to switch to 58 * this asid, we do a flush: 59 */ 60 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 61 } 62 this_cpu_write(cpu_tlbstate.invalidate_other, false); 63 } 64 65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 66 67 68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 69 u16 *new_asid, bool *need_flush) 70 { 71 u16 asid; 72 73 if (!static_cpu_has(X86_FEATURE_PCID)) { 74 *new_asid = 0; 75 *need_flush = true; 76 return; 77 } 78 79 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 80 clear_asid_other(); 81 82 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 83 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 84 next->context.ctx_id) 85 continue; 86 87 *new_asid = asid; 88 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 89 next_tlb_gen); 90 return; 91 } 92 93 /* 94 * We don't currently own an ASID slot on this CPU. 95 * Allocate a slot. 96 */ 97 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 98 if (*new_asid >= TLB_NR_DYN_ASIDS) { 99 *new_asid = 0; 100 this_cpu_write(cpu_tlbstate.next_asid, 1); 101 } 102 *need_flush = true; 103 } 104 105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 106 { 107 unsigned long new_mm_cr3; 108 109 if (need_flush) { 110 invalidate_user_asid(new_asid); 111 new_mm_cr3 = build_cr3(pgdir, new_asid); 112 } else { 113 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 114 } 115 116 /* 117 * Caution: many callers of this function expect 118 * that load_cr3() is serializing and orders TLB 119 * fills with respect to the mm_cpumask writes. 120 */ 121 write_cr3(new_mm_cr3); 122 } 123 124 void leave_mm(int cpu) 125 { 126 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 127 128 /* 129 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 130 * If so, our callers still expect us to flush the TLB, but there 131 * aren't any user TLB entries in init_mm to worry about. 132 * 133 * This needs to happen before any other sanity checks due to 134 * intel_idle's shenanigans. 135 */ 136 if (loaded_mm == &init_mm) 137 return; 138 139 /* Warn if we're not lazy. */ 140 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 141 142 switch_mm(NULL, &init_mm, NULL); 143 } 144 EXPORT_SYMBOL_GPL(leave_mm); 145 146 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 147 struct task_struct *tsk) 148 { 149 unsigned long flags; 150 151 local_irq_save(flags); 152 switch_mm_irqs_off(prev, next, tsk); 153 local_irq_restore(flags); 154 } 155 156 static void sync_current_stack_to_mm(struct mm_struct *mm) 157 { 158 unsigned long sp = current_stack_pointer; 159 pgd_t *pgd = pgd_offset(mm, sp); 160 161 if (pgtable_l5_enabled()) { 162 if (unlikely(pgd_none(*pgd))) { 163 pgd_t *pgd_ref = pgd_offset_k(sp); 164 165 set_pgd(pgd, *pgd_ref); 166 } 167 } else { 168 /* 169 * "pgd" is faked. The top level entries are "p4d"s, so sync 170 * the p4d. This compiles to approximately the same code as 171 * the 5-level case. 172 */ 173 p4d_t *p4d = p4d_offset(pgd, sp); 174 175 if (unlikely(p4d_none(*p4d))) { 176 pgd_t *pgd_ref = pgd_offset_k(sp); 177 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 178 179 set_p4d(p4d, *p4d_ref); 180 } 181 } 182 } 183 184 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 185 struct task_struct *tsk) 186 { 187 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 188 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 189 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 190 unsigned cpu = smp_processor_id(); 191 u64 next_tlb_gen; 192 bool need_flush; 193 u16 new_asid; 194 195 /* 196 * NB: The scheduler will call us with prev == next when switching 197 * from lazy TLB mode to normal mode if active_mm isn't changing. 198 * When this happens, we don't assume that CR3 (and hence 199 * cpu_tlbstate.loaded_mm) matches next. 200 * 201 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 202 */ 203 204 /* We don't want flush_tlb_func_* to run concurrently with us. */ 205 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 /* 209 * Verify that CR3 is what we think it is. This will catch 210 * hypothetical buggy code that directly switches to swapper_pg_dir 211 * without going through leave_mm() / switch_mm_irqs_off() or that 212 * does something like write_cr3(read_cr3_pa()). 