xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 7ce05074)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/perf_event.h>
18 
19 #include "mm_internal.h"
20 
21 #ifdef CONFIG_PARAVIRT
22 # define STATIC_NOPV
23 #else
24 # define STATIC_NOPV			static
25 # define __flush_tlb_local		native_flush_tlb_local
26 # define __flush_tlb_global		native_flush_tlb_global
27 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
28 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
29 #endif
30 
31 /*
32  *	TLB flushing, formerly SMP-only
33  *		c/o Linus Torvalds.
34  *
35  *	These mean you can really definitely utterly forget about
36  *	writing to user space from interrupts. (Its not allowed anyway).
37  *
38  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
39  *
40  *	More scalable flush, from Andi Kleen
41  *
42  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
43  */
44 
45 /*
46  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
47  * stored in cpu_tlb_state.last_user_mm_ibpb.
48  */
49 #define LAST_USER_MM_IBPB	0x1UL
50 
51 /*
52  * The x86 feature is called PCID (Process Context IDentifier). It is similar
53  * to what is traditionally called ASID on the RISC processors.
54  *
55  * We don't use the traditional ASID implementation, where each process/mm gets
56  * its own ASID and flush/restart when we run out of ASID space.
57  *
58  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
59  * that came by on this CPU, allowing cheaper switch_mm between processes on
60  * this CPU.
61  *
62  * We end up with different spaces for different things. To avoid confusion we
63  * use different names for each of them:
64  *
65  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
66  *         the canonical identifier for an mm
67  *
68  * kPCID - [1, TLB_NR_DYN_ASIDS]
69  *         the value we write into the PCID part of CR3; corresponds to the
70  *         ASID+1, because PCID 0 is special.
71  *
72  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
73  *         for KPTI each mm has two address spaces and thus needs two
74  *         PCID values, but we can still do with a single ASID denomination
75  *         for each mm. Corresponds to kPCID + 2048.
76  *
77  */
78 
79 /* There are 12 bits of space for ASIDS in CR3 */
80 #define CR3_HW_ASID_BITS		12
81 
82 /*
83  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
84  * user/kernel switches
85  */
86 #ifdef CONFIG_PAGE_TABLE_ISOLATION
87 # define PTI_CONSUMED_PCID_BITS	1
88 #else
89 # define PTI_CONSUMED_PCID_BITS	0
90 #endif
91 
92 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
93 
94 /*
95  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
96  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
97  * use by non-PCID-aware users.
98  */
99 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
100 
101 /*
102  * Given @asid, compute kPCID
103  */
104 static inline u16 kern_pcid(u16 asid)
105 {
106 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
107 
108 #ifdef CONFIG_PAGE_TABLE_ISOLATION
109 	/*
110 	 * Make sure that the dynamic ASID space does not conflict with the
111 	 * bit we are using to switch between user and kernel ASIDs.
112 	 */
113 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
114 
115 	/*
116 	 * The ASID being passed in here should have respected the
117 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
118 	 */
119 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
120 #endif
121 	/*
122 	 * The dynamically-assigned ASIDs that get passed in are small
123 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
124 	 * so do not bother to clear it.
125 	 *
126 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
127 	 * PCID bits.  This serves two purposes.  It prevents a nasty
128 	 * situation in which PCID-unaware code saves CR3, loads some other
129 	 * value (with PCID == 0), and then restores CR3, thus corrupting
130 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
131 	 * that any bugs involving loading a PCID-enabled CR3 with
132 	 * CR4.PCIDE off will trigger deterministically.
133 	 */
134 	return asid + 1;
135 }
136 
137 /*
138  * Given @asid, compute uPCID
139  */
140 static inline u16 user_pcid(u16 asid)
141 {
142 	u16 ret = kern_pcid(asid);
143 #ifdef CONFIG_PAGE_TABLE_ISOLATION
144 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
145 #endif
146 	return ret;
147 }
148 
149 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
150 {
151 	if (static_cpu_has(X86_FEATURE_PCID)) {
152 		return __sme_pa(pgd) | kern_pcid(asid);
153 	} else {
154 		VM_WARN_ON_ONCE(asid != 0);
155 		return __sme_pa(pgd);
156 	}
157 }
158 
159 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
160 {
161 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
162 	/*
163 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
164 	 * might be called during early boot. This should work even after
165 	 * boot because all CPU's the have same capabilities:
166 	 */
167 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
168 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
169 }
170 
171 /*
172  * We get here when we do something requiring a TLB invalidation
173  * but could not go invalidate all of the contexts.  We do the
174  * necessary invalidation by clearing out the 'ctx_id' which
175  * forces a TLB flush when the context is loaded.
