1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 #include <linux/debugfs.h> 10 11 #include <asm/tlbflush.h> 12 #include <asm/mmu_context.h> 13 #include <asm/nospec-branch.h> 14 #include <asm/cache.h> 15 #include <asm/apic.h> 16 #include <asm/uv/uv.h> 17 18 /* 19 * TLB flushing, formerly SMP-only 20 * c/o Linus Torvalds. 21 * 22 * These mean you can really definitely utterly forget about 23 * writing to user space from interrupts. (Its not allowed anyway). 24 * 25 * Optimizations Manfred Spraul <manfred@colorfullife.com> 26 * 27 * More scalable flush, from Andi Kleen 28 * 29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 30 */ 31 32 /* 33 * We get here when we do something requiring a TLB invalidation 34 * but could not go invalidate all of the contexts. We do the 35 * necessary invalidation by clearing out the 'ctx_id' which 36 * forces a TLB flush when the context is loaded. 37 */ 38 static void clear_asid_other(void) 39 { 40 u16 asid; 41 42 /* 43 * This is only expected to be set if we have disabled 44 * kernel _PAGE_GLOBAL pages. 45 */ 46 if (!static_cpu_has(X86_FEATURE_PTI)) { 47 WARN_ON_ONCE(1); 48 return; 49 } 50 51 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 52 /* Do not need to flush the current asid */ 53 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 54 continue; 55 /* 56 * Make sure the next time we go to switch to 57 * this asid, we do a flush: 58 */ 59 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 60 } 61 this_cpu_write(cpu_tlbstate.invalidate_other, false); 62 } 63 64 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 65 66 67 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 68 u16 *new_asid, bool *need_flush) 69 { 70 u16 asid; 71 72 if (!static_cpu_has(X86_FEATURE_PCID)) { 73 *new_asid = 0; 74 *need_flush = true; 75 return; 76 } 77 78 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 79 clear_asid_other(); 80 81 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 82 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 83 next->context.ctx_id) 84 continue; 85 86 *new_asid = asid; 87 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 88 next_tlb_gen); 89 return; 90 } 91 92 /* 93 * We don't currently own an ASID slot on this CPU. 94 * Allocate a slot. 95 */ 96 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 97 if (*new_asid >= TLB_NR_DYN_ASIDS) { 98 *new_asid = 0; 99 this_cpu_write(cpu_tlbstate.next_asid, 1); 100 } 101 *need_flush = true; 102 } 103 104 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 105 { 106 unsigned long new_mm_cr3; 107 108 if (need_flush) { 109 invalidate_user_asid(new_asid); 110 new_mm_cr3 = build_cr3(pgdir, new_asid); 111 } else { 112 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 113 } 114 115 /* 116 * Caution: many callers of this function expect 117 * that load_cr3() is serializing and orders TLB 118 * fills with respect to the mm_cpumask writes. 119 */ 120 write_cr3(new_mm_cr3); 121 } 122 123 void leave_mm(int cpu) 124 { 125 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 126 127 /* 128 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 129 * If so, our callers still expect us to flush the TLB, but there 130 * aren't any user TLB entries in init_mm to worry about. 131 * 132 * This needs to happen before any other sanity checks due to 133 * intel_idle's shenanigans. 134 */ 135 if (loaded_mm == &init_mm) 136 return; 137 138 /* Warn if we're not lazy. */ 139 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 140 141 switch_mm(NULL, &init_mm, NULL); 142 } 143 EXPORT_SYMBOL_GPL(leave_mm); 144 145 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 146 struct task_struct *tsk) 147 { 148 unsigned long flags; 149 150 local_irq_save(flags); 151 switch_mm_irqs_off(prev, next, tsk); 152 local_irq_restore(flags); 153 } 154 155 static void sync_current_stack_to_mm(struct mm_struct *mm) 156 { 157 unsigned long sp = current_stack_pointer; 158 pgd_t *pgd = pgd_offset(mm, sp); 159 160 if (pgtable_l5_enabled()) { 161 if (unlikely(pgd_none(*pgd))) { 162 pgd_t *pgd_ref = pgd_offset_k(sp); 163 164 set_pgd(pgd, *pgd_ref); 165 } 166 } else { 167 /* 168 * "pgd" is faked. The top level entries are "p4d"s, so sync 169 * the p4d. This compiles to approximately the same code as 170 * the 5-level case. 171 */ 172 p4d_t *p4d = p4d_offset(pgd, sp); 173 174 if (unlikely(p4d_none(*p4d))) { 175 pgd_t *pgd_ref = pgd_offset_k(sp); 176 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp); 177 178 set_p4d(p4d, *p4d_ref); 179 } 180 } 181 } 182 183 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 184 struct task_struct *tsk) 185 { 186 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 187 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 188 unsigned cpu = smp_processor_id(); 189 u64 next_tlb_gen; 190 191 /* 192 * NB: The scheduler will call us with prev == next when switching 193 * from lazy TLB mode to normal mode if active_mm isn't changing. 