xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18 
19 #include "mm_internal.h"
20 
21 #ifdef CONFIG_PARAVIRT
22 # define STATIC_NOPV
23 #else
24 # define STATIC_NOPV			static
25 # define __flush_tlb_local		native_flush_tlb_local
26 # define __flush_tlb_global		native_flush_tlb_global
27 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
28 # define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
29 #endif
30 
31 /*
32  *	TLB flushing, formerly SMP-only
33  *		c/o Linus Torvalds.
34  *
35  *	These mean you can really definitely utterly forget about
36  *	writing to user space from interrupts. (Its not allowed anyway).
37  *
38  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
39  *
40  *	More scalable flush, from Andi Kleen
41  *
42  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
43  */
44 
45 /*
46  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
47  * stored in cpu_tlb_state.last_user_mm_ibpb.
48  */
49 #define LAST_USER_MM_IBPB	0x1UL
50 
51 /*
52  * The x86 feature is called PCID (Process Context IDentifier). It is similar
53  * to what is traditionally called ASID on the RISC processors.
54  *
55  * We don't use the traditional ASID implementation, where each process/mm gets
56  * its own ASID and flush/restart when we run out of ASID space.
57  *
58  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
59  * that came by on this CPU, allowing cheaper switch_mm between processes on
60  * this CPU.
61  *
62  * We end up with different spaces for different things. To avoid confusion we
63  * use different names for each of them:
64  *
65  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
66  *         the canonical identifier for an mm
67  *
68  * kPCID - [1, TLB_NR_DYN_ASIDS]
69  *         the value we write into the PCID part of CR3; corresponds to the
70  *         ASID+1, because PCID 0 is special.
71  *
72  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
73  *         for KPTI each mm has two address spaces and thus needs two
74  *         PCID values, but we can still do with a single ASID denomination
75  *         for each mm. Corresponds to kPCID + 2048.
76  *
77  */
78 
79 /* There are 12 bits of space for ASIDS in CR3 */
80 #define CR3_HW_ASID_BITS		12
81 
82 /*
83  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
84  * user/kernel switches
85  */
86 #ifdef CONFIG_PAGE_TABLE_ISOLATION
87 # define PTI_CONSUMED_PCID_BITS	1
88 #else
89 # define PTI_CONSUMED_PCID_BITS	0
90 #endif
91 
92 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
93 
94 /*
95  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
96  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
97  * use by non-PCID-aware users.
98  */
99 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
100 
101 /*
102  * Given @asid, compute kPCID
103  */
104 static inline u16 kern_pcid(u16 asid)
105 {
106 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
107 
108 #ifdef CONFIG_PAGE_TABLE_ISOLATION
109 	/*
110 	 * Make sure that the dynamic ASID space does not confict with the
111 	 * bit we are using to switch between user and kernel ASIDs.
112 	 */
113 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
114 
115 	/*
116 	 * The ASID being passed in here should have respected the
117 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
118 	 */
119 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
120 #endif
121 	/*
122 	 * The dynamically-assigned ASIDs that get passed in are small
123 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
124 	 * so do not bother to clear it.
125 	 *
126 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
127 	 * PCID bits.  This serves two purposes.  It prevents a nasty
128 	 * situation in which PCID-unaware code saves CR3, loads some other
129 	 * value (with PCID == 0), and then restores CR3, thus corrupting
130 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
131 	 * that any bugs involving loading a PCID-enabled CR3 with
132 	 * CR4.PCIDE off will trigger deterministically.
133 	 */
134 	return asid + 1;
135 }
136 
137 /*
138  * Given @asid, compute uPCID
139  */
140 static inline u16 user_pcid(u16 asid)
141 {
142 	u16 ret = kern_pcid(asid);
143 #ifdef CONFIG_PAGE_TABLE_ISOLATION
144 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
145 #endif
146 	return ret;
147 }
148 
149 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
150 {
151 	if (static_cpu_has(X86_FEATURE_PCID)) {
152 		return __sme_pa(pgd) | kern_pcid(asid);
153 	} else {
154 		VM_WARN_ON_ONCE(asid != 0);
155 		return __sme_pa(pgd);
156 	}
157 }
158 
159 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
160 {
161 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
162 	/*
163 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
164 	 * might be called during early boot. This should work even after
165 	 * boot because all CPU's the have same capabilities:
166 	 */
167 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
168 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
169 }
170 
171 /*
172  * We get here when we do something requiring a TLB invalidation
173  * but could not go invalidate all of the contexts.  We do the
174  * necessary invalidation by clearing out the 'ctx_id' which
175  * forces a TLB flush when the context is loaded.