176  */
177 static void clear_asid_other(void)
178 {
179 	u16 asid;
180 
181 	/*
182 	 * This is only expected to be set if we have disabled
183 	 * kernel _PAGE_GLOBAL pages.
184 	 */
185 	if (!static_cpu_has(X86_FEATURE_PTI)) {
186 		WARN_ON_ONCE(1);
187 		return;
188 	}
189 
190 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
191 		/* Do not need to flush the current asid */
192 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
193 			continue;
194 		/*
195 		 * Make sure the next time we go to switch to
196 		 * this asid, we do a flush:
197 		 */
198 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
199 	}
200 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
201 }
202 
203 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
204 
205 
206 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
207 			    u16 *new_asid, bool *need_flush)
208 {
209 	u16 asid;
210 
211 	if (!static_cpu_has(X86_FEATURE_PCID)) {
212 		*new_asid = 0;
213 		*need_flush = true;
214 		return;
215 	}
216 
217 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
218 		clear_asid_other();
219 
220 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
221 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
222 		    next->context.ctx_id)
223 			continue;
224 
225 		*new_asid = asid;
226 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
227 			       next_tlb_gen);
228 		return;
229 	}
230 
231 	/*
232 	 * We don't currently own an ASID slot on this CPU.
233 	 * Allocate a slot.
234 	 */
235 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
236 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
237 		*new_asid = 0;
238 		this_cpu_write(cpu_tlbstate.next_asid, 1);
239 	}
240 	*need_flush = true;
241 }
242 
243 /*
244  * Given an ASID, flush the corresponding user ASID.  We can delay this
245  * until the next time we switch to it.
246  *
247  * See SWITCH_TO_USER_CR3.
248  */
249 static inline void invalidate_user_asid(u16 asid)
250 {
251 	/* There is no user ASID if address space separation is off */
252 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
253 		return;
254 
255 	/*
256 	 * We only have a single ASID if PCID is off and the CR3
257 	 * write will have flushed it.
258 	 */
259 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
260 		return;
261 
262 	if (!static_cpu_has(X86_FEATURE_PTI))
263 		return;
264 
265 	__set_bit(kern_pcid(asid),
266 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
267 }
268 
269 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
270 {
271 	unsigned long new_mm_cr3;
272 
273 	if (need_flush) {
274 		invalidate_user_asid(new_asid);
275 		new_mm_cr3 = build_cr3(pgdir, new_asid);
276 	} else {
277 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
278 	}
279 
280 	/*
281 	 * Caution: many callers of this function expect
282 	 * that load_cr3() is serializing and orders TLB
283 	 * fills with respect to the mm_cpumask writes.
284 	 */
285 	write_cr3(new_mm_cr3);
286 }
287 
288 void leave_mm(int cpu)
289 {
290 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
291 
292 	/*
293 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
294 	 * If so, our callers still expect us to flush the TLB, but there
295 	 * aren't any user TLB entries in init_mm to worry about.
296 	 *
297 	 * This needs to happen before any other sanity checks due to
298 	 * intel_idle's shenanigans.
299 	 */
300 	if (loaded_mm == &init_mm)
301 		return;
302 
303 	/* Warn if we're not lazy. */
304 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
305 
306 	switch_mm(NULL, &init_mm, NULL);
307 }
308 EXPORT_SYMBOL_GPL(leave_mm);
309 
310 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
311 	       struct task_struct *tsk)
312 {
313 	unsigned long flags;
314 
315 	local_irq_save(flags);
316 	switch_mm_irqs_off(prev, next, tsk);
317 	local_irq_restore(flags);
318 }
319 
320 static unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
321 {
322 	unsigned long next_tif = task_thread_info(next)->flags;
323 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
324 
325 	return (unsigned long)next->mm | ibpb;
326 }
327 
328 static void cond_ibpb(struct task_struct *next)
329 {
330 	if (!next || !next->mm)
331 		return;
332 
333 	/*
334 	 * Both, the conditional and the always IBPB mode use the mm
335 	 * pointer to avoid the IBPB when switching between tasks of the
336 	 * same process. Using the mm pointer instead of mm->context.ctx_id
337 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
338 	 * less impossible to control by an attacker. Aside of that it
339 	 * would only affect the first schedule so the theoretically
340 	 * exposed data is not really interesting.
341 	 */
342 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
343 		unsigned long prev_mm, next_mm;
344 
345 		/*
346 		 * This is a bit more complex than the always mode because
347 		 * it has to handle two cases:
348 		 *
349 		 * 1) Switch from a user space task (potential attacker)
350 		 *    which has TIF_SPEC_IB set to a user space task
351 		 *    (potential victim) which has TIF_SPEC_IB not set.