213 * 214 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 215 * isn't free. 216 */ 217 #ifdef CONFIG_DEBUG_VM 218 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 219 /* 220 * If we were to BUG here, we'd be very likely to kill 221 * the system so hard that we don't see the call trace. 222 * Try to recover instead by ignoring the error and doing 223 * a global flush to minimize the chance of corruption. 224 * 225 * (This is far from being a fully correct recovery. 226 * Architecturally, the CPU could prefetch something 227 * back into an incorrect ASID slot and leave it there 228 * to cause trouble down the road. It's better than 229 * nothing, though.) 230 */ 231 __flush_tlb_all(); 232 } 233 #endif 234 this_cpu_write(cpu_tlbstate.is_lazy, false); 235 236 /* 237 * The membarrier system call requires a full memory barrier and 238 * core serialization before returning to user-space, after 239 * storing to rq->curr. Writing to CR3 provides that full 240 * memory barrier and core serializing instruction. 241 */ 242 if (real_prev == next) { 243 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 244 next->context.ctx_id); 245 246 /* 247 * Even in lazy TLB mode, the CPU should stay set in the 248 * mm_cpumask. The TLB shootdown code can figure out from 249 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 250 */ 251 if (WARN_ON_ONCE(real_prev != &init_mm && 252 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 253 cpumask_set_cpu(cpu, mm_cpumask(next)); 254 255 /* 256 * If the CPU is not in lazy TLB mode, we are just switching 257 * from one thread in a process to another thread in the same 258 * process. No TLB flush required. 259 */ 260 if (!was_lazy) 261 return; 262 263 /* 264 * Read the tlb_gen to check whether a flush is needed. 265 * If the TLB is up to date, just use it. 266 * The barrier synchronizes with the tlb_gen increment in 267 * the TLB shootdown code. 268 */ 269 smp_mb(); 270 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 271 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 272 next_tlb_gen) 273 return; 274 275 /* 276 * TLB contents went out of date while we were in lazy 277 * mode. Fall through to the TLB switching code below. 278 */ 279 new_asid = prev_asid; 280 need_flush = true; 281 } else { 282 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id); 283 284 /* 285 * Avoid user/user BTB poisoning by flushing the branch 286 * predictor when switching between processes. This stops 287 * one process from doing Spectre-v2 attacks on another. 288 * 289 * As an optimization, flush indirect branches only when 290 * switching into processes that disable dumping. This 291 * protects high value processes like gpg, without having 292 * too high performance overhead. IBPB is *expensive*! 293 * 294 * This will not flush branches when switching into kernel 295 * threads. It will also not flush if we switch to idle 296 * thread and back to the same process. It will flush if we 297 * switch to a different non-dumpable process. 298 */ 299 if (tsk && tsk->mm && 300 tsk->mm->context.ctx_id != last_ctx_id && 301 get_dumpable(tsk->mm) != SUID_DUMP_USER) 302 indirect_branch_prediction_barrier(); 303 304 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 305 /* 306 * If our current stack is in vmalloc space and isn't 307 * mapped in the new pgd, we'll double-fault. Forcibly 308 * map it. 309 */ 310 sync_current_stack_to_mm(next); 311 } 312 313 /* 314 * Stop remote flushes for the previous mm. 315 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 316 * but the bitmap manipulation can cause cache line contention. 317 */ 318 if (real_prev != &init_mm) { 319 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 320 mm_cpumask(real_prev))); 321 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 322 } 323 324 /* 325 * Start remote flushes and then read tlb_gen. 326 */ 327 if (next != &init_mm) 328 cpumask_set_cpu(cpu, mm_cpumask(next)); 329 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 330 331 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 332 } 333 334 if (need_flush) { 335 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 336 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 337 load_new_mm_cr3(next->pgd, new_asid, true); 338 339 /* 340 * NB: This gets called via leave_mm() in the idle path 341 * where RCU functions differently. Tracing normally 342 * uses RCU, so we need to use the _rcuidle variant. 