176  */
177 static void clear_asid_other(void)
178 {
179 	u16 asid;
180 
181 	/*
182 	 * This is only expected to be set if we have disabled
183 	 * kernel _PAGE_GLOBAL pages.
184 	 */
185 	if (!static_cpu_has(X86_FEATURE_PTI)) {
186 		WARN_ON_ONCE(1);
187 		return;
188 	}
189 
190 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
191 		/* Do not need to flush the current asid */
192 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
193 			continue;
194 		/*
195 		 * Make sure the next time we go to switch to
196 		 * this asid, we do a flush:
197 		 */
198 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
199 	}
200 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
201 }
202 
203 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
204 
205 
206 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
207 			    u16 *new_asid, bool *need_flush)
208 {
209 	u16 asid;
210 
211 	if (!static_cpu_has(X86_FEATURE_PCID)) {
212 		*new_asid = 0;
213 		*need_flush = true;
214 		return;
215 	}
216 
217 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
218 		clear_asid_other();
219 
220 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
221 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
222 		    next->context.ctx_id)
223 			continue;
224 
225 		*new_asid = asid;
226 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
227 			       next_tlb_gen);
228 		return;
229 	}
230 
231 	/*
232 	 * We don't currently own an ASID slot on this CPU.
233 	 * Allocate a slot.
234 	 */
235 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
236 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
237 		*new_asid = 0;
238 		this_cpu_write(cpu_tlbstate.next_asid, 1);
239 	}
240 	*need_flush = true;
241 }
242 
243 /*
244  * Given an ASID, flush the corresponding user ASID.  We can delay this
245  * until the next time we switch to it.
246  *
247  * See SWITCH_TO_USER_CR3.
248  */
249 static inline void invalidate_user_asid(u16 asid)
250 {
251 	/* There is no user ASID if address space separation is off */
252 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
253 		return;
254 
255 	/*
256 	 * We only have a single ASID if PCID is off and the CR3
257 	 * write will have flushed it.
258 	 */
259 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
260 		return;
261 
262 	if (!static_cpu_has(X86_FEATURE_PTI))
263 		return;
264 
265 	__set_bit(kern_pcid(asid),
266 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
267 }
268 
269 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
270 {
271 	unsigned long new_mm_cr3;
272 
273 	if (need_flush) {
274 		invalidate_user_asid(new_asid);
275 		new_mm_cr3 = build_cr3(pgdir, new_asid);
276 	} else {
277 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
278 	}
279 
280 	/*
281 	 * Caution: many callers of this function expect
282 	 * that load_cr3() is serializing and orders TLB
283 	 * fills with respect to the mm_cpumask writes.
284 	 */
285 	write_cr3(new_mm_cr3);
286 }
287 
288 void leave_mm(int cpu)
289 {
290 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
291 
292 	/*
293 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
294 	 * If so, our callers still expect us to flush the TLB, but there
295 	 * aren't any user TLB entries in init_mm to worry about.
296 	 *
297 	 * This needs to happen before any other sanity checks due to
298 	 * intel_idle's shenanigans.
299 	 */
300 	if (loaded_mm == &init_mm)
301 		return;
302 
303 	/* Warn if we're not lazy. */
304 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
305 
306 	switch_mm(NULL, &init_mm, NULL);
307 }
308 EXPORT_SYMBOL_GPL(leave_mm);
309 
310 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
311 	       struct task_struct *tsk)
312 {
313 	unsigned long flags;
314 
315 	local_irq_save(flags);
316 	switch_mm_irqs_off(prev, next, tsk);
317 	local_irq_restore(flags);
318 }
319 
320 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
321 {
322 	unsigned long next_tif = task_thread_info(next)->flags;
323 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
324 
325 	return (unsigned long)next->mm | ibpb;
326 }
327 
328 static void cond_ibpb(struct task_struct *next)
329 {
330 	if (!next || !next->mm)
331 		return;
332 
333 	/*
334 	 * Both, the conditional and the always IBPB mode use the mm
335 	 * pointer to avoid the IBPB when switching between tasks of the
336 	 * same process. Using the mm pointer instead of mm->context.ctx_id
337 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
338 	 * less impossible to control by an attacker. Aside of that it
339 	 * would only affect the first schedule so the theoretically
340 	 * exposed data is not really interesting.