352 		 *
353 		 * 2) Switch from a user space task (potential attacker)
354 		 *    which has TIF_SPEC_IB not set to a user space task
355 		 *    (potential victim) which has TIF_SPEC_IB set.
356 		 *
357 		 * This could be done by unconditionally issuing IBPB when
358 		 * a task which has TIF_SPEC_IB set is either scheduled in
359 		 * or out. Though that results in two flushes when:
360 		 *
361 		 * - the same user space task is scheduled out and later
362 		 *   scheduled in again and only a kernel thread ran in
363 		 *   between.
364 		 *
365 		 * - a user space task belonging to the same process is
366 		 *   scheduled in after a kernel thread ran in between
367 		 *
368 		 * - a user space task belonging to the same process is
369 		 *   scheduled in immediately.
370 		 *
371 		 * Optimize this with reasonably small overhead for the
372 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
373 		 * pointer of the incoming task which is stored in
374 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
375 		 */
376 		next_mm = mm_mangle_tif_spec_ib(next);
377 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
378 
379 		/*
380 		 * Issue IBPB only if the mm's are different and one or
381 		 * both have the IBPB bit set.
382 		 */
383 		if (next_mm != prev_mm &&
384 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
385 			indirect_branch_prediction_barrier();
386 
387 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
388 	}
389 
390 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
391 		/*
392 		 * Only flush when switching to a user space task with a
393 		 * different context than the user space task which ran
394 		 * last on this CPU.
395 		 */
396 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
397 			indirect_branch_prediction_barrier();
398 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
399 		}
400 	}
401 }
402 
403 #ifdef CONFIG_PERF_EVENTS
404 static inline void cr4_update_pce_mm(struct mm_struct *mm)
405 {
406 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
407 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
408 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
409 		/*
410 		 * Clear the existing dirty counters to
411 		 * prevent the leak for an RDPMC task.
412 		 */
413 		perf_clear_dirty_counters();
414 		cr4_set_bits_irqsoff(X86_CR4_PCE);
415 	} else
416 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
417 }
418 
419 void cr4_update_pce(void *ignored)
420 {
421 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
422 }
423 
424 #else
425 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
426 #endif
427 
428 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
429 			struct task_struct *tsk)
430 {
431 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
432 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
433 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
434 	unsigned cpu = smp_processor_id();
435 	u64 next_tlb_gen;
436 	bool need_flush;
437 	u16 new_asid;
438 
439 	/*
440 	 * NB: The scheduler will call us with prev == next when switching
441 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
442 	 * When this happens, we don't assume that CR3 (and hence
443 	 * cpu_tlbstate.loaded_mm) matches next.
444 	 *
445 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
446 	 */
447 
448 	/* We don't want flush_tlb_func() to run concurrently with us. */
449 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
450 		WARN_ON_ONCE(!irqs_disabled());
451 
452 	/*
453 	 * Verify that CR3 is what we think it is.  This will catch
454 	 * hypothetical buggy code that directly switches to swapper_pg_dir
455 	 * without going through leave_mm() / switch_mm_irqs_off() or that
456 	 * does something like write_cr3(read_cr3_pa()).
457 	 *
458 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
459 	 * isn't free.
460 	 */
461 #ifdef CONFIG_DEBUG_VM
462 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
463 		/*
464 		 * If we were to BUG here, we'd be very likely to kill
465 		 * the system so hard that we don't see the call trace.
466 		 * Try to recover instead by ignoring the error and doing
467 		 * a global flush to minimize the chance of corruption.
468 		 *
469 		 * (This is far from being a fully correct recovery.
470 		 *  Architecturally, the CPU could prefetch something
471 		 *  back into an incorrect ASID slot and leave it there
472 		 *  to cause trouble down the road.  It's better than
473 		 *  nothing, though.)
474 		 */
475 		__flush_tlb_all();
476 	}
477 #endif
478 	if (was_lazy)
479 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
480 
481 	/*
482 	 * The membarrier system call requires a full memory barrier and
483 	 * core serialization before returning to user-space, after
484 	 * storing to rq->curr, when changing mm.  This is because
485 	 * membarrier() sends IPIs to all CPUs that are in the target mm
486 	 * to make them issue memory barriers.  However, if another CPU
487 	 * switches to/from the target mm concurrently with
488 	 * membarrier(), it can cause that CPU not to receive an IPI
489 	 * when it really should issue a memory barrier.  Writing to CR3
490 	 * provides that full memory barrier and core serializing
491 	 * instruction.