194 * When this happens, we don't assume that CR3 (and hence 195 * cpu_tlbstate.loaded_mm) matches next. 196 * 197 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 198 */ 199 200 /* We don't want flush_tlb_func_* to run concurrently with us. */ 201 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 202 WARN_ON_ONCE(!irqs_disabled()); 203 204 /* 205 * Verify that CR3 is what we think it is. This will catch 206 * hypothetical buggy code that directly switches to swapper_pg_dir 207 * without going through leave_mm() / switch_mm_irqs_off() or that 208 * does something like write_cr3(read_cr3_pa()). 209 * 210 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 211 * isn't free. 212 */ 213 #ifdef CONFIG_DEBUG_VM 214 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 215 /* 216 * If we were to BUG here, we'd be very likely to kill 217 * the system so hard that we don't see the call trace. 218 * Try to recover instead by ignoring the error and doing 219 * a global flush to minimize the chance of corruption. 220 * 221 * (This is far from being a fully correct recovery. 222 * Architecturally, the CPU could prefetch something 223 * back into an incorrect ASID slot and leave it there 224 * to cause trouble down the road. It's better than 225 * nothing, though.) 226 */ 227 __flush_tlb_all(); 228 } 229 #endif 230 this_cpu_write(cpu_tlbstate.is_lazy, false); 231 232 /* 233 * The membarrier system call requires a full memory barrier and 234 * core serialization before returning to user-space, after 235 * storing to rq->curr. Writing to CR3 provides that full 236 * memory barrier and core serializing instruction. 237 */ 238 if (real_prev == next) { 239 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 240 next->context.ctx_id); 241 242 /* 243 * We don't currently support having a real mm loaded without 244 * our cpu set in mm_cpumask(). We have all the bookkeeping 245 * in place to figure out whether we would need to flush 246 * if our cpu were cleared in mm_cpumask(), but we don't 247 * currently use it. 248 */ 249 if (WARN_ON_ONCE(real_prev != &init_mm && 250 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 251 cpumask_set_cpu(cpu, mm_cpumask(next)); 252 253 return; 254 } else { 255 u16 new_asid; 256 bool need_flush; 257 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id); 258 259 /* 260 * Avoid user/user BTB poisoning by flushing the branch 261 * predictor when switching between processes. This stops 262 * one process from doing Spectre-v2 attacks on another. 263 * 264 * As an optimization, flush indirect branches only when 265 * switching into processes that disable dumping. This 266 * protects high value processes like gpg, without having 267 * too high performance overhead. IBPB is *expensive*! 268 * 269 * This will not flush branches when switching into kernel 270 * threads. It will also not flush if we switch to idle 271 * thread and back to the same process. It will flush if we 272 * switch to a different non-dumpable process. 273 */ 274 if (tsk && tsk->mm && 275 tsk->mm->context.ctx_id != last_ctx_id && 276 get_dumpable(tsk->mm) != SUID_DUMP_USER) 277 indirect_branch_prediction_barrier(); 278 279 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 280 /* 281 * If our current stack is in vmalloc space and isn't 282 * mapped in the new pgd, we'll double-fault. Forcibly 283 * map it. 284 */ 285 sync_current_stack_to_mm(next); 286 } 287 288 /* 289 * Stop remote flushes for the previous mm. 290 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 291 * but the bitmap manipulation can cause cache line contention. 292 */ 293 if (real_prev != &init_mm) { 294 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 295 mm_cpumask(real_prev))); 296 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 297 } 298 299 /* 300 * Start remote flushes and then read tlb_gen. 301 */ 302 if (next != &init_mm) 303 cpumask_set_cpu(cpu, mm_cpumask(next)); 304 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 305 306 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 307 308 if (need_flush) { 309 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 310 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 311 load_new_mm_cr3(next->pgd, new_asid, true); 312 313 /* 314 * NB: This gets called via leave_mm() in the idle path 315 * where RCU functions differently. Tracing normally 316 * uses RCU, so we need to use the _rcuidle variant. 317 * 318 * (There is no good reason for this. The idle code should 319 * be rearranged to call this before rcu_idle_enter().) 