341 	 */
342 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
343 		unsigned long prev_mm, next_mm;
344 
345 		/*
346 		 * This is a bit more complex than the always mode because
347 		 * it has to handle two cases:
348 		 *
349 		 * 1) Switch from a user space task (potential attacker)
350 		 *    which has TIF_SPEC_IB set to a user space task
351 		 *    (potential victim) which has TIF_SPEC_IB not set.
352 		 *
353 		 * 2) Switch from a user space task (potential attacker)
354 		 *    which has TIF_SPEC_IB not set to a user space task
355 		 *    (potential victim) which has TIF_SPEC_IB set.
356 		 *
357 		 * This could be done by unconditionally issuing IBPB when
358 		 * a task which has TIF_SPEC_IB set is either scheduled in
359 		 * or out. Though that results in two flushes when:
360 		 *
361 		 * - the same user space task is scheduled out and later
362 		 *   scheduled in again and only a kernel thread ran in
363 		 *   between.
364 		 *
365 		 * - a user space task belonging to the same process is
366 		 *   scheduled in after a kernel thread ran in between
367 		 *
368 		 * - a user space task belonging to the same process is
369 		 *   scheduled in immediately.
370 		 *
371 		 * Optimize this with reasonably small overhead for the
372 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
373 		 * pointer of the incoming task which is stored in
374 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
375 		 */
376 		next_mm = mm_mangle_tif_spec_ib(next);
377 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
378 
379 		/*
380 		 * Issue IBPB only if the mm's are different and one or
381 		 * both have the IBPB bit set.
382 		 */
383 		if (next_mm != prev_mm &&
384 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
385 			indirect_branch_prediction_barrier();
386 
387 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
388 	}
389 
390 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
391 		/*
392 		 * Only flush when switching to a user space task with a
393 		 * different context than the user space task which ran
394 		 * last on this CPU.
395 		 */
396 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
397 			indirect_branch_prediction_barrier();
398 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
399 		}
400 	}
401 }
402 
403 #ifdef CONFIG_PERF_EVENTS
404 static inline void cr4_update_pce_mm(struct mm_struct *mm)
405 {
406 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
407 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
408 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
409 		cr4_set_bits_irqsoff(X86_CR4_PCE);
410 	else
411 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
412 }
413 
414 void cr4_update_pce(void *ignored)
415 {
416 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
417 }
418 
419 #else
420 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
421 #endif
422 
423 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
424 			struct task_struct *tsk)
425 {
426 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
427 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
428 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
429 	unsigned cpu = smp_processor_id();
430 	u64 next_tlb_gen;
431 	bool need_flush;
432 	u16 new_asid;
433 
434 	/*
435 	 * NB: The scheduler will call us with prev == next when switching
436 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
437 	 * When this happens, we don't assume that CR3 (and hence
438 	 * cpu_tlbstate.loaded_mm) matches next.
439 	 *
440 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
441 	 */
442 
443 	/* We don't want flush_tlb_func_* to run concurrently with us. */
444 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
445 		WARN_ON_ONCE(!irqs_disabled());
446 
447 	/*
448 	 * Verify that CR3 is what we think it is.  This will catch
449 	 * hypothetical buggy code that directly switches to swapper_pg_dir
450 	 * without going through leave_mm() / switch_mm_irqs_off() or that
451 	 * does something like write_cr3(read_cr3_pa()).
452 	 *
453 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
454 	 * isn't free.
455 	 */
456 #ifdef CONFIG_DEBUG_VM
457 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
458 		/*
459 		 * If we were to BUG here, we'd be very likely to kill
460 		 * the system so hard that we don't see the call trace.
461 		 * Try to recover instead by ignoring the error and doing
462 		 * a global flush to minimize the chance of corruption.
463 		 *
464 		 * (This is far from being a fully correct recovery.
465 		 *  Architecturally, the CPU could prefetch something
466 		 *  back into an incorrect ASID slot and leave it there
467 		 *  to cause trouble down the road.  It's better than
468 		 *  nothing, though.)
469 		 */
470 		__flush_tlb_all();
471 	}
472 #endif
473 	this_cpu_write(cpu_tlbstate.is_lazy, false);
474 
475 	/*
476 	 * The membarrier system call requires a full memory barrier and
477 	 * core serialization before returning to user-space, after
478 	 * storing to rq->curr. Writing to CR3 provides that full
479 	 * memory barrier and core serializing instruction.