492 	 */
493 	if (real_prev == next) {
494 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
495 			   next->context.ctx_id);
496 
497 		/*
498 		 * Even in lazy TLB mode, the CPU should stay set in the
499 		 * mm_cpumask. The TLB shootdown code can figure out from
500 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
501 		 */
502 		if (WARN_ON_ONCE(real_prev != &init_mm &&
503 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
504 			cpumask_set_cpu(cpu, mm_cpumask(next));
505 
506 		/*
507 		 * If the CPU is not in lazy TLB mode, we are just switching
508 		 * from one thread in a process to another thread in the same
509 		 * process. No TLB flush required.
510 		 */
511 		if (!was_lazy)
512 			return;
513 
514 		/*
515 		 * Read the tlb_gen to check whether a flush is needed.
516 		 * If the TLB is up to date, just use it.
517 		 * The barrier synchronizes with the tlb_gen increment in
518 		 * the TLB shootdown code.
519 		 */
520 		smp_mb();
521 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
522 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
523 				next_tlb_gen)
524 			return;
525 
526 		/*
527 		 * TLB contents went out of date while we were in lazy
528 		 * mode. Fall through to the TLB switching code below.
529 		 */
530 		new_asid = prev_asid;
531 		need_flush = true;
532 	} else {
533 		/*
534 		 * Avoid user/user BTB poisoning by flushing the branch
535 		 * predictor when switching between processes. This stops
536 		 * one process from doing Spectre-v2 attacks on another.
537 		 */
538 		cond_ibpb(tsk);
539 
540 		/*
541 		 * Stop remote flushes for the previous mm.
542 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
543 		 * but the bitmap manipulation can cause cache line contention.
544 		 */
545 		if (real_prev != &init_mm) {
546 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
547 						mm_cpumask(real_prev)));
548 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
549 		}
550 
551 		/*
552 		 * Start remote flushes and then read tlb_gen.
553 		 */
554 		if (next != &init_mm)
555 			cpumask_set_cpu(cpu, mm_cpumask(next));
556 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
557 
558 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
559 
560 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
561 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
562 		barrier();
563 	}
564 
565 	if (need_flush) {
566 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
567 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
568 		load_new_mm_cr3(next->pgd, new_asid, true);
569 
570 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
571 	} else {
572 		/* The new ASID is already up to date. */
573 		load_new_mm_cr3(next->pgd, new_asid, false);
574 
575 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
576 	}
577 
578 	/* Make sure we write CR3 before loaded_mm. */
579 	barrier();
580 
581 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
582 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
583 
584 	if (next != real_prev) {
585 		cr4_update_pce_mm(next);
586 		switch_ldt(real_prev, next);
587 	}
588 }
589 
590 /*
591  * Please ignore the name of this function.  It should be called
592  * switch_to_kernel_thread().
593  *
594  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
595  * kernel thread or other context without an mm.  Acceptable implementations
596  * include doing nothing whatsoever, switching to init_mm, or various clever
597  * lazy tricks to try to minimize TLB flushes.
598  *
599  * The scheduler reserves the right to call enter_lazy_tlb() several times
600  * in a row.  It will notify us that we're going back to a real mm by
601  * calling switch_mm_irqs_off().
602  */
603 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
604 {
605 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
606 		return;
607 
608 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
609 }
610 
611 /*
612  * Call this when reinitializing a CPU.  It fixes the following potential
613  * problems:
614  *
615  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
616  *   because the CPU was taken down and came back up with CR3's PCID
617  *   bits clear.  CPU hotplug can do this.
618  *
619  * - The TLB contains junk in slots corresponding to inactive ASIDs.
620  *
621  * - The CPU went so far out to lunch that it may have missed a TLB
622  *   flush.
623  */
624 void initialize_tlbstate_and_flush(void)
625 {
626 	int i;
627 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
628 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
629 	unsigned long cr3 = __read_cr3();
630 
631 	/* Assert that CR3 already references the right mm. */
632 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
633 
634 	/*
635 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
636 	 * doesn't work like other CR4 bits because it can only be set from
637 	 * long mode.)
638 	 */
639 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
640 		!(cr4_read_shadow() & X86_CR4_PCIDE));
641 
642 	/* Force ASID 0 and force a TLB flush. */
643 	write_cr3(build_cr3(mm->pgd, 0));
644 
645 	/* Reinitialize tlbstate. */
646 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
647 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
648 	this_cpu_write(cpu_tlbstate.next_asid, 1);
649 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
650 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
651 
652 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
653 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
654 }
655 
656 /*
657  * flush_tlb_func()'s memory ordering requirement is that any
658  * TLB fills that happen after we flush the TLB are ordered after we
659  * read active_mm's tlb_gen.  We don't need any explicit barriers
660  * because all x86 flush operations are serializing and the
661  * atomic64_read operation won't be reordered by the compiler.