343 * 344 * (There is no good reason for this. The idle code should 345 * be rearranged to call this before rcu_idle_enter().) 346 */ 347 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 348 } else { 349 /* The new ASID is already up to date. */ 350 load_new_mm_cr3(next->pgd, new_asid, false); 351 352 /* See above wrt _rcuidle. */ 353 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 354 } 355 356 /* 357 * Record last user mm's context id, so we can avoid 358 * flushing branch buffer with IBPB if we switch back 359 * to the same user. 360 */ 361 if (next != &init_mm) 362 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); 363 364 this_cpu_write(cpu_tlbstate.loaded_mm, next); 365 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 366 367 load_mm_cr4(next); 368 switch_ldt(real_prev, next); 369 } 370 371 /* 372 * Please ignore the name of this function. It should be called 373 * switch_to_kernel_thread(). 374 * 375 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 376 * kernel thread or other context without an mm. Acceptable implementations 377 * include doing nothing whatsoever, switching to init_mm, or various clever 378 * lazy tricks to try to minimize TLB flushes. 379 * 380 * The scheduler reserves the right to call enter_lazy_tlb() several times 381 * in a row. It will notify us that we're going back to a real mm by 382 * calling switch_mm_irqs_off(). 383 */ 384 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 385 { 386 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 387 return; 388 389 this_cpu_write(cpu_tlbstate.is_lazy, true); 390 } 391 392 /* 393 * Call this when reinitializing a CPU. It fixes the following potential 394 * problems: 395 * 396 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 397 * because the CPU was taken down and came back up with CR3's PCID 398 * bits clear. CPU hotplug can do this. 399 * 400 * - The TLB contains junk in slots corresponding to inactive ASIDs. 401 * 402 * - The CPU went so far out to lunch that it may have missed a TLB 403 * flush. 404 */ 405 void initialize_tlbstate_and_flush(void) 406 { 407 int i; 408 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 409 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 410 unsigned long cr3 = __read_cr3(); 411 412 /* Assert that CR3 already references the right mm. */ 413 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 414 415 /* 416 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 417 * doesn't work like other CR4 bits because it can only be set from 418 * long mode.) 419 */ 420 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 421 !(cr4_read_shadow() & X86_CR4_PCIDE)); 422 423 /* Force ASID 0 and force a TLB flush. */ 424 write_cr3(build_cr3(mm->pgd, 0)); 425 426 /* Reinitialize tlbstate. */ 427 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id); 428 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 429 this_cpu_write(cpu_tlbstate.next_asid, 1); 430 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 431 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 432 433 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 434 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 435 } 436 437 /* 438 * flush_tlb_func_common()'s memory ordering requirement is that any 439 * TLB fills that happen after we flush the TLB are ordered after we 440 * read active_mm's tlb_gen. We don't need any explicit barriers 441 * because all x86 flush operations are serializing and the 442 * atomic64_read operation won't be reordered by the compiler. 443 */ 444 static void flush_tlb_func_common(const struct flush_tlb_info *f, 445 bool local, enum tlb_flush_reason reason) 446 { 447 /* 448 * We have three different tlb_gen values in here. They are: 449 * 450 * - mm_tlb_gen: the latest generation. 