1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 #include <asm/uv/uv.h> 18 19 #include "mm_internal.h" 20 21 #ifdef CONFIG_PARAVIRT 22 # define STATIC_NOPV 23 #else 24 # define STATIC_NOPV static 25 # define __flush_tlb_local native_flush_tlb_local 26 # define __flush_tlb_global native_flush_tlb_global 27 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 28 # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info) 29 #endif 30 31 /* 32 * TLB flushing, formerly SMP-only 33 * c/o Linus Torvalds. 34 * 35 * These mean you can really definitely utterly forget about 36 * writing to user space from interrupts. (Its not allowed anyway). 37 * 38 * Optimizations Manfred Spraul <manfred@colorfullife.com> 39 * 40 * More scalable flush, from Andi Kleen 41 * 42 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 43 */ 44 45 /* 46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 47 * stored in cpu_tlb_state.last_user_mm_ibpb. 48 */ 49 #define LAST_USER_MM_IBPB 0x1UL 50 51 /* 52 * The x86 feature is called PCID (Process Context IDentifier). It is similar 53 * to what is traditionally called ASID on the RISC processors. 54 * 55 * We don't use the traditional ASID implementation, where each process/mm gets 56 * its own ASID and flush/restart when we run out of ASID space. 57 * 58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 59 * that came by on this CPU, allowing cheaper switch_mm between processes on 60 * this CPU. 61 * 62 * We end up with different spaces for different things. To avoid confusion we 63 * use different names for each of them: 64 * 65 * ASID - [0, TLB_NR_DYN_ASIDS-1] 66 * the canonical identifier for an mm 67 * 68 * kPCID - [1, TLB_NR_DYN_ASIDS] 69 * the value we write into the PCID part of CR3; corresponds to the 70 * ASID+1, because PCID 0 is special. 71 * 72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 73 * for KPTI each mm has two address spaces and thus needs two 74 * PCID values, but we can still do with a single ASID denomination 75 * for each mm. Corresponds to kPCID + 2048. 76 * 77 */ 78 79 /* There are 12 bits of space for ASIDS in CR3 */ 80 #define CR3_HW_ASID_BITS 12 81 82 /* 83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 84 * user/kernel switches 85 */ 86 #ifdef CONFIG_PAGE_TABLE_ISOLATION 87 # define PTI_CONSUMED_PCID_BITS 1 88 #else 89 # define PTI_CONSUMED_PCID_BITS 0 90 #endif 91 92 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 93 94 /* 95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 96 * for them being zero-based. Another -1 is because PCID 0 is reserved for 97 * use by non-PCID-aware users. 98 */ 99 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 100 101 /* 102 * Given @asid, compute kPCID 103 */ 104 static inline u16 kern_pcid(u16 asid) 105 { 106 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 107 108 #ifdef CONFIG_PAGE_TABLE_ISOLATION 109 /* 110 * Make sure that the dynamic ASID space does not confict with the 111 * bit we are using to switch between user and kernel ASIDs. 112 */ 113 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 114 115 /* 116 * The ASID being passed in here should have respected the 117 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 118 */ 119 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 120 #endif 121 /* 122 * The dynamically-assigned ASIDs that get passed in are small 123 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 124 * so do not bother to clear it. 125 * 126 * If PCID is on, ASID-aware code paths put the ASID+1 into the 127 * PCID bits. This serves two purposes. It prevents a nasty 128 * situation in which PCID-unaware code saves CR3, loads some other 129 * value (with PCID == 0), and then restores CR3, thus corrupting 130 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 131 * that any bugs involving loading a PCID-enabled CR3 with 132 * CR4.PCIDE off will trigger deterministically. 133 */ 134 return asid + 1; 135 } 136 137 /* 138 * Given @asid, compute uPCID 139 */ 140 static inline u16 user_pcid(u16 asid) 141 { 142 u16 ret = kern_pcid(asid); 143 #ifdef CONFIG_PAGE_TABLE_ISOLATION 144 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 145 #endif 146 return ret; 147 } 148 149 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 150 { 151 if (static_cpu_has(X86_FEATURE_PCID)) { 152 return __sme_pa(pgd) | kern_pcid(asid); 153 } else { 154 VM_WARN_ON_ONCE(asid != 0); 155 return __sme_pa(pgd); 156 } 157 } 158 159 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 160 { 161 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 162 /* 163 * Use boot_cpu_has() instead of this_cpu_has() as this function 164 * might be called during early boot. This should work even after 165 * boot because all CPU's the have same capabilities: 166 */ 167 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 168 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 169 } 170 171 /* 172 * We get here when we do something requiring a TLB invalidation 173 * but could not go invalidate all of the contexts. We do the 174 * necessary invalidation by clearing out the 'ctx_id' which 175 * forces a TLB flush when the context is loaded. 