662  */
663 static void flush_tlb_func(void *info)
664 {
665 	/*
666 	 * We have three different tlb_gen values in here.  They are:
667 	 *
668 	 * - mm_tlb_gen:     the latest generation.
669 	 * - local_tlb_gen:  the generation that this CPU has already caught
670 	 *                   up to.
671 	 * - f->new_tlb_gen: the generation that the requester of the flush
672 	 *                   wants us to catch up to.
673 	 */
674 	const struct flush_tlb_info *f = info;
675 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
676 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
677 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
678 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
679 	bool local = smp_processor_id() == f->initiating_cpu;
680 	unsigned long nr_invalidate = 0;
681 
682 	/* This code cannot presently handle being reentered. */
683 	VM_WARN_ON(!irqs_disabled());
684 
685 	if (!local) {
686 		inc_irq_stat(irq_tlb_count);
687 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
688 
689 		/* Can only happen on remote CPUs */
690 		if (f->mm && f->mm != loaded_mm)
691 			return;
692 	}
693 
694 	if (unlikely(loaded_mm == &init_mm))
695 		return;
696 
697 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
698 		   loaded_mm->context.ctx_id);
699 
700 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
701 		/*
702 		 * We're in lazy mode.  We need to at least flush our
703 		 * paging-structure cache to avoid speculatively reading
704 		 * garbage into our TLB.  Since switching to init_mm is barely
705 		 * slower than a minimal flush, just switch to init_mm.
706 		 *
707 		 * This should be rare, with native_flush_tlb_multi() skipping
708 		 * IPIs to lazy TLB mode CPUs.
709 		 */
710 		switch_mm_irqs_off(NULL, &init_mm, NULL);
711 		return;
712 	}
713 
714 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
715 		/*
716 		 * There's nothing to do: we're already up to date.  This can
717 		 * happen if two concurrent flushes happen -- the first flush to
718 		 * be handled can catch us all the way up, leaving no work for
719 		 * the second flush.
720 		 */
721 		goto done;
722 	}
723 
724 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
725 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
726 
727 	/*
728 	 * If we get to this point, we know that our TLB is out of date.
729 	 * This does not strictly imply that we need to flush (it's
730 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
731 	 * going to need to flush in the very near future, so we might
732 	 * as well get it over with.
733 	 *
734 	 * The only question is whether to do a full or partial flush.
735 	 *
736 	 * We do a partial flush if requested and two extra conditions
737 	 * are met:
738 	 *
739 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
740 	 *    we've always done all needed flushes to catch up to
741 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
742 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
743 	 *    us up to date for tlb_gen 3 is the partial flush we're
744 	 *    processing.
745 	 *
746 	 *    As an example of why this check is needed, suppose that there
747 	 *    are two concurrent flushes.  The first is a full flush that
748 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
749 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
750 	 *    processed on this CPU in reverse order, we'll see
751 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
752 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
753 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
754 	 *    1 without the full flush that's needed for tlb_gen 2.
755 	 *
756 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
757 	 *    Partial TLB flushes are not all that much cheaper than full TLB
758 	 *    flushes, so it seems unlikely that it would be a performance win
759 	 *    to do a partial flush if that won't bring our TLB fully up to
760 	 *    date.  By doing a full flush instead, we can increase
761 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
762 	 *    avoid another flush in the very near future.
763 	 */
764 	if (f->end != TLB_FLUSH_ALL &&
765 	    f->new_tlb_gen == local_tlb_gen + 1 &&
766 	    f->new_tlb_gen == mm_tlb_gen) {
767 		/* Partial flush */
768 		unsigned long addr = f->start;
769 
770 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
771 
772 		while (addr < f->end) {
773 			flush_tlb_one_user(addr);
774 			addr += 1UL << f->stride_shift;
775 		}
776 		if (local)
777 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
778 	} else {
779 		/* Full flush. */
780 		nr_invalidate = TLB_FLUSH_ALL;
781 
782 		flush_tlb_local();
783 		if (local)
784 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
785 	}
786 
787 	/* Both paths above update our state to mm_tlb_gen. */
788 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
789 
790 	/* Tracing is done in a unified manner to reduce the code size */
791 done:
792 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
793 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
794 						  TLB_LOCAL_MM_SHOOTDOWN,
795 			nr_invalidate);
796 }
797 
798 static bool tlb_is_not_lazy(int cpu)
799 {
800 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
801 }
802 
803 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
804 
805 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
806 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
807 
808 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
809 					 const struct flush_tlb_info *info)
810 {
811 	/*
812 	 * Do accounting and tracing. Note that there are (and have always been)
813 	 * cases in which a remote TLB flush will be traced, but eventually
814 	 * would not happen.