320 */ 321 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 322 } else { 323 /* The new ASID is already up to date. */ 324 load_new_mm_cr3(next->pgd, new_asid, false); 325 326 /* See above wrt _rcuidle. */ 327 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); 328 } 329 330 /* 331 * Record last user mm's context id, so we can avoid 332 * flushing branch buffer with IBPB if we switch back 333 * to the same user. 334 */ 335 if (next != &init_mm) 336 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); 337 338 this_cpu_write(cpu_tlbstate.loaded_mm, next); 339 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 340 } 341 342 load_mm_cr4(next); 343 switch_ldt(real_prev, next); 344 } 345 346 /* 347 * Please ignore the name of this function. It should be called 348 * switch_to_kernel_thread(). 349 * 350 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 351 * kernel thread or other context without an mm. Acceptable implementations 352 * include doing nothing whatsoever, switching to init_mm, or various clever 353 * lazy tricks to try to minimize TLB flushes. 354 * 355 * The scheduler reserves the right to call enter_lazy_tlb() several times 356 * in a row. It will notify us that we're going back to a real mm by 357 * calling switch_mm_irqs_off(). 358 */ 359 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 360 { 361 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 362 return; 363 364 if (tlb_defer_switch_to_init_mm()) { 365 /* 366 * There's a significant optimization that may be possible 367 * here. We have accurate enough TLB flush tracking that we 368 * don't need to maintain coherence of TLB per se when we're 369 * lazy. We do, however, need to maintain coherence of 370 * paging-structure caches. We could, in principle, leave our 371 * old mm loaded and only switch to init_mm when 372 * tlb_remove_page() happens. 373 */ 374 this_cpu_write(cpu_tlbstate.is_lazy, true); 375 } else { 376 switch_mm(NULL, &init_mm, NULL); 377 } 378 } 379 380 /* 381 * Call this when reinitializing a CPU. It fixes the following potential 382 * problems: 383 * 384 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 385 * because the CPU was taken down and came back up with CR3's PCID 386 * bits clear. CPU hotplug can do this. 387 * 388 * - The TLB contains junk in slots corresponding to inactive ASIDs. 389 * 390 * - The CPU went so far out to lunch that it may have missed a TLB 391 * flush. 392 */ 393 void initialize_tlbstate_and_flush(void) 394 { 395 int i; 396 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 397 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 398 unsigned long cr3 = __read_cr3(); 399 400 /* Assert that CR3 already references the right mm. */ 401 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 402 403 /* 404 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 405 * doesn't work like other CR4 bits because it can only be set from 406 * long mode.) 407 */ 408 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 409 !(cr4_read_shadow() & X86_CR4_PCIDE)); 410 411 /* Force ASID 0 and force a TLB flush. */ 412 write_cr3(build_cr3(mm->pgd, 0)); 413 414 /* Reinitialize tlbstate. */ 415 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id); 416 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 417 this_cpu_write(cpu_tlbstate.next_asid, 1); 418 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 419 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 420 421 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 422 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 423 } 424 425 /* 426 * flush_tlb_func_common()'s memory ordering requirement is that any 427 * TLB fills that happen after we flush the TLB are ordered after we 428 * read active_mm's tlb_gen. We don't need any explicit barriers 429 * because all x86 flush operations are serializing and the 430 * atomic64_read operation won't be reordered by the compiler. 431 */ 432 static void flush_tlb_func_common(const struct flush_tlb_info *f, 433 bool local, enum tlb_flush_reason reason) 434 { 435 /* 436 * We have three different tlb_gen values in here. They are: 437 * 438 * - mm_tlb_gen: the latest generation. 439 * - local_tlb_gen: the generation that this CPU has already caught 440 * up to. 441 * - f->new_tlb_gen: the generation that the requester of the flush 442 * wants us to catch up to. 443 */ 444 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 445 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 446 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 447 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 448 449 /* This code cannot presently handle being reentered. */ 450 VM_WARN_ON(!irqs_disabled()); 451 452 if (unlikely(loaded_mm == &init_mm)) 453 return; 454 455 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 456 loaded_mm->context.ctx_id); 457 458 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 459 /* 460 * We're in lazy mode. We need to at least flush our 461 * paging-structure cache to avoid speculatively reading 462 * garbage into our TLB. Since switching to init_mm is barely 463 * slower than a minimal flush, just switch to init_mm. 464 */ 465 switch_mm_irqs_off(NULL, &init_mm, NULL); 466 return; 467 } 468 469 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 470 /* 471 * There's nothing to do: we're already up to date. This can 472 * happen if two concurrent flushes happen -- the first flush to 473 * be handled can catch us all the way up, leaving no work for 474 * the second flush. 