176 */ 177 static void clear_asid_other(void) 178 { 179 u16 asid; 180 181 /* 182 * This is only expected to be set if we have disabled 183 * kernel _PAGE_GLOBAL pages. 184 */ 185 if (!static_cpu_has(X86_FEATURE_PTI)) { 186 WARN_ON_ONCE(1); 187 return; 188 } 189 190 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 191 /* Do not need to flush the current asid */ 192 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 193 continue; 194 /* 195 * Make sure the next time we go to switch to 196 * this asid, we do a flush: 197 */ 198 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 199 } 200 this_cpu_write(cpu_tlbstate.invalidate_other, false); 201 } 202 203 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 204 205 206 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 207 u16 *new_asid, bool *need_flush) 208 { 209 u16 asid; 210 211 if (!static_cpu_has(X86_FEATURE_PCID)) { 212 *new_asid = 0; 213 *need_flush = true; 214 return; 215 } 216 217 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 218 clear_asid_other(); 219 220 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 221 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 222 next->context.ctx_id) 223 continue; 224 225 *new_asid = asid; 226 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 227 next_tlb_gen); 228 return; 229 } 230 231 /* 232 * We don't currently own an ASID slot on this CPU. 233 * Allocate a slot. 234 */ 235 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 236 if (*new_asid >= TLB_NR_DYN_ASIDS) { 237 *new_asid = 0; 238 this_cpu_write(cpu_tlbstate.next_asid, 1); 239 } 240 *need_flush = true; 241 } 242 243 /* 244 * Given an ASID, flush the corresponding user ASID. We can delay this 245 * until the next time we switch to it. 246 * 247 * See SWITCH_TO_USER_CR3. 248 */ 249 static inline void invalidate_user_asid(u16 asid) 250 { 251 /* There is no user ASID if address space separation is off */ 252 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 253 return; 254 255 /* 256 * We only have a single ASID if PCID is off and the CR3 257 * write will have flushed it. 258 */ 259 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 260 return; 261 262 if (!static_cpu_has(X86_FEATURE_PTI)) 263 return; 264 265 __set_bit(kern_pcid(asid), 266 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 267 } 268 269 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 270 { 271 unsigned long new_mm_cr3; 272 273 if (need_flush) { 274 invalidate_user_asid(new_asid); 275 new_mm_cr3 = build_cr3(pgdir, new_asid); 276 } else { 277 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 278 } 279 280 /* 281 * Caution: many callers of this function expect 282 * that load_cr3() is serializing and orders TLB 283 * fills with respect to the mm_cpumask writes. 284 */ 285 write_cr3(new_mm_cr3); 286 } 287 288 void leave_mm(int cpu) 289 { 290 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 291 292 /* 293 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 294 * If so, our callers still expect us to flush the TLB, but there 295 * aren't any user TLB entries in init_mm to worry about. 296 * 297 * This needs to happen before any other sanity checks due to 298 * intel_idle's shenanigans. 299 */ 300 if (loaded_mm == &init_mm) 301 return; 302 303 /* Warn if we're not lazy. */ 304 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 305 306 switch_mm(NULL, &init_mm, NULL); 307 } 308 EXPORT_SYMBOL_GPL(leave_mm); 309 310 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 311 struct task_struct *tsk) 312 { 313 unsigned long flags; 314 315 local_irq_save(flags); 316 switch_mm_irqs_off(prev, next, tsk); 317 local_irq_restore(flags); 318 } 319 320 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 321 { 322 unsigned long next_tif = task_thread_info(next)->flags; 323 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 324 325 return (unsigned long)next->mm | ibpb; 326 } 327 328 static void cond_ibpb(struct task_struct *next) 329 { 330 if (!next || !next->mm) 331 return; 332 333 /* 334 * Both, the conditional and the always IBPB mode use the mm 335 * pointer to avoid the IBPB when switching between tasks of the 336 * same process. Using the mm pointer instead of mm->context.ctx_id 337 * opens a hypothetical hole vs. mm_struct reuse, which is more or 338 * less impossible to control by an attacker. Aside of that it 339 * would only affect the first schedule so the theoretically 340 * exposed data is not really interesting. 