815 	 */
816 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
817 	if (info->end == TLB_FLUSH_ALL)
818 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
819 	else
820 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
821 				(info->end - info->start) >> PAGE_SHIFT);
822 
823 	/*
824 	 * If no page tables were freed, we can skip sending IPIs to
825 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
826 	 * at the next context switch.
827 	 *
828 	 * However, if page tables are getting freed, we need to send the
829 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
830 	 * up on the new contents of what used to be page tables, while
831 	 * doing a speculative memory access.
832 	 */
833 	if (info->freed_tables) {
834 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
835 	} else {
836 		/*
837 		 * Although we could have used on_each_cpu_cond_mask(),
838 		 * open-coding it has performance advantages, as it eliminates
839 		 * the need for indirect calls or retpolines. In addition, it
840 		 * allows to use a designated cpumask for evaluating the
841 		 * condition, instead of allocating one.
842 		 *
843 		 * This code works under the assumption that there are no nested
844 		 * TLB flushes, an assumption that is already made in
845 		 * flush_tlb_mm_range().
846 		 *
847 		 * cond_cpumask is logically a stack-local variable, but it is
848 		 * more efficient to have it off the stack and not to allocate
849 		 * it on demand. Preemption is disabled and this code is
850 		 * non-reentrant.
851 		 */
852 		struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask);
853 		int cpu;
854 
855 		cpumask_clear(cond_cpumask);
856 
857 		for_each_cpu(cpu, cpumask) {
858 			if (tlb_is_not_lazy(cpu))
859 				__cpumask_set_cpu(cpu, cond_cpumask);
860 		}
861 		on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true);
862 	}
863 }
864 
865 void flush_tlb_multi(const struct cpumask *cpumask,
866 		      const struct flush_tlb_info *info)
867 {
868 	__flush_tlb_multi(cpumask, info);
869 }
870 
871 /*
872  * See Documentation/x86/tlb.rst for details.  We choose 33
873  * because it is large enough to cover the vast majority (at
874  * least 95%) of allocations, and is small enough that we are
875  * confident it will not cause too much overhead.  Each single
876  * flush is about 100 ns, so this caps the maximum overhead at
877  * _about_ 3,000 ns.
878  *
879  * This is in units of pages.
880  */
881 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
882 
883 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
884 
885 #ifdef CONFIG_DEBUG_VM
886 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
887 #endif
888 
889 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
890 			unsigned long start, unsigned long end,
891 			unsigned int stride_shift, bool freed_tables,
892 			u64 new_tlb_gen)
893 {
894 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
895 
896 #ifdef CONFIG_DEBUG_VM
897 	/*
898 	 * Ensure that the following code is non-reentrant and flush_tlb_info
899 	 * is not overwritten. This means no TLB flushing is initiated by
900 	 * interrupt handlers and machine-check exception handlers.
901 	 */
902 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
903 #endif
904 
905 	info->start		= start;
906 	info->end		= end;
907 	info->mm		= mm;
908 	info->stride_shift	= stride_shift;
909 	info->freed_tables	= freed_tables;
910 	info->new_tlb_gen	= new_tlb_gen;
911 	info->initiating_cpu	= smp_processor_id();
912 
913 	return info;
914 }
915 
916 static void put_flush_tlb_info(void)
917 {
918 #ifdef CONFIG_DEBUG_VM
919 	/* Complete reentrancy prevention checks */
920 	barrier();
921 	this_cpu_dec(flush_tlb_info_idx);
922 #endif
923 }
924 
925 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
926 				unsigned long end, unsigned int stride_shift,
927 				bool freed_tables)
928 {
929 	struct flush_tlb_info *info;
930 	u64 new_tlb_gen;
931 	int cpu;
932 
933 	cpu = get_cpu();
934 
935 	/* Should we flush just the requested range? */
936 	if ((end == TLB_FLUSH_ALL) ||
937 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
938 		start = 0;
939 		end = TLB_FLUSH_ALL;
940 	}
941 
942 	/* This is also a barrier that synchronizes with switch_mm(). */
943 	new_tlb_gen = inc_mm_tlb_gen(mm);
944 
945 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
946 				  new_tlb_gen);
947 
948 	/*
949 	 * flush_tlb_multi() is not optimized for the common case in which only
950 	 * a local TLB flush is needed. Optimize this use-case by calling
951 	 * flush_tlb_func_local() directly in this case.