475 */ 476 trace_tlb_flush(reason, 0); 477 return; 478 } 479 480 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 481 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 482 483 /* 484 * If we get to this point, we know that our TLB is out of date. 485 * This does not strictly imply that we need to flush (it's 486 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 487 * going to need to flush in the very near future, so we might 488 * as well get it over with. 489 * 490 * The only question is whether to do a full or partial flush. 491 * 492 * We do a partial flush if requested and two extra conditions 493 * are met: 494 * 495 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 496 * we've always done all needed flushes to catch up to 497 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 498 * f->new_tlb_gen == 3, then we know that the flush needed to bring 499 * us up to date for tlb_gen 3 is the partial flush we're 500 * processing. 501 * 502 * As an example of why this check is needed, suppose that there 503 * are two concurrent flushes. The first is a full flush that 504 * changes context.tlb_gen from 1 to 2. The second is a partial 505 * flush that changes context.tlb_gen from 2 to 3. If they get 506 * processed on this CPU in reverse order, we'll see 507 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 508 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 509 * 3, we'd be break the invariant: we'd update local_tlb_gen above 510 * 1 without the full flush that's needed for tlb_gen 2. 511 * 512 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 513 * Partial TLB flushes are not all that much cheaper than full TLB 514 * flushes, so it seems unlikely that it would be a performance win 515 * to do a partial flush if that won't bring our TLB fully up to 516 * date. By doing a full flush instead, we can increase 517 * local_tlb_gen all the way to mm_tlb_gen and we can probably 518 * avoid another flush in the very near future. 519 */ 520 if (f->end != TLB_FLUSH_ALL && 521 f->new_tlb_gen == local_tlb_gen + 1 && 522 f->new_tlb_gen == mm_tlb_gen) { 523 /* Partial flush */ 524 unsigned long addr; 525 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT; 526 527 addr = f->start; 528 while (addr < f->end) { 529 __flush_tlb_one_user(addr); 530 addr += PAGE_SIZE; 531 } 532 if (local) 533 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages); 534 trace_tlb_flush(reason, nr_pages); 535 } else { 536 /* Full flush. */ 537 local_flush_tlb(); 538 if (local) 539 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 540 trace_tlb_flush(reason, TLB_FLUSH_ALL); 541 } 542 543 /* Both paths above update our state to mm_tlb_gen. */ 544 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 545 } 546 547 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) 548 { 549 const struct flush_tlb_info *f = info; 550 551 flush_tlb_func_common(f, true, reason); 552 } 553 554 static void flush_tlb_func_remote(void *info) 555 { 556 const struct flush_tlb_info *f = info; 557 558 inc_irq_stat(irq_tlb_count); 559 560 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 561 return; 562 563 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 564 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 565 } 566 567 void native_flush_tlb_others(const struct cpumask *cpumask, 568 const struct flush_tlb_info *info) 569 { 570 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 571 if (info->end == TLB_FLUSH_ALL) 572 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 573 else 574 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 575 (info->end - info->start) >> PAGE_SHIFT); 576 577 if (is_uv_system()) { 578 /* 579 * This whole special case is confused. UV has a "Broadcast 580 * Assist Unit", which seems to be a fancy way to send IPIs. 581 * Back when x86 used an explicit TLB flush IPI, UV was 582 * optimized to use its own mechanism. These days, x86 uses 583 * smp_call_function_many(), but UV still uses a manual IPI, 584 * and that IPI's action is out of date -- it does a manual 585 * flush instead of calling flush_tlb_func_remote(). This 586 * means that the percpu tlb_gen variables won't be updated 587 * and we'll do pointless flushes on future context switches. 