451 * - local_tlb_gen: the generation that this CPU has already caught 452 * up to. 453 * - f->new_tlb_gen: the generation that the requester of the flush 454 * wants us to catch up to. 455 */ 456 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 457 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 458 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 459 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 460 461 /* This code cannot presently handle being reentered. */ 462 VM_WARN_ON(!irqs_disabled()); 463 464 if (unlikely(loaded_mm == &init_mm)) 465 return; 466 467 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 468 loaded_mm->context.ctx_id); 469 470 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 471 /* 472 * We're in lazy mode. We need to at least flush our 473 * paging-structure cache to avoid speculatively reading 474 * garbage into our TLB. Since switching to init_mm is barely 475 * slower than a minimal flush, just switch to init_mm. 476 * 477 * This should be rare, with native_flush_tlb_others skipping 478 * IPIs to lazy TLB mode CPUs. 479 */ 480 switch_mm_irqs_off(NULL, &init_mm, NULL); 481 return; 482 } 483 484 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 485 /* 486 * There's nothing to do: we're already up to date. This can 487 * happen if two concurrent flushes happen -- the first flush to 488 * be handled can catch us all the way up, leaving no work for 489 * the second flush. 490 */ 491 trace_tlb_flush(reason, 0); 492 return; 493 } 494 495 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 496 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 497 498 /* 499 * If we get to this point, we know that our TLB is out of date. 500 * This does not strictly imply that we need to flush (it's 501 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 502 * going to need to flush in the very near future, so we might 503 * as well get it over with. 504 * 505 * The only question is whether to do a full or partial flush. 506 * 507 * We do a partial flush if requested and two extra conditions 508 * are met: 509 * 510 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 511 * we've always done all needed flushes to catch up to 512 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 513 * f->new_tlb_gen == 3, then we know that the flush needed to bring 514 * us up to date for tlb_gen 3 is the partial flush we're 515 * processing. 516 * 517 * As an example of why this check is needed, suppose that there 518 * are two concurrent flushes. The first is a full flush that 519 * changes context.tlb_gen from 1 to 2. The second is a partial 520 * flush that changes context.tlb_gen from 2 to 3. If they get 521 * processed on this CPU in reverse order, we'll see 522 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 523 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 524 * 3, we'd be break the invariant: we'd update local_tlb_gen above 525 * 1 without the full flush that's needed for tlb_gen 2. 526 * 527 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 528 * Partial TLB flushes are not all that much cheaper than full TLB 529 * flushes, so it seems unlikely that it would be a performance win 530 * to do a partial flush if that won't bring our TLB fully up to 531 * date. By doing a full flush instead, we can increase 532 * local_tlb_gen all the way to mm_tlb_gen and we can probably 533 * avoid another flush in the very near future. 534 */ 535 if (f->end != TLB_FLUSH_ALL && 536 f->new_tlb_gen == local_tlb_gen + 1 && 537 f->new_tlb_gen == mm_tlb_gen) { 538 /* Partial flush */ 539 unsigned long addr; 540 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT; 541 542 addr = f->start; 543 while (addr < f->end) { 544 __flush_tlb_one_user(addr); 545 addr += PAGE_SIZE; 546 } 547 if (local) 548 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages); 549 trace_tlb_flush(reason, nr_pages); 550 } else { 551 /* Full flush. */ 552 local_flush_tlb(); 553 if (local) 554 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 555 trace_tlb_flush(reason, TLB_FLUSH_ALL); 556 } 557 558 /* Both paths above update our state to mm_tlb_gen. */ 559 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 560 } 561 562 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 563 { 564 const struct flush_tlb_info *f = info; 565 566 flush_tlb_func_common(f, true, reason); 567 } 