952 	 */
953 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
954 		flush_tlb_multi(mm_cpumask(mm), info);
955 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
956 		lockdep_assert_irqs_enabled();
957 		local_irq_disable();
958 		flush_tlb_func(info);
959 		local_irq_enable();
960 	}
961 
962 	put_flush_tlb_info();
963 	put_cpu();
964 }
965 
966 
967 static void do_flush_tlb_all(void *info)
968 {
969 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
970 	__flush_tlb_all();
971 }
972 
973 void flush_tlb_all(void)
974 {
975 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
976 	on_each_cpu(do_flush_tlb_all, NULL, 1);
977 }
978 
979 static void do_kernel_range_flush(void *info)
980 {
981 	struct flush_tlb_info *f = info;
982 	unsigned long addr;
983 
984 	/* flush range by one by one 'invlpg' */
985 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
986 		flush_tlb_one_kernel(addr);
987 }
988 
989 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
990 {
991 	/* Balance as user space task's flush, a bit conservative */
992 	if (end == TLB_FLUSH_ALL ||
993 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
994 		on_each_cpu(do_flush_tlb_all, NULL, 1);
995 	} else {
996 		struct flush_tlb_info *info;
997 
998 		preempt_disable();
999 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1000 
1001 		on_each_cpu(do_kernel_range_flush, info, 1);
1002 
1003 		put_flush_tlb_info();
1004 		preempt_enable();
1005 	}
1006 }
1007 
1008 /*
1009  * This can be used from process context to figure out what the value of
1010  * CR3 is without needing to do a (slow) __read_cr3().
1011  *
1012  * It's intended to be used for code like KVM that sneakily changes CR3
1013  * and needs to restore it.  It needs to be used very carefully.
1014  */
1015 unsigned long __get_current_cr3_fast(void)
1016 {
1017 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1018 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1019 
1020 	/* For now, be very restrictive about when this can be called. */
1021 	VM_WARN_ON(in_nmi() || preemptible());
1022 
1023 	VM_BUG_ON(cr3 != __read_cr3());
1024 	return cr3;
1025 }
1026 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1027 
1028 /*
1029  * Flush one page in the kernel mapping
1030  */
1031 void flush_tlb_one_kernel(unsigned long addr)
1032 {
1033 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1034 
1035 	/*
1036 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1037 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1038 	 * use PCID if we also use global PTEs for the kernel mapping, and
1039 	 * INVLPG flushes global translations across all address spaces.
1040 	 *
1041 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1042 	 * __flush_tlb_one_user() will flush the given address for the current
1043 	 * kernel address space and for its usermode counterpart, but it does
1044 	 * not flush it for other address spaces.
1045 	 */
1046 	flush_tlb_one_user(addr);
1047 
1048 	if (!static_cpu_has(X86_FEATURE_PTI))
1049 		return;
1050 
1051 	/*
1052 	 * See above.  We need to propagate the flush to all other address
1053 	 * spaces.  In principle, we only need to propagate it to kernelmode
1054 	 * address spaces, but the extra bookkeeping we would need is not
1055 	 * worth it.
1056 	 */
1057 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1058 }
1059 
1060 /*
1061  * Flush one page in the user mapping
1062  */
1063 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1064 {
1065 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1066 
1067 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1068 
1069 	if (!static_cpu_has(X86_FEATURE_PTI))
1070 		return;
1071 
1072 	/*
1073 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1074 	 * Just use invalidate_user_asid() in case we are called early.
1075 	 */
1076 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1077 		invalidate_user_asid(loaded_mm_asid);
1078 	else
1079 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1080 }
1081 
1082 void flush_tlb_one_user(unsigned long addr)
1083 {
1084 	__flush_tlb_one_user(addr);
1085 }
1086 
1087 /*
1088  * Flush everything
1089  */
1090 STATIC_NOPV void native_flush_tlb_global(void)
1091 {
1092 	unsigned long cr4, flags;
1093 
1094 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1095 		/*
1096 		 * Using INVPCID is considerably faster than a pair of writes
1097 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1098 		 *
1099 		 * Note, this works with CR4.PCIDE=0 or 1.
1100 		 */
1101 		invpcid_flush_all();
1102 		return;
1103 	}
1104 
1105 	/*
1106 	 * Read-modify-write to CR4 - protect it from preemption and
1107 	 * from interrupts. (Use the raw variant because this code can
1108 	 * be called from deep inside debugging code.)