588 * 589 * Rather than hooking native_flush_tlb_others() here, I think 590 * that UV should be updated so that smp_call_function_many(), 591 * etc, are optimal on UV. 592 */ 593 unsigned int cpu; 594 595 cpu = smp_processor_id(); 596 cpumask = uv_flush_tlb_others(cpumask, info); 597 if (cpumask) 598 smp_call_function_many(cpumask, flush_tlb_func_remote, 599 (void *)info, 1); 600 return; 601 } 602 smp_call_function_many(cpumask, flush_tlb_func_remote, 603 (void *)info, 1); 604 } 605 606 /* 607 * See Documentation/x86/tlb.txt for details. We choose 33 608 * because it is large enough to cover the vast majority (at 609 * least 95%) of allocations, and is small enough that we are 610 * confident it will not cause too much overhead. Each single 611 * flush is about 100 ns, so this caps the maximum overhead at 612 * _about_ 3,000 ns. 613 * 614 * This is in units of pages. 615 */ 616 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 617 618 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 619 unsigned long end, unsigned long vmflag) 620 { 621 int cpu; 622 623 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = { 624 .mm = mm, 625 }; 626 627 cpu = get_cpu(); 628 629 /* This is also a barrier that synchronizes with switch_mm(). */ 630 info.new_tlb_gen = inc_mm_tlb_gen(mm); 631 632 /* Should we flush just the requested range? */ 633 if ((end != TLB_FLUSH_ALL) && 634 !(vmflag & VM_HUGETLB) && 635 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) { 636 info.start = start; 637 info.end = end; 638 } else { 639 info.start = 0UL; 640 info.end = TLB_FLUSH_ALL; 641 } 642 643 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 644 VM_WARN_ON(irqs_disabled()); 645 local_irq_disable(); 646 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); 647 local_irq_enable(); 648 } 649 650 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 651 flush_tlb_others(mm_cpumask(mm), &info); 652 653 put_cpu(); 654 } 655 656 657 static void do_flush_tlb_all(void *info) 658 { 659 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 660 __flush_tlb_all(); 661 } 662 663 void flush_tlb_all(void) 664 { 665 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 666 on_each_cpu(do_flush_tlb_all, NULL, 1); 667 } 668 669 static void do_kernel_range_flush(void *info) 670 { 671 struct flush_tlb_info *f = info; 672 unsigned long addr; 673 674 /* flush range by one by one 'invlpg' */ 675 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 676 __flush_tlb_one_kernel(addr); 677 } 678 679 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 680 { 681 682 /* Balance as user space task's flush, a bit conservative */ 683 if (end == TLB_FLUSH_ALL || 684 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 685 on_each_cpu(do_flush_tlb_all, NULL, 1); 686 } else { 687 struct flush_tlb_info info; 688 info.start = start; 689 info.end = end; 690 on_each_cpu(do_kernel_range_flush, &info, 1); 691 } 692 } 693 694 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 695 { 696 struct flush_tlb_info info = { 697 .mm = NULL, 698 .start = 0UL, 699 .end = TLB_FLUSH_ALL, 700 }; 701 702 int cpu = get_cpu(); 703 704 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 705 VM_WARN_ON(irqs_disabled()); 706 local_irq_disable(); 707 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); 708 local_irq_enable(); 709 } 710 711 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 712 flush_tlb_others(&batch->cpumask, &info); 713 714 cpumask_clear(&batch->cpumask); 715 716 put_cpu(); 717 } 718 719 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 720 size_t count, loff_t *ppos) 721 { 722 char buf[32]; 723 unsigned int len; 724 725 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 726 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 727 } 728 729 static ssize_t tlbflush_write_file(struct file *file, 730 const char __user *user_buf, size_t count, loff_t *ppos) 731 { 732 char buf[32]; 733 ssize_t len; 734 int ceiling; 735 736 len = min(count, sizeof(buf) - 1); 737 if (copy_from_user(buf, user_buf, len)) 738 return -EFAULT; 739 740 buf[len] = '\0'; 741 if (kstrtoint(buf, 0, &ceiling)) 742 return -EINVAL; 743 744 if (ceiling < 0) 745 return -EINVAL; 746 747 tlb_single_page_flush_ceiling = ceiling; 748 return count; 749 } 750 751 static const struct file_operations fops_tlbflush = { 752 .read = tlbflush_read_file, 753 .write = tlbflush_write_file, 754 .llseek = default_llseek, 755 }; 756 757 static int __init create_tlb_single_page_flush_ceiling(void) 758 { 759 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 760 arch_debugfs_dir, NULL, &fops_tlbflush); 761 return 0; 762 } 763 late_initcall(create_tlb_single_page_flush_ceiling); 764