480 	 */
481 	if (real_prev == next) {
482 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
483 			   next->context.ctx_id);
484 
485 		/*
486 		 * Even in lazy TLB mode, the CPU should stay set in the
487 		 * mm_cpumask. The TLB shootdown code can figure out from
488 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
489 		 */
490 		if (WARN_ON_ONCE(real_prev != &init_mm &&
491 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
492 			cpumask_set_cpu(cpu, mm_cpumask(next));
493 
494 		/*
495 		 * If the CPU is not in lazy TLB mode, we are just switching
496 		 * from one thread in a process to another thread in the same
497 		 * process. No TLB flush required.
498 		 */
499 		if (!was_lazy)
500 			return;
501 
502 		/*
503 		 * Read the tlb_gen to check whether a flush is needed.
504 		 * If the TLB is up to date, just use it.
505 		 * The barrier synchronizes with the tlb_gen increment in
506 		 * the TLB shootdown code.
507 		 */
508 		smp_mb();
509 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
510 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
511 				next_tlb_gen)
512 			return;
513 
514 		/*
515 		 * TLB contents went out of date while we were in lazy
516 		 * mode. Fall through to the TLB switching code below.
517 		 */
518 		new_asid = prev_asid;
519 		need_flush = true;
520 	} else {
521 		/*
522 		 * Avoid user/user BTB poisoning by flushing the branch
523 		 * predictor when switching between processes. This stops
524 		 * one process from doing Spectre-v2 attacks on another.
525 		 */
526 		cond_ibpb(tsk);
527 
528 		/*
529 		 * Stop remote flushes for the previous mm.
530 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
531 		 * but the bitmap manipulation can cause cache line contention.
532 		 */
533 		if (real_prev != &init_mm) {
534 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
535 						mm_cpumask(real_prev)));
536 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
537 		}
538 
539 		/*
540 		 * Start remote flushes and then read tlb_gen.
541 		 */
542 		if (next != &init_mm)
543 			cpumask_set_cpu(cpu, mm_cpumask(next));
544 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
545 
546 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
547 
548 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
549 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
550 		barrier();
551 	}
552 
553 	if (need_flush) {
554 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
555 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
556 		load_new_mm_cr3(next->pgd, new_asid, true);
557 
558 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
559 	} else {
560 		/* The new ASID is already up to date. */
561 		load_new_mm_cr3(next->pgd, new_asid, false);
562 
563 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
564 	}
565 
566 	/* Make sure we write CR3 before loaded_mm. */
567 	barrier();
568 
569 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
570 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
571 
572 	if (next != real_prev) {
573 		cr4_update_pce_mm(next);
574 		switch_ldt(real_prev, next);
575 	}
576 }
577 
578 /*
579  * Please ignore the name of this function.  It should be called
580  * switch_to_kernel_thread().
581  *
582  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
583  * kernel thread or other context without an mm.  Acceptable implementations
584  * include doing nothing whatsoever, switching to init_mm, or various clever
585  * lazy tricks to try to minimize TLB flushes.
586  *
587  * The scheduler reserves the right to call enter_lazy_tlb() several times
588  * in a row.  It will notify us that we're going back to a real mm by
589  * calling switch_mm_irqs_off().
590  */
591 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
592 {
593 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
594 		return;
595 
596 	this_cpu_write(cpu_tlbstate.is_lazy, true);
597 }
598 
599 /*
600  * Call this when reinitializing a CPU.  It fixes the following potential
601  * problems:
602  *
603  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
604  *   because the CPU was taken down and came back up with CR3's PCID
605  *   bits clear.  CPU hotplug can do this.
606  *
607  * - The TLB contains junk in slots corresponding to inactive ASIDs.
608  *
609  * - The CPU went so far out to lunch that it may have missed a TLB
610  *   flush.
611  */
612 void initialize_tlbstate_and_flush(void)
613 {
614 	int i;
615 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
616 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
617 	unsigned long cr3 = __read_cr3();
618 
619 	/* Assert that CR3 already references the right mm. */
620 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
621 
622 	/*
623 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
624 	 * doesn't work like other CR4 bits because it can only be set from
625 	 * long mode.)
626 	 */
627 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
628 		!(cr4_read_shadow() & X86_CR4_PCIDE));
629 
630 	/* Force ASID 0 and force a TLB flush. */
631 	write_cr3(build_cr3(mm->pgd, 0));
632 
633 	/* Reinitialize tlbstate. */
634 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
635 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
636 	this_cpu_write(cpu_tlbstate.next_asid, 1);
637 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
638 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
639 
640 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
641 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
642 }
643 
644 /*
645  * flush_tlb_func_common()'s memory ordering requirement is that any
646  * TLB fills that happen after we flush the TLB are ordered after we
647  * read active_mm's tlb_gen.  We don't need any explicit barriers
648  * because all x86 flush operations are serializing and the
649  * atomic64_read operation won't be reordered by the compiler.