1109 	 */
1110 	raw_local_irq_save(flags);
1111 
1112 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
1113 	/* toggle PGE */
1114 	native_write_cr4(cr4 ^ X86_CR4_PGE);
1115 	/* write old PGE again and flush TLBs */
1116 	native_write_cr4(cr4);
1117 
1118 	raw_local_irq_restore(flags);
1119 }
1120 
1121 /*
1122  * Flush the entire current user mapping
1123  */
1124 STATIC_NOPV void native_flush_tlb_local(void)
1125 {
1126 	/*
1127 	 * Preemption or interrupts must be disabled to protect the access
1128 	 * to the per CPU variable and to prevent being preempted between
1129 	 * read_cr3() and write_cr3().
1130 	 */
1131 	WARN_ON_ONCE(preemptible());
1132 
1133 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1134 
1135 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1136 	native_write_cr3(__native_read_cr3());
1137 }
1138 
1139 void flush_tlb_local(void)
1140 {
1141 	__flush_tlb_local();
1142 }
1143 
1144 /*
1145  * Flush everything
1146  */
1147 void __flush_tlb_all(void)
1148 {
1149 	/*
1150 	 * This is to catch users with enabled preemption and the PGE feature
1151 	 * and don't trigger the warning in __native_flush_tlb().
1152 	 */
1153 	VM_WARN_ON_ONCE(preemptible());
1154 
1155 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1156 		__flush_tlb_global();
1157 	} else {
1158 		/*
1159 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1160 		 */
1161 		flush_tlb_local();
1162 	}
1163 }
1164 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1165 
1166 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1167 {
1168 	struct flush_tlb_info *info;
1169 
1170 	int cpu = get_cpu();
1171 
1172 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1173 	/*
1174 	 * flush_tlb_multi() is not optimized for the common case in which only
1175 	 * a local TLB flush is needed. Optimize this use-case by calling
1176 	 * flush_tlb_func_local() directly in this case.
1177 	 */
1178 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1179 		flush_tlb_multi(&batch->cpumask, info);
1180 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1181 		lockdep_assert_irqs_enabled();
1182 		local_irq_disable();
1183 		flush_tlb_func(info);
1184 		local_irq_enable();
1185 	}
1186 
1187 	cpumask_clear(&batch->cpumask);
1188 
1189 	put_flush_tlb_info();
1190 	put_cpu();
1191 }
1192 
1193 /*
1194  * Blindly accessing user memory from NMI context can be dangerous
1195  * if we're in the middle of switching the current user task or
1196  * switching the loaded mm.  It can also be dangerous if we
1197  * interrupted some kernel code that was temporarily using a
1198  * different mm.
1199  */
1200 bool nmi_uaccess_okay(void)
1201 {
1202 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1203 	struct mm_struct *current_mm = current->mm;
1204 
1205 	VM_WARN_ON_ONCE(!loaded_mm);
1206 
1207 	/*
1208 	 * The condition we want to check is
1209 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1210 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1211 	 * is supposed to be reasonably fast.
1212 	 *
1213 	 * Instead, we check the almost equivalent but somewhat conservative
1214 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1215 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1216 	 */
1217 	if (loaded_mm != current_mm)
1218 		return false;
1219 
1220 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1221 
1222 	return true;
1223 }
1224 
1225 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1226 			     size_t count, loff_t *ppos)
1227 {
1228 	char buf[32];
1229 	unsigned int len;
1230 
1231 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1232 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1233 }
1234 
1235 static ssize_t tlbflush_write_file(struct file *file,
1236 		 const char __user *user_buf, size_t count, loff_t *ppos)
1237 {
1238 	char buf[32];
1239 	ssize_t len;
1240 	int ceiling;
1241 
1242 	len = min(count, sizeof(buf) - 1);
1243 	if (copy_from_user(buf, user_buf, len))
1244 		return -EFAULT;
1245 
1246 	buf[len] = '\0';
1247 	if (kstrtoint(buf, 0, &ceiling))
1248 		return -EINVAL;
1249 
1250 	if (ceiling < 0)
1251 		return -EINVAL;
1252 
1253 	tlb_single_page_flush_ceiling = ceiling;
1254 	return count;
1255 }
1256 
1257 static const struct file_operations fops_tlbflush = {
1258 	.read = tlbflush_read_file,
1259 	.write = tlbflush_write_file,
1260 	.llseek = default_llseek,
1261 };
1262 
1263 static int __init create_tlb_single_page_flush_ceiling(void)
1264 {
1265 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1266 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1267 	return 0;
1268 }
1269 late_initcall(create_tlb_single_page_flush_ceiling);
1270