xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 70a59dd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 
18 #include "mm_internal.h"
19 
20 #ifdef CONFIG_PARAVIRT
21 # define STATIC_NOPV
22 #else
23 # define STATIC_NOPV			static
24 # define __flush_tlb_local		native_flush_tlb_local
25 # define __flush_tlb_global		native_flush_tlb_global
26 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
27 # define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
28 #endif
29 
30 /*
31  *	TLB flushing, formerly SMP-only
32  *		c/o Linus Torvalds.
33  *
34  *	These mean you can really definitely utterly forget about
35  *	writing to user space from interrupts. (Its not allowed anyway).
36  *
37  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
38  *
39  *	More scalable flush, from Andi Kleen
40  *
41  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
42  */
43 
44 /*
45  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
46  * stored in cpu_tlb_state.last_user_mm_ibpb.
47  */
48 #define LAST_USER_MM_IBPB	0x1UL
49 
50 /*
51  * The x86 feature is called PCID (Process Context IDentifier). It is similar
52  * to what is traditionally called ASID on the RISC processors.
53  *
54  * We don't use the traditional ASID implementation, where each process/mm gets
55  * its own ASID and flush/restart when we run out of ASID space.
56  *
57  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
58  * that came by on this CPU, allowing cheaper switch_mm between processes on
59  * this CPU.
60  *
61  * We end up with different spaces for different things. To avoid confusion we
62  * use different names for each of them:
63  *
64  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
65  *         the canonical identifier for an mm
66  *
67  * kPCID - [1, TLB_NR_DYN_ASIDS]
68  *         the value we write into the PCID part of CR3; corresponds to the
69  *         ASID+1, because PCID 0 is special.
70  *
71  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
72  *         for KPTI each mm has two address spaces and thus needs two
73  *         PCID values, but we can still do with a single ASID denomination
74  *         for each mm. Corresponds to kPCID + 2048.
75  *
76  */
77 
78 /* There are 12 bits of space for ASIDS in CR3 */
79 #define CR3_HW_ASID_BITS		12
80 
81 /*
82  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
83  * user/kernel switches
84  */
85 #ifdef CONFIG_PAGE_TABLE_ISOLATION
86 # define PTI_CONSUMED_PCID_BITS	1
87 #else
88 # define PTI_CONSUMED_PCID_BITS	0
89 #endif
90 
91 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
92 
93 /*
94  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
95  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
96  * use by non-PCID-aware users.
97  */
98 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
99 
100 /*
101  * Given @asid, compute kPCID
102  */
103 static inline u16 kern_pcid(u16 asid)
104 {
105 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
106 
107 #ifdef CONFIG_PAGE_TABLE_ISOLATION
108 	/*
109 	 * Make sure that the dynamic ASID space does not confict with the
110 	 * bit we are using to switch between user and kernel ASIDs.
111 	 */
112 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
113 
114 	/*
115 	 * The ASID being passed in here should have respected the
116 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
117 	 */
118 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
119 #endif
120 	/*
121 	 * The dynamically-assigned ASIDs that get passed in are small
122 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
123 	 * so do not bother to clear it.
124 	 *
125 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
126 	 * PCID bits.  This serves two purposes.  It prevents a nasty
127 	 * situation in which PCID-unaware code saves CR3, loads some other
128 	 * value (with PCID == 0), and then restores CR3, thus corrupting
129 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
130 	 * that any bugs involving loading a PCID-enabled CR3 with
131 	 * CR4.PCIDE off will trigger deterministically.
132 	 */
133 	return asid + 1;
134 }
135 
136 /*
137  * Given @asid, compute uPCID
138  */
139 static inline u16 user_pcid(u16 asid)
140 {
141 	u16 ret = kern_pcid(asid);
142 #ifdef CONFIG_PAGE_TABLE_ISOLATION
143 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
144 #endif
145 	return ret;
146 }
147 
148 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
149 {
150 	if (static_cpu_has(X86_FEATURE_PCID)) {
151 		return __sme_pa(pgd) | kern_pcid(asid);
152 	} else {
153 		VM_WARN_ON_ONCE(asid != 0);
154 		return __sme_pa(pgd);
155 	}
156 }
157 
158 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
159 {
160 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
161 	/*
162 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
163 	 * might be called during early boot. This should work even after
164 	 * boot because all CPU's the have same capabilities:
165 	 */
166 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
167 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
168 }
169 
170 /*
171  * We get here when we do something requiring a TLB invalidation
172  * but could not go invalidate all of the contexts.  We do the
173  * necessary invalidation by clearing out the 'ctx_id' which
174  * forces a TLB flush when the context is loaded.
175  */
176 static void clear_asid_other(void)
177 {
178 	u16 asid;
179 
180 	/*
181 	 * This is only expected to be set if we have disabled
182 	 * kernel _PAGE_GLOBAL pages.