650  */
651 static void flush_tlb_func_common(const struct flush_tlb_info *f,
652 				  bool local, enum tlb_flush_reason reason)
653 {
654 	/*
655 	 * We have three different tlb_gen values in here.  They are:
656 	 *
657 	 * - mm_tlb_gen:     the latest generation.
658 	 * - local_tlb_gen:  the generation that this CPU has already caught
659 	 *                   up to.
660 	 * - f->new_tlb_gen: the generation that the requester of the flush
661 	 *                   wants us to catch up to.
662 	 */
663 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
664 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
665 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
666 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
667 
668 	/* This code cannot presently handle being reentered. */
669 	VM_WARN_ON(!irqs_disabled());
670 
671 	if (unlikely(loaded_mm == &init_mm))
672 		return;
673 
674 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
675 		   loaded_mm->context.ctx_id);
676 
677 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
678 		/*
679 		 * We're in lazy mode.  We need to at least flush our
680 		 * paging-structure cache to avoid speculatively reading
681 		 * garbage into our TLB.  Since switching to init_mm is barely
682 		 * slower than a minimal flush, just switch to init_mm.
683 		 *
684 		 * This should be rare, with native_flush_tlb_others skipping
685 		 * IPIs to lazy TLB mode CPUs.
686 		 */
687 		switch_mm_irqs_off(NULL, &init_mm, NULL);
688 		return;
689 	}
690 
691 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
692 		/*
693 		 * There's nothing to do: we're already up to date.  This can
694 		 * happen if two concurrent flushes happen -- the first flush to
695 		 * be handled can catch us all the way up, leaving no work for
696 		 * the second flush.
697 		 */
698 		trace_tlb_flush(reason, 0);
699 		return;
700 	}
701 
702 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
703 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
704 
705 	/*
706 	 * If we get to this point, we know that our TLB is out of date.
707 	 * This does not strictly imply that we need to flush (it's
708 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
709 	 * going to need to flush in the very near future, so we might
710 	 * as well get it over with.
711 	 *
712 	 * The only question is whether to do a full or partial flush.
713 	 *
714 	 * We do a partial flush if requested and two extra conditions
715 	 * are met:
716 	 *
717 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
718 	 *    we've always done all needed flushes to catch up to
719 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
720 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
721 	 *    us up to date for tlb_gen 3 is the partial flush we're
722 	 *    processing.
723 	 *
724 	 *    As an example of why this check is needed, suppose that there
725 	 *    are two concurrent flushes.  The first is a full flush that
726 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
727 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
728 	 *    processed on this CPU in reverse order, we'll see
729 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
730 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
731 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
732 	 *    1 without the full flush that's needed for tlb_gen 2.
733 	 *
734 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
735 	 *    Partial TLB flushes are not all that much cheaper than full TLB
736 	 *    flushes, so it seems unlikely that it would be a performance win
737 	 *    to do a partial flush if that won't bring our TLB fully up to
738 	 *    date.  By doing a full flush instead, we can increase
739 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
740 	 *    avoid another flush in the very near future.
741 	 */
742 	if (f->end != TLB_FLUSH_ALL &&
743 	    f->new_tlb_gen == local_tlb_gen + 1 &&
744 	    f->new_tlb_gen == mm_tlb_gen) {
745 		/* Partial flush */
746 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
747 		unsigned long addr = f->start;
748 
749 		while (addr < f->end) {
750 			flush_tlb_one_user(addr);
751 			addr += 1UL << f->stride_shift;
752 		}
753 		if (local)
754 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
755 		trace_tlb_flush(reason, nr_invalidate);
756 	} else {
757 		/* Full flush. */
758 		flush_tlb_local();
759 		if (local)
760 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
761 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
762 	}
763 
764 	/* Both paths above update our state to mm_tlb_gen. */
765 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
766 }
767 
768 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
769 {
770 	const struct flush_tlb_info *f = info;
771 
772 	flush_tlb_func_common(f, true, reason);
773 }
774 
775 static void flush_tlb_func_remote(void *info)
776 {
777 	const struct flush_tlb_info *f = info;
778 
779 	inc_irq_stat(irq_tlb_count);
780 
781 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
782 		return;
783 
784 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
785 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
786 }
787 
788 static bool tlb_is_not_lazy(int cpu, void *data)
789 {
790 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
791 }
792 
793 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
794 					 const struct flush_tlb_info *info)
795 {
796 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
797 	if (info->end == TLB_FLUSH_ALL)
798 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
799 	else
800 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
801 				(info->end - info->start) >> PAGE_SHIFT);
802 
803 	if (is_uv_system()) {
804 		/*
805 		 * This whole special case is confused.  UV has a "Broadcast
806 		 * Assist Unit", which seems to be a fancy way to send IPIs.