568 569 static void flush_tlb_func_remote(void *info) 570 { 571 const struct flush_tlb_info *f = info; 572 573 inc_irq_stat(irq_tlb_count); 574 575 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 576 return; 577 578 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 579 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 580 } 581 582 void native_flush_tlb_others(const struct cpumask *cpumask, 583 const struct flush_tlb_info *info) 584 { 585 cpumask_var_t lazymask; 586 unsigned int cpu; 587 588 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 589 if (info->end == TLB_FLUSH_ALL) 590 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 591 else 592 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 593 (info->end - info->start) >> PAGE_SHIFT); 594 595 if (is_uv_system()) { 596 /* 597 * This whole special case is confused. UV has a "Broadcast 598 * Assist Unit", which seems to be a fancy way to send IPIs. 599 * Back when x86 used an explicit TLB flush IPI, UV was 600 * optimized to use its own mechanism. These days, x86 uses 601 * smp_call_function_many(), but UV still uses a manual IPI, 602 * and that IPI's action is out of date -- it does a manual 603 * flush instead of calling flush_tlb_func_remote(). This 604 * means that the percpu tlb_gen variables won't be updated 605 * and we'll do pointless flushes on future context switches. 606 * 607 * Rather than hooking native_flush_tlb_others() here, I think 608 * that UV should be updated so that smp_call_function_many(), 609 * etc, are optimal on UV. 610 */ 611 cpu = smp_processor_id(); 612 cpumask = uv_flush_tlb_others(cpumask, info); 613 if (cpumask) 614 smp_call_function_many(cpumask, flush_tlb_func_remote, 615 (void *)info, 1); 616 return; 617 } 618 619 /* 620 * A temporary cpumask is used in order to skip sending IPIs 621 * to CPUs in lazy TLB state, while keeping them in mm_cpumask(mm). 622 * If the allocation fails, simply IPI every CPU in mm_cpumask. 623 */ 624 if (!alloc_cpumask_var(&lazymask, GFP_ATOMIC)) { 625 smp_call_function_many(cpumask, flush_tlb_func_remote, 626 (void *)info, 1); 627 return; 628 } 629 630 cpumask_copy(lazymask, cpumask); 631 632 for_each_cpu(cpu, lazymask) { 633 if (per_cpu(cpu_tlbstate.is_lazy, cpu)) 634 cpumask_clear_cpu(cpu, lazymask); 635 } 636 637 smp_call_function_many(lazymask, flush_tlb_func_remote, 638 (void *)info, 1); 639 640 free_cpumask_var(lazymask); 641 } 642 643 /* 644 * See Documentation/x86/tlb.txt for details. We choose 33 645 * because it is large enough to cover the vast majority (at 646 * least 95%) of allocations, and is small enough that we are 647 * confident it will not cause too much overhead. Each single 648 * flush is about 100 ns, so this caps the maximum overhead at 649 * _about_ 3,000 ns. 650 * 651 * This is in units of pages. 652 */ 653 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 654 655 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 656 unsigned long end, unsigned long vmflag) 657 { 658 int cpu; 659 660 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = { 661 .mm = mm, 662 }; 663 664 cpu = get_cpu(); 665 666 /* This is also a barrier that synchronizes with switch_mm(). */ 667 info.new_tlb_gen = inc_mm_tlb_gen(mm); 668 669 /* Should we flush just the requested range? */ 670 if ((end != TLB_FLUSH_ALL) && 671 !(vmflag & VM_HUGETLB) && 672 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) { 673 info.start = start; 674 info.end = end; 675 } else { 676 info.start = 0UL; 677 info.end = TLB_FLUSH_ALL; 678 } 679 680 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 681 VM_WARN_ON(irqs_disabled()); 682 local_irq_disable(); 683 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 684 local_irq_enable(); 685 } 686 687 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 688 flush_tlb_others(mm_cpumask(mm), &info); 689 690 put_cpu(); 691 } 692 693 void tlb_flush_remove_tables_local(void *arg) 694 { 695 struct mm_struct *mm = arg; 696 697 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm && 698 this_cpu_read(cpu_tlbstate.is_lazy)) { 699 /* 700 * We're in lazy mode. We need to at least flush our 701 * paging-structure cache to avoid speculatively reading 702 * garbage into