341 */ 342 if (static_branch_likely(&switch_mm_cond_ibpb)) { 343 unsigned long prev_mm, next_mm; 344 345 /* 346 * This is a bit more complex than the always mode because 347 * it has to handle two cases: 348 * 349 * 1) Switch from a user space task (potential attacker) 350 * which has TIF_SPEC_IB set to a user space task 351 * (potential victim) which has TIF_SPEC_IB not set. 352 * 353 * 2) Switch from a user space task (potential attacker) 354 * which has TIF_SPEC_IB not set to a user space task 355 * (potential victim) which has TIF_SPEC_IB set. 356 * 357 * This could be done by unconditionally issuing IBPB when 358 * a task which has TIF_SPEC_IB set is either scheduled in 359 * or out. Though that results in two flushes when: 360 * 361 * - the same user space task is scheduled out and later 362 * scheduled in again and only a kernel thread ran in 363 * between. 364 * 365 * - a user space task belonging to the same process is 366 * scheduled in after a kernel thread ran in between 367 * 368 * - a user space task belonging to the same process is 369 * scheduled in immediately. 370 * 371 * Optimize this with reasonably small overhead for the 372 * above cases. Mangle the TIF_SPEC_IB bit into the mm 373 * pointer of the incoming task which is stored in 374 * cpu_tlbstate.last_user_mm_ibpb for comparison. 375 */ 376 next_mm = mm_mangle_tif_spec_ib(next); 377 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 378 379 /* 380 * Issue IBPB only if the mm's are different and one or 381 * both have the IBPB bit set. 382 */ 383 if (next_mm != prev_mm && 384 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 385 indirect_branch_prediction_barrier(); 386 387 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 388 } 389 390 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 391 /* 392 * Only flush when switching to a user space task with a 393 * different context than the user space task which ran 394 * last on this CPU. 395 */ 396 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 397 indirect_branch_prediction_barrier(); 398 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 399 } 400 } 401 } 402 403 #ifdef CONFIG_PERF_EVENTS 404 static inline void cr4_update_pce_mm(struct mm_struct *mm) 405 { 406 if (static_branch_unlikely(&rdpmc_always_available_key) || 407 (!static_branch_unlikely(&rdpmc_never_available_key) && 408 atomic_read(&mm->context.perf_rdpmc_allowed))) 409 cr4_set_bits_irqsoff(X86_CR4_PCE); 410 else 411 cr4_clear_bits_irqsoff(X86_CR4_PCE); 412 } 413 414 void cr4_update_pce(void *ignored) 415 { 416 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 417 } 418 419 #else 420 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 421 #endif 422 423 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 424 struct task_struct *tsk) 425 { 426 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 427 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 428 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 429 unsigned cpu = smp_processor_id(); 430 u64 next_tlb_gen; 431 bool need_flush; 432 u16 new_asid; 433 434 /* 435 * NB: The scheduler will call us with prev == next when switching 436 * from lazy TLB mode to normal mode if active_mm isn't changing. 437 * When this happens, we don't assume that CR3 (and hence 438 * cpu_tlbstate.loaded_mm) matches next. 439 * 440 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 441 */ 442 443 /* We don't want flush_tlb_func_* to run concurrently with us. */ 444 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 445 WARN_ON_ONCE(!irqs_disabled()); 446 447 /* 448 * Verify that CR3 is what we think it is. This will catch 449 * hypothetical buggy code that directly switches to swapper_pg_dir 450 * without going through leave_mm() / switch_mm_irqs_off() or that 451 * does something like write_cr3(read_cr3_pa()). 452 * 453 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 454 * isn't free. 455 */ 456 #ifdef CONFIG_DEBUG_VM 457 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 458 /* 459 * If we were to BUG here, we'd be very likely to kill 460 * the system so hard that we don't see the call trace. 461 * Try to recover instead by ignoring the error and doing 462 * a global flush to minimize the chance of corruption. 463 * 464 * (This is far from being a fully correct recovery. 465 * Architecturally, the CPU could prefetch something 466 * back into an incorrect ASID slot and leave it there 467 * to cause trouble down the road. It's better than 468 * nothing, though.) 469 */ 470 __flush_tlb_all(); 471 } 472 #endif 473 this_cpu_write(cpu_tlbstate.is_lazy, false); 474 475 /* 476 * The membarrier system call requires a full memory barrier and 477 * core serialization before returning to user-space, after 478 * storing to rq->curr. Writing to CR3 provides that full 479 * memory barrier and core serializing instruction. 