807 		 * Back when x86 used an explicit TLB flush IPI, UV was
808 		 * optimized to use its own mechanism.  These days, x86 uses
809 		 * smp_call_function_many(), but UV still uses a manual IPI,
810 		 * and that IPI's action is out of date -- it does a manual
811 		 * flush instead of calling flush_tlb_func_remote().  This
812 		 * means that the percpu tlb_gen variables won't be updated
813 		 * and we'll do pointless flushes on future context switches.
814 		 *
815 		 * Rather than hooking native_flush_tlb_others() here, I think
816 		 * that UV should be updated so that smp_call_function_many(),
817 		 * etc, are optimal on UV.
818 		 */
819 		cpumask = uv_flush_tlb_others(cpumask, info);
820 		if (cpumask)
821 			smp_call_function_many(cpumask, flush_tlb_func_remote,
822 					       (void *)info, 1);
823 		return;
824 	}
825 
826 	/*
827 	 * If no page tables were freed, we can skip sending IPIs to
828 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
829 	 * at the next context switch.
830 	 *
831 	 * However, if page tables are getting freed, we need to send the
832 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
833 	 * up on the new contents of what used to be page tables, while
834 	 * doing a speculative memory access.
835 	 */
836 	if (info->freed_tables)
837 		smp_call_function_many(cpumask, flush_tlb_func_remote,
838 			       (void *)info, 1);
839 	else
840 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
841 				(void *)info, 1, cpumask);
842 }
843 
844 void flush_tlb_others(const struct cpumask *cpumask,
845 		      const struct flush_tlb_info *info)
846 {
847 	__flush_tlb_others(cpumask, info);
848 }
849 
850 /*
851  * See Documentation/x86/tlb.rst for details.  We choose 33
852  * because it is large enough to cover the vast majority (at
853  * least 95%) of allocations, and is small enough that we are
854  * confident it will not cause too much overhead.  Each single
855  * flush is about 100 ns, so this caps the maximum overhead at
856  * _about_ 3,000 ns.
857  *
858  * This is in units of pages.
859  */
860 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
861 
862 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
863 
864 #ifdef CONFIG_DEBUG_VM
865 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
866 #endif
867 
868 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
869 			unsigned long start, unsigned long end,
870 			unsigned int stride_shift, bool freed_tables,
871 			u64 new_tlb_gen)
872 {
873 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
874 
875 #ifdef CONFIG_DEBUG_VM
876 	/*
877 	 * Ensure that the following code is non-reentrant and flush_tlb_info
878 	 * is not overwritten. This means no TLB flushing is initiated by
879 	 * interrupt handlers and machine-check exception handlers.