our TLB. Since switching to init_mm is barely 703 * slower than a minimal flush, just switch to init_mm. 704 */ 705 switch_mm_irqs_off(NULL, &init_mm, NULL); 706 } 707 } 708 709 static void mm_fill_lazy_tlb_cpu_mask(struct mm_struct *mm, 710 struct cpumask *lazy_cpus) 711 { 712 int cpu; 713 714 for_each_cpu(cpu, mm_cpumask(mm)) { 715 if (!per_cpu(cpu_tlbstate.is_lazy, cpu)) 716 cpumask_set_cpu(cpu, lazy_cpus); 717 } 718 } 719 720 void tlb_flush_remove_tables(struct mm_struct *mm) 721 { 722 int cpu = get_cpu(); 723 cpumask_var_t lazy_cpus; 724 725 if (cpumask_any_but(mm_cpumask(mm), cpu) >= nr_cpu_ids) { 726 put_cpu(); 727 return; 728 } 729 730 if (!zalloc_cpumask_var(&lazy_cpus, GFP_ATOMIC)) { 731 /* 732 * If the cpumask allocation fails, do a brute force flush 733 * on all the CPUs that have this mm loaded. 734 */ 735 smp_call_function_many(mm_cpumask(mm), 736 tlb_flush_remove_tables_local, (void *)mm, 1); 737 put_cpu(); 738 return; 739 } 740 741 /* 742 * CPUs with !is_lazy either received a TLB flush IPI while the user 743 * pages in this address range were unmapped, or have context switched 744 * and reloaded %CR3 since then. 745 * 746 * Shootdown IPIs at page table freeing time only need to be sent to 747 * CPUs that may have out of date TLB contents. 748 */ 749 mm_fill_lazy_tlb_cpu_mask(mm, lazy_cpus); 750 smp_call_function_many(lazy_cpus, 751 tlb_flush_remove_tables_local, (void *)mm, 1); 752 free_cpumask_var(lazy_cpus); 753 put_cpu(); 754 } 755 756 static void do_flush_tlb_all(void *info) 757 { 758 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 759 __flush_tlb_all(); 760 } 761 762 void flush_tlb_all(void) 763 { 764 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 765 on_each_cpu(do_flush_tlb_all, NULL, 1); 766 } 767 768 static void do_kernel_range_flush(void *info) 769 { 770 struct flush_tlb_info *f = info; 771 unsigned long addr; 772 773 /* flush range by one by one 'invlpg' */ 774 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 775 __flush_tlb_one_kernel(addr); 776 } 777 778 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 779 { 780 781 /* Balance as user space task's flush, a bit conservative */ 782 if (end == TLB_FLUSH_ALL || 783 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 784 on_each_cpu(do_flush_tlb_all, NULL, 1); 785 } else { 786 struct flush_tlb_info info; 787 info.start = start; 788 info.end = end; 789 on_each_cpu(do_kernel_range_flush, &info, 1); 790 } 791 } 792 793 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 794 { 795 struct flush_tlb_info info = { 796 .mm = NULL, 797 .start = 0UL, 798 .end = TLB_FLUSH_ALL, 799 }; 800 801 int cpu = get_cpu(); 802 803 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 804 VM_WARN_ON(irqs_disabled()); 805 local_irq_disable(); 806 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 807 local_irq_enable(); 808 } 809 810 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 811 flush_tlb_others(&batch->cpumask, &info); 812 813 cpumask_clear(&batch->cpumask); 814 815 put_cpu(); 816 } 817 818 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 819 size_t count, loff_t *ppos) 820 { 821 char buf[32]; 822 unsigned int len; 823 824 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 825 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 826 } 827 828 static ssize_t tlbflush_write_file(struct file *file, 829 const char __user *user_buf, size_t count, loff_t *ppos) 830 { 831 char buf[32]; 832 ssize_t len; 833 int ceiling; 834 835 len = min(count, sizeof(buf) - 1); 836 if (copy_from_user(buf, user_buf, len)) 837 return -EFAULT; 838 839 buf[len] = '\0'; 840 if (kstrtoint(buf, 0, &ceiling)) 841 return -EINVAL; 842 843 if (ceiling < 0) 844 return -EINVAL; 845 846 tlb_single_page_flush_ceiling = ceiling; 847 return count; 848 } 849 850 static const struct file_operations fops_tlbflush = { 851 .read = tlbflush_read_file, 852 .write = tlbflush_write_file, 853 .llseek = default_llseek, 854 }; 855 856 static int __init create_tlb_single_page_flush_ceiling(void) 857 { 858 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 859 arch_debugfs_dir, NULL, &fops_tlbflush); 860 return 0; 861 } 862 late_initcall(create_tlb_single_page_flush_ceiling); 863