480 */ 481 if (real_prev == next) { 482 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 483 next->context.ctx_id); 484 485 /* 486 * Even in lazy TLB mode, the CPU should stay set in the 487 * mm_cpumask. The TLB shootdown code can figure out from 488 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 489 */ 490 if (WARN_ON_ONCE(real_prev != &init_mm && 491 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 492 cpumask_set_cpu(cpu, mm_cpumask(next)); 493 494 /* 495 * If the CPU is not in lazy TLB mode, we are just switching 496 * from one thread in a process to another thread in the same 497 * process. No TLB flush required. 498 */ 499 if (!was_lazy) 500 return; 501 502 /* 503 * Read the tlb_gen to check whether a flush is needed. 504 * If the TLB is up to date, just use it. 505 * The barrier synchronizes with the tlb_gen increment in 506 * the TLB shootdown code. 507 */ 508 smp_mb(); 509 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 510 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 511 next_tlb_gen) 512 return; 513 514 /* 515 * TLB contents went out of date while we were in lazy 516 * mode. Fall through to the TLB switching code below. 517 */ 518 new_asid = prev_asid; 519 need_flush = true; 520 } else { 521 /* 522 * Avoid user/user BTB poisoning by flushing the branch 523 * predictor when switching between processes. This stops 524 * one process from doing Spectre-v2 attacks on another. 525 */ 526 cond_ibpb(tsk); 527 528 /* 529 * Stop remote flushes for the previous mm. 530 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 531 * but the bitmap manipulation can cause cache line contention. 532 */ 533 if (real_prev != &init_mm) { 534 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 535 mm_cpumask(real_prev))); 536 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 537 } 538 539 /* 540 * Start remote flushes and then read tlb_gen. 541 */ 542 if (next != &init_mm) 543 cpumask_set_cpu(cpu, mm_cpumask(next)); 544 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 545 546 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 547 548 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 549 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 550 barrier(); 551 } 552 553 if (need_flush) { 554 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 555 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 556 load_new_mm_cr3(next->pgd, new_asid, true); 557 558 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 559 } else { 560 /* The new ASID is already up to date. */ 561 load_new_mm_cr3(next->pgd, new_asid, false); 562 563 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 564 } 565 566 /* Make sure we write CR3 before loaded_mm. */ 567 barrier(); 568 569 this_cpu_write(cpu_tlbstate.loaded_mm, next); 570 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 571 572 if (next != real_prev) { 573 cr4_update_pce_mm(next); 574 switch_ldt(real_prev, next); 575 } 576 } 577 578 /* 579 * Please ignore the name of this function. It should be called 580 * switch_to_kernel_thread(). 581 * 582 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 583 * kernel thread or other context without an mm. Acceptable implementations 584 * include doing nothing whatsoever, switching to init_mm, or various clever 585 * lazy tricks to try to minimize TLB flushes. 586 * 587 * The scheduler reserves the right to call enter_lazy_tlb() several times 588 * in a row. It will notify us that we're going back to a real mm by 589 * calling switch_mm_irqs_off(). 590 */ 591 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 592 { 593 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 594 return; 595 596 this_cpu_write(cpu_tlbstate.is_lazy, true); 597 } 598 599 /* 600 * Call this when reinitializing a CPU. It fixes the following potential 601 * problems: 602 * 603 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 604 * because the CPU was taken down and came back up with CR3's PCID 605 * bits clear. CPU hotplug can do this. 606 * 607 * - The TLB contains junk in slots corresponding to inactive ASIDs. 608 * 609 * - The CPU went so far out to lunch that it may have missed a TLB 610 * flush. 611 */ 612 void initialize_tlbstate_and_flush(void) 613 { 614 int i; 615 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 616 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 617 unsigned long cr3 = __read_cr3(); 618 619 /* Assert that CR3 already references the right mm. */ 620 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 621 622 /* 623 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 624 * doesn't work like other CR4 bits because it can only be set from 625 * long mode.) 626 */ 627 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 628 !