880 	 */
881 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
882 #endif
883 
884 	info->start		= start;
885 	info->end		= end;
886 	info->mm		= mm;
887 	info->stride_shift	= stride_shift;
888 	info->freed_tables	= freed_tables;
889 	info->new_tlb_gen	= new_tlb_gen;
890 
891 	return info;
892 }
893 
894 static inline void put_flush_tlb_info(void)
895 {
896 #ifdef CONFIG_DEBUG_VM
897 	/* Complete reentrency prevention checks */
898 	barrier();
899 	this_cpu_dec(flush_tlb_info_idx);
900 #endif
901 }
902 
903 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
904 				unsigned long end, unsigned int stride_shift,
905 				bool freed_tables)
906 {
907 	struct flush_tlb_info *info;
908 	u64 new_tlb_gen;
909 	int cpu;
910 
911 	cpu = get_cpu();
912 
913 	/* Should we flush just the requested range? */
914 	if ((end == TLB_FLUSH_ALL) ||
915 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
916 		start = 0;
917 		end = TLB_FLUSH_ALL;
918 	}
919 
920 	/* This is also a barrier that synchronizes with switch_mm(). */
921 	new_tlb_gen = inc_mm_tlb_gen(mm);
922 
923 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
924 				  new_tlb_gen);
925 
926 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
927 		lockdep_assert_irqs_enabled();
928 		local_irq_disable();
929 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
930 		local_irq_enable();
931 	}
932 
933 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
934 		flush_tlb_others(mm_cpumask(mm), info);
935 
936 	put_flush_tlb_info();
937 	put_cpu();
938 }
939 
940 
941 static void do_flush_tlb_all(void *info)
942 {
943 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
944 	__flush_tlb_all();
945 }
946 
947 void flush_tlb_all(void)
948 {
949 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
950 	on_each_cpu(do_flush_tlb_all, NULL, 1);
951 }
952 
953 static void do_kernel_range_flush(void *info)
954 {
955 	struct flush_tlb_info *f = info;
956 	unsigned long addr;
957 
958 	/* flush range by one by one 'invlpg' */
959 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
960 		flush_tlb_one_kernel(addr);
961 }
962 
963 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
964 {
965 	/* Balance as user space task's flush, a bit conservative */
966 	if (end == TLB_FLUSH_ALL ||
967 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
968 		on_each_cpu(do_flush_tlb_all, NULL, 1);
969 	} else {
970 		struct flush_tlb_info *info;
971 
972 		preempt_disable();
973 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
974 
975 		on_each_cpu(do_kernel_range_flush, info, 1);
976 
977 		put_flush_tlb_info();
978 		preempt_enable();
979 	}
980 }
981 
982 /*
983  * This can be used from process context to figure out what the value of
984  * CR3 is without needing to do a (slow) __read_cr3().
985  *
986  * It's intended to be used for code like KVM that sneakily changes CR3
987  * and needs to restore it.  It needs to be used very carefully.
988  */
989 unsigned long __get_current_cr3_fast(void)
990 {
991 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
992 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
993 
994 	/* For now, be very restrictive about when this can be called. */
995 	VM_WARN_ON(in_nmi() || preemptible());
996 
997 	VM_BUG_ON(cr3 != __read_cr3());
998 	return cr3;
999 }
1000 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1001 
1002 /*
1003  * Flush one page in the kernel mapping
1004  */
1005 void flush_tlb_one_kernel(unsigned long addr)
1006 {
1007 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1008 
1009 	/*
1010 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1011 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1012 	 * use PCID if we also use global PTEs for the kernel mapping, and
1013 	 * INVLPG flushes global translations across all address spaces.
1014 	 *
1015 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1016 	 * __flush_tlb_one_user() will flush the given address for the current
1017 	 * kernel address space and for its usermode counterpart, but it does
1018 	 * not flush it for other address spaces.
1019 	 */
1020 	flush_tlb_one_user(addr);
1021 
1022 	if (!static_cpu_has(X86_FEATURE_PTI))
1023 		return;
1024 
1025 	/*
1026 	 * See above.  We need to propagate the flush to all other address
1027 	 * spaces.  In principle, we only need to propagate it to kernelmode
1028 	 * address spaces, but the extra bookkeeping we would need is not
1029 	 * worth it.
1030 	 */
1031 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1032 }
1033 
1034 /*
1035  * Flush one page in the user mapping
1036  */
1037 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1038 {
1039 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1040 
1041 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1042 
1043 	if (!static_cpu_has(X86_FEATURE_PTI))
1044 		return;
1045 
1046 	/*
1047 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1048 	 * Just use invalidate_user_asid() in case we are called early.
1049 	 */
1050 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1051 		invalidate_user_asid(loaded_mm_asid);
1052 	else
1053 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1054 }
1055 
1056 void flush_tlb_one_user(unsigned long addr)
1057 {
1058 	__flush_tlb_one_user(addr);
1059 }
1060 
1061 /*
1062  * Flush everything
1063  */
1064 STATIC_NOPV void native_flush_tlb_global(void)
1065 {
1066 	unsigned long cr4, flags;
1067 
1068 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1069 		/*
1070 		 * Using INVPCID is considerably faster than a pair of writes
1071 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1072 		 *
1073 		 * Note, this works with CR4.PCIDE=0 or 1.
1074 		 */
1075 		invpcid_flush_all();
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * Read-modify-write to CR4 - protect it from preemption and
1081 	 * from interrupts. (Use the raw variant because this code can
1082 	 * be called from deep inside debugging code.)