(cr4_read_shadow() & X86_CR4_PCIDE)); 629 630 /* Force ASID 0 and force a TLB flush. */ 631 write_cr3(build_cr3(mm->pgd, 0)); 632 633 /* Reinitialize tlbstate. */ 634 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 635 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 636 this_cpu_write(cpu_tlbstate.next_asid, 1); 637 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 638 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 639 640 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 641 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 642 } 643 644 /* 645 * flush_tlb_func_common()'s memory ordering requirement is that any 646 * TLB fills that happen after we flush the TLB are ordered after we 647 * read active_mm's tlb_gen. We don't need any explicit barriers 648 * because all x86 flush operations are serializing and the 649 * atomic64_read operation won't be reordered by the compiler. 650 */ 651 static void flush_tlb_func_common(const struct flush_tlb_info *f, 652 bool local, enum tlb_flush_reason reason) 653 { 654 /* 655 * We have three different tlb_gen values in here. They are: 656 * 657 * - mm_tlb_gen: the latest generation. 658 * - local_tlb_gen: the generation that this CPU has already caught 659 * up to. 660 * - f->new_tlb_gen: the generation that the requester of the flush 661 * wants us to catch up to. 662 */ 663 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 664 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 665 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 666 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 667 668 /* This code cannot presently handle being reentered. */ 669 VM_WARN_ON(!irqs_disabled()); 670 671 if (unlikely(loaded_mm == &init_mm)) 672 return; 673 674 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 675 loaded_mm->context.ctx_id); 676 677 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 678 /* 679 * We're in lazy mode. We need to at least flush our 680 * paging-structure cache to avoid speculatively reading 681 * garbage into our TLB. Since switching to init_mm is barely 682 * slower than a minimal flush, just switch to init_mm. 683 * 684 * This should be rare, with native_flush_tlb_others skipping 685 * IPIs to lazy TLB mode CPUs. 686 */ 687 switch_mm_irqs_off(NULL, &init_mm, NULL); 688 return; 689 } 690 691 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 692 /* 693 * There's nothing to do: we're already up to date. This can 694 * happen if two concurrent flushes happen -- the first flush to 695 * be handled can catch us all the way up, leaving no work for 696 * the second flush. 697 */ 698 trace_tlb_flush(reason, 0); 699 return; 700 } 701 702 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 703 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 704 705 /* 706 * If we get to this point, we know that our TLB is out of date. 707 * This does not strictly imply that we need to flush (it's 708 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 709 * going to need to flush in the very near future, so we might 710 * as well get it over with. 711 * 712 * The only question is whether to do a full or partial flush. 713 * 714 * We do a partial flush if requested and two extra conditions 715 * are met: 716 * 717 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 718 * we've always done all needed flushes to catch up to 719 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 720 * f->new_tlb_gen == 3, then we know that the flush needed to bring 721 * us up to date for tlb_gen 3 is the partial flush we're 722 * processing. 723 * 724 * As an example of why this check is needed, suppose that there 725 * are two concurrent flushes. The first is a full flush that 726 * changes context.tlb_gen from 1 to 2. The second is a partial 727 * flush that changes context.tlb_gen from 2 to 3. If they get 728 * processed on this CPU in reverse order, we'll see 729 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 730 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 731 * 3, we'd be break the invariant: we'd update local_tlb_gen above 732 * 1 without the full flush that's needed for tlb_gen 2. 733 * 734 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation. 735 * Partial TLB flushes are not all that much cheaper than full TLB 736 * flushes, so it seems unlikely that it would be a performance win 737 * to do a partial flush if that won't bring our TLB fully up to 738 * date. By doing a full flush instead, we can increase 739 * local_tlb_gen all the way to mm_tlb_gen and we can probably 740 * avoid another flush in the very near future. 741 */ 742 if (f->end != TLB_FLUSH_ALL && 743 f->new_tlb_gen == local_tlb_gen + 1 && 744 f->new_tlb_gen == mm_tlb_gen) { 745 /* Partial flush */ 746 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 747 unsigned long addr = f->start; 748 749 while (addr < f->end) { 750 flush_tlb_one_user(addr); 751 addr += 1UL << f->stride_shift; 752 } 753 if (local) 754 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 755 trace_tlb_flush(reason, nr_invalidate); 756 } else { 757 /* Full flush. */ 758 flush_tlb_local(); 759 if (local) 760 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 761 trace_tlb_flush(reason, TLB_FLUSH_ALL); 762 } 763 764 /* Both paths above update our state to mm_tlb_gen. */ 765 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 766 } 767 768 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason) 769 { 770 const struct flush_tlb_info *f = info; 771 772 flush_tlb_func_common(f, true, reason); 773 } 774 775 static void flush_tlb_func_remote(void *info) 776 { 777 const struct flush_tlb_info *f = info; 778 779 inc_irq_stat(irq_tlb_count); 780 781 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 782 return; 783 784 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 785 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 786 } 787 788 static bool tlb_is_not_lazy(int cpu, void *data) 789 { 790 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 791 } 792 793 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask, 794 const struct flush_tlb_info *info) 795 { 796 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 797 if (info->end == TLB_FLUSH_ALL) 798 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 799 else 800 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 801 (info->end - info->start) >> PAGE_SHIFT); 802 803 if (is_uv_system()) { 804 /* 805 * This whole special case is confused. UV has a "Broadcast 806 * Assist Unit", which seems to be a fancy way to send IPIs. 807 * Back when x86 used an explicit TLB flush IPI, UV was 808 * optimized to use its own mechanism. These days, x86 uses 809 * smp_call_function_many(), but UV still uses a manual IPI, 810 * and that IPI's action is out of date -- it does a manual 811 * flush instead of calling flush_tlb_func_remote(). This 812 * means that the percpu tlb_gen variables won't be updated 813 * and we'll do pointless flushes on future context switches. 814 * 815 * Rather than hooking native_flush_tlb_others() here, I think 816 * that UV should be updated so that smp_call_function_many(), 817 * etc, are optimal on UV. 818 */ 819 cpumask = uv_flush_tlb_others(cpumask, info); 820 if (cpumask) 821 smp_call_function_many(cpumask, flush_tlb_func_remote, 822 (void *)info, 1); 823 return; 824 } 825 826 /* 827 * If no page tables were freed, we can skip sending IPIs to 828 * CPUs in lazy TLB mode. They will flush the CPU themselves 829 * at the next context switch. 830 * 831 * However, if page tables are getting freed, we need to send the 832 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 833 * up on the new contents of what used to be page tables, while 834 * doing a speculative memory access. 835 */ 836 if (info->freed_tables) 837 smp_call_function_many(cpumask, flush_tlb_func_remote, 838 (void *)info, 1); 839 else 840 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 841 (void *)info, 1, cpumask); 842 } 843 844 void flush_tlb_others(const struct cpumask *cpumask, 845 const struct flush_tlb_info *info) 846 { 847 __flush_tlb_others(cpumask, info); 848 } 849 850 /* 851 * See Documentation/x86/tlb.rst for details. We choose 33 852 * because it is large enough to cover the vast majority (at 853 * least 95%) of allocations, and is small enough that we are 854 * confident it will not cause too much overhead. Each single 855 * flush is about 100 ns, so this caps the maximum overhead at 856 * _about_ 3,000 ns. 857 * 858 * This is in units of pages. 859 */ 860 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 861 862 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 863 864 #ifdef CONFIG_DEBUG_VM 865 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 866 #endif 867 868 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 869 unsigned long start, unsigned long end, 870 unsigned int stride_shift, bool freed_tables, 871 u64 new_tlb_gen) 872 { 873 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 874 875 #ifdef CONFIG_DEBUG_VM 876 /* 877 * Ensure that the following code is non-reentrant and flush_tlb_info 878 * is not overwritten. This means no TLB flushing is initiated by 879 * interrupt handlers and machine-check exception handlers. 