1083 	 */
1084 	raw_local_irq_save(flags);
1085 
1086 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
1087 	/* toggle PGE */
1088 	native_write_cr4(cr4 ^ X86_CR4_PGE);
1089 	/* write old PGE again and flush TLBs */
1090 	native_write_cr4(cr4);
1091 
1092 	raw_local_irq_restore(flags);
1093 }
1094 
1095 /*
1096  * Flush the entire current user mapping
1097  */
1098 STATIC_NOPV void native_flush_tlb_local(void)
1099 {
1100 	/*
1101 	 * Preemption or interrupts must be disabled to protect the access
1102 	 * to the per CPU variable and to prevent being preempted between
1103 	 * read_cr3() and write_cr3().
1104 	 */
1105 	WARN_ON_ONCE(preemptible());
1106 
1107 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1108 
1109 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1110 	native_write_cr3(__native_read_cr3());
1111 }
1112 
1113 void flush_tlb_local(void)
1114 {
1115 	__flush_tlb_local();
1116 }
1117 
1118 /*
1119  * Flush everything
1120  */
1121 void __flush_tlb_all(void)
1122 {
1123 	/*
1124 	 * This is to catch users with enabled preemption and the PGE feature
1125 	 * and don't trigger the warning in __native_flush_tlb().
1126 	 */
1127 	VM_WARN_ON_ONCE(preemptible());
1128 
1129 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1130 		__flush_tlb_global();
1131 	} else {
1132 		/*
1133 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1134 		 */
1135 		flush_tlb_local();
1136 	}
1137 }
1138 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1139 
1140 /*
1141  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1142  * This means that the 'struct flush_tlb_info' that describes which mappings to
1143  * flush is actually fixed. We therefore set a single fixed struct and use it in
1144  * arch_tlbbatch_flush().
1145  */
1146 static const struct flush_tlb_info full_flush_tlb_info = {
1147 	.mm = NULL,
1148 	.start = 0,
1149 	.end = TLB_FLUSH_ALL,
1150 };
1151 
1152 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1153 {
1154 	int cpu = get_cpu();
1155 
1156 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1157 		lockdep_assert_irqs_enabled();
1158 		local_irq_disable();
1159 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1160 		local_irq_enable();
1161 	}
1162 
1163 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1164 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1165 
1166 	cpumask_clear(&batch->cpumask);
1167 
1168 	put_cpu();
1169 }
1170 
1171 /*
1172  * Blindly accessing user memory from NMI context can be dangerous
1173  * if we're in the middle of switching the current user task or
1174  * switching the loaded mm.  It can also be dangerous if we
1175  * interrupted some kernel code that was temporarily using a
1176  * different mm.
1177  */
1178 bool nmi_uaccess_okay(void)
1179 {
1180 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1181 	struct mm_struct *current_mm = current->mm;
1182 
1183 	VM_WARN_ON_ONCE(!loaded_mm);
1184 
1185 	/*
1186 	 * The condition we want to check is
1187 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1188 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1189 	 * is supposed to be reasonably fast.
1190 	 *
1191 	 * Instead, we check the almost equivalent but somewhat conservative
1192 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1193 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1194 	 */
1195 	if (loaded_mm != current_mm)
1196 		return false;
1197 
1198 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1199 
1200 	return true;
1201 }
1202 
1203 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1204 			     size_t count, loff_t *ppos)
1205 {
1206 	char buf[32];
1207 	unsigned int len;
1208 
1209 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1210 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1211 }
1212 
1213 static ssize_t tlbflush_write_file(struct file *file,
1214 		 const char __user *user_buf, size_t count, loff_t *ppos)
1215 {
1216 	char buf[32];
1217 	ssize_t len;
1218 	int ceiling;
1219 
1220 	len = min(count, sizeof(buf) - 1);
1221 	if (copy_from_user(buf, user_buf, len))
1222 		return -EFAULT;
1223 
1224 	buf[len] = '\0';
1225 	if (kstrtoint(buf, 0, &ceiling))
1226 		return -EINVAL;
1227 
1228 	if (ceiling < 0)
1229 		return -EINVAL;
1230 
1231 	tlb_single_page_flush_ceiling = ceiling;
1232 	return count;
1233 }
1234 
1235 static const struct file_operations fops_tlbflush = {
1236 	.read = tlbflush_read_file,
1237 	.write = tlbflush_write_file,
1238 	.llseek = default_llseek,
1239 };
1240 
1241 static int __init create_tlb_single_page_flush_ceiling(void)
1242 {
1243 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1244 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1245 	return 0;
1246 }
1247 late_initcall(create_tlb_single_page_flush_ceiling);
1248