880 */ 881 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 882 #endif 883 884 info->start = start; 885 info->end = end; 886 info->mm = mm; 887 info->stride_shift = stride_shift; 888 info->freed_tables = freed_tables; 889 info->new_tlb_gen = new_tlb_gen; 890 891 return info; 892 } 893 894 static inline void put_flush_tlb_info(void) 895 { 896 #ifdef CONFIG_DEBUG_VM 897 /* Complete reentrency prevention checks */ 898 barrier(); 899 this_cpu_dec(flush_tlb_info_idx); 900 #endif 901 } 902 903 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 904 unsigned long end, unsigned int stride_shift, 905 bool freed_tables) 906 { 907 struct flush_tlb_info *info; 908 u64 new_tlb_gen; 909 int cpu; 910 911 cpu = get_cpu(); 912 913 /* Should we flush just the requested range? */ 914 if ((end == TLB_FLUSH_ALL) || 915 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 916 start = 0; 917 end = TLB_FLUSH_ALL; 918 } 919 920 /* This is also a barrier that synchronizes with switch_mm(). */ 921 new_tlb_gen = inc_mm_tlb_gen(mm); 922 923 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 924 new_tlb_gen); 925 926 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 927 lockdep_assert_irqs_enabled(); 928 local_irq_disable(); 929 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN); 930 local_irq_enable(); 931 } 932 933 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 934 flush_tlb_others(mm_cpumask(mm), info); 935 936 put_flush_tlb_info(); 937 put_cpu(); 938 } 939 940 941 static void do_flush_tlb_all(void *info) 942 { 943 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 944 __flush_tlb_all(); 945 } 946 947 void flush_tlb_all(void) 948 { 949 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 950 on_each_cpu(do_flush_tlb_all, NULL, 1); 951 } 952 953 static void do_kernel_range_flush(void *info) 954 { 955 struct flush_tlb_info *f = info; 956 unsigned long addr; 957 958 /* flush range by one by one 'invlpg' */ 959 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 960 flush_tlb_one_kernel(addr); 961 } 962 963 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 964 { 965 /* Balance as user space task's flush, a bit conservative */ 966 if (end == TLB_FLUSH_ALL || 967 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 968 on_each_cpu(do_flush_tlb_all, NULL, 1); 969 } else { 970 struct flush_tlb_info *info; 971 972 preempt_disable(); 973 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 974 975 on_each_cpu(do_kernel_range_flush, info, 1); 976 977 put_flush_tlb_info(); 978 preempt_enable(); 979 } 980 } 981 982 /* 983 * This can be used from process context to figure out what the value of 984 * CR3 is without needing to do a (slow) __read_cr3(). 985 * 986 * It's intended to be used for code like KVM that sneakily changes CR3 987 * and needs to restore it. It needs to be used very carefully. 988 */ 989 unsigned long __get_current_cr3_fast(void) 990 { 991 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 992 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 993 994 /* For now, be very restrictive about when this can be called. */ 995 VM_WARN_ON(in_nmi() || preemptible()); 996 997 VM_BUG_ON(cr3 != __read_cr3()); 998 return cr3; 999 } 1000 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1001 1002 /* 1003 * Flush one page in the kernel mapping 1004 */ 1005 void flush_tlb_one_kernel(unsigned long addr) 1006 { 1007 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1008 1009 /* 1010 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1011 * paravirt equivalent. Even with PCID, this is sufficient: we only 1012 * use PCID if we also use global PTEs for the kernel mapping, and 1013 * INVLPG flushes global translations across all address spaces. 1014 * 1015 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1016 * __flush_tlb_one_user() will flush the given address for the current 1017 * kernel address space and for its usermode counterpart, but it does 1018 * not flush it for other address spaces. 1019 */ 1020 flush_tlb_one_user(addr); 1021 1022 if (!static_cpu_has(X86_FEATURE_PTI)) 1023 return; 1024 1025 /* 1026 * See above. We need to propagate the flush to all other address 1027 * spaces. In principle, we only need to propagate it to kernelmode 1028 * address spaces, but the extra bookkeeping we would need is not 1029 * worth it. 1030 */ 1031 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1032 } 1033 1034 /* 1035 * Flush one page in the user mapping 1036 */ 1037 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1038 { 1039 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1040 1041 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1042 1043 if (!static_cpu_has(X86_FEATURE_PTI)) 1044 return; 1045 1046 /* 1047 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1048 * Just use invalidate_user_asid() in case we are called early. 1049 */ 1050 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1051 invalidate_user_asid(loaded_mm_asid); 1052 else 1053 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1054 } 1055 1056 void flush_tlb_one_user(unsigned long addr) 1057 { 1058 __flush_tlb_one_user(addr); 1059 } 1060 1061 /* 1062 * Flush everything 1063 */ 1064 STATIC_NOPV void native_flush_tlb_global(void) 1065 { 1066 unsigned long cr4, flags; 1067 1068 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1069 /* 1070 * Using INVPCID is considerably faster than a pair of writes 1071 * to CR4 sandwiched inside an IRQ flag save/restore. 1072 * 1073 * Note, this works with CR4.PCIDE=0 or 1. 1074 */ 1075 invpcid_flush_all(); 1076 return; 1077 } 1078 1079 /* 1080 * Read-modify-write to CR4 - protect it from preemption and 1081 * from interrupts. (Use the raw variant because this code can 1082 * be called from deep inside debugging code.) 1083 */ 1084 raw_local_irq_save(flags); 1085 1086 cr4 = this_cpu_read(cpu_tlbstate.cr4); 1087 /* toggle PGE */ 1088 native_write_cr4(cr4 ^ X86_CR4_PGE); 1089 /* write old PGE again and flush TLBs */ 1090 native_write_cr4(cr4); 1091 1092 raw_local_irq_restore(flags); 1093 } 1094 1095 /* 1096 * Flush the entire current user mapping 1097 */ 1098 STATIC_NOPV void native_flush_tlb_local(void) 1099 { 1100 /* 1101 * Preemption or interrupts must be disabled to protect the access 1102 * to the per CPU variable and to prevent being preempted between 1103 * read_cr3() and write_cr3(). 1104 */ 1105 WARN_ON_ONCE(preemptible()); 1106 1107 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1108 1109 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1110 native_write_cr3(__native_read_cr3()); 1111 } 1112 1113 void flush_tlb_local(void) 1114 { 1115 __flush_tlb_local(); 1116 } 1117 1118 /* 1119 * Flush everything 1120 */ 1121 void __flush_tlb_all(void) 1122 { 1123 /* 1124 * This is to catch users with enabled preemption and the PGE feature 1125 * and don't trigger the warning in __native_flush_tlb(). 1126 */ 1127 VM_WARN_ON_ONCE(preemptible()); 1128 1129 if (boot_cpu_has(X86_FEATURE_PGE)) { 1130 __flush_tlb_global(); 1131 } else { 1132 /* 1133 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1134 */ 1135 flush_tlb_local(); 1136 } 1137 } 1138 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1139 1140 /* 1141 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm. 1142 * This means that the 'struct flush_tlb_info' that describes which mappings to 1143 * flush is actually fixed. We therefore set a single fixed struct and use it in 1144 * arch_tlbbatch_flush(). 1145 */ 1146 static const struct flush_tlb_info full_flush_tlb_info = { 1147 .mm = NULL, 1148 .start = 0, 1149 .end = TLB_FLUSH_ALL, 1150 }; 1151 1152 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1153 { 1154 int cpu = get_cpu(); 1155 1156 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1157 lockdep_assert_irqs_enabled(); 1158 local_irq_disable(); 1159 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN); 1160 local_irq_enable(); 1161 } 1162 1163 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 1164 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info); 1165 1166 cpumask_clear(&batch->cpumask); 1167 1168 put_cpu(); 1169 } 1170 1171 /* 1172 * Blindly accessing user memory from NMI context can be dangerous 1173 * if we're in the middle of switching the current user task or 1174 * switching the loaded mm. It can also be dangerous if we 1175 * interrupted some kernel code that was temporarily using a 1176 * different mm. 1177 */ 1178 bool nmi_uaccess_okay(void) 1179 { 1180 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1181 struct mm_struct *current_mm = current->mm; 1182 1183 VM_WARN_ON_ONCE(!loaded_mm); 1184 1185 /* 1186 * The condition we want to check is 1187 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1188 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1189 * is supposed to be reasonably fast. 1190 * 1191 * Instead, we check the almost equivalent but somewhat conservative 1192 * condition below, and we rely on the fact that switch_mm_irqs_off() 1193 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1194 */ 1195 if (loaded_mm != current_mm) 1196 return false; 1197 1198 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1199 1200 return true; 1201 } 1202 1203 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1204 size_t count, loff_t *ppos) 1205 { 1206 char buf[32]; 1207 unsigned int len; 1208 1209 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1210 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1211 } 1212 1213 static ssize_t tlbflush_write_file(struct file *file, 1214 const char __user *user_buf, size_t count, loff_t *ppos) 1215 { 1216 char buf[32]; 1217 ssize_t len; 1218 int ceiling; 1219 1220 len = min(count, sizeof(buf) - 1); 1221 if (copy_from_user(buf, user_buf, len)) 1222 return -EFAULT; 1223 1224 buf[len] = '\0'; 1225 if (kstrtoint(buf, 0, &ceiling)) 1226 return -EINVAL; 1227 1228 if (ceiling < 0) 1229 return -EINVAL; 1230 1231 tlb_single_page_flush_ceiling = ceiling; 1232 return count; 1233 } 1234 1235 static const struct file_operations fops_tlbflush = { 1236 .read = tlbflush_read_file, 1237 .write = tlbflush_write_file, 1238 .llseek = default_llseek, 1239 }; 1240 1241 static int __init create_tlb_single_page_flush_ceiling(void) 1242 { 1243 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1244 arch_debugfs_dir, NULL, &fops_tlbflush); 1245 return 0; 1246 } 1247 late_initcall(create_tlb_single_page_flush_ceiling); 1248