183 	 */
184 	if (!static_cpu_has(X86_FEATURE_PTI)) {
185 		WARN_ON_ONCE(1);
186 		return;
187 	}
188 
189 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
190 		/* Do not need to flush the current asid */
191 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
192 			continue;
193 		/*
194 		 * Make sure the next time we go to switch to
195 		 * this asid, we do a flush:
196 		 */
197 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
198 	}
199 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
200 }
201 
202 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
203 
204 
205 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
206 			    u16 *new_asid, bool *need_flush)
207 {
208 	u16 asid;
209 
210 	if (!static_cpu_has(X86_FEATURE_PCID)) {
211 		*new_asid = 0;
212 		*need_flush = true;
213 		return;
214 	}
215 
216 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
217 		clear_asid_other();
218 
219 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
220 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
221 		    next->context.ctx_id)
222 			continue;
223 
224 		*new_asid = asid;
225 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
226 			       next_tlb_gen);
227 		return;
228 	}
229 
230 	/*
231 	 * We don't currently own an ASID slot on this CPU.
232 	 * Allocate a slot.
233 	 */
234 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
235 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
236 		*new_asid = 0;
237 		this_cpu_write(cpu_tlbstate.next_asid, 1);
238 	}
239 	*need_flush = true;
240 }
241 
242 /*
243  * Given an ASID, flush the corresponding user ASID.  We can delay this
244  * until the next time we switch to it.
245  *
246  * See SWITCH_TO_USER_CR3.
247  */
248 static inline void invalidate_user_asid(u16 asid)
249 {
250 	/* There is no user ASID if address space separation is off */
251 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
252 		return;
253 
254 	/*
255 	 * We only have a single ASID if PCID is off and the CR3
256 	 * write will have flushed it.
257 	 */
258 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
259 		return;
260 
261 	if (!static_cpu_has(X86_FEATURE_PTI))
262 		return;
263 
264 	__set_bit(kern_pcid(asid),
265 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
266 }
267 
268 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
269 {
270 	unsigned long new_mm_cr3;
271 
272 	if (need_flush) {
273 		invalidate_user_asid(new_asid);
274 		new_mm_cr3 = build_cr3(pgdir, new_asid);
275 	} else {
276 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
277 	}
278 
279 	/*
280 	 * Caution: many callers of this function expect
281 	 * that load_cr3() is serializing and orders TLB
282 	 * fills with respect to the mm_cpumask writes.
283 	 */
284 	write_cr3(new_mm_cr3);
285 }
286 
287 void leave_mm(int cpu)
288 {
289 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
290 
291 	/*
292 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
293 	 * If so, our callers still expect us to flush the TLB, but there
294 	 * aren't any user TLB entries in init_mm to worry about.
295 	 *
296 	 * This needs to happen before any other sanity checks due to
297 	 * intel_idle's shenanigans.
298 	 */
299 	if (loaded_mm == &init_mm)
300 		return;
301 
302 	/* Warn if we're not lazy. */
303 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
304 
305 	switch_mm(NULL, &init_mm, NULL);
306 }
307 EXPORT_SYMBOL_GPL(leave_mm);
308 
309 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
310 	       struct task_struct *tsk)
311 {
312 	unsigned long flags;
313 
314 	local_irq_save(flags);
315 	switch_mm_irqs_off(prev, next, tsk);
316 	local_irq_restore(flags);
317 }
318 
319 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
320 {
321 	unsigned long next_tif = task_thread_info(next)->flags;
322 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
323 
324 	return (unsigned long)next->mm | ibpb;
325 }
326 
327 static void cond_ibpb(struct task_struct *next)
328 {
329 	if (!next || !next->mm)
330 		return;
331 
332 	/*
333 	 * Both, the conditional and the always IBPB mode use the mm
334 	 * pointer to avoid the IBPB when switching between tasks of the
335 	 * same process. Using the mm pointer instead of mm->context.ctx_id
336 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
337 	 * less impossible to control by an attacker. Aside of that it
338 	 * would only affect the first schedule so the theoretically
339 	 * exposed data is not really interesting.
340 	 */
341 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
342 		unsigned long prev_mm, next_mm;
343 
344 		/*
345 		 * This is a bit more complex than the always mode because
346 		 * it has to handle two cases:
347 		 *
348 		 * 1) Switch from a user space task (potential attacker)
349 		 *    which has TIF_SPEC_IB set to a user space task
350 		 *    (potential victim) which has TIF_SPEC_IB not set.
351 		 *
352 		 * 2) Switch from a user space task (potential attacker)
353 		 *    which has TIF_SPEC_IB not set to a user space task
354 		 *    (potential victim) which has TIF_SPEC_IB set.
355 		 *
356 		 * This could be done by unconditionally issuing IBPB when
357 		 * a task which has TIF_SPEC_IB set is either scheduled in
358 		 * or out. Though that results in two flushes when:
359 		 *
360 		 * - the same user space task is scheduled out and later
361 		 *   scheduled in again and only a kernel thread ran in
362 		 *   between.
363 		 *
364 		 * - a user space task belonging to the same process is
365 		 *   scheduled in after a kernel thread ran in between
366 		 *
367 		 * - a user space task belonging to the same process is
368 		 *   scheduled in immediately.
369 		 *
370 		 * Optimize this with reasonably small overhead for the
371 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
372 		 * pointer of the incoming task which is stored in
373 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
374 		 */
375 		next_mm = mm_mangle_tif_spec_ib(next);
376 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
377 
378 		/*
379 		 * Issue IBPB only if the mm's are different and one or
380 		 * both have the IBPB bit set.
381 		 */
382 		if (next_mm != prev_mm &&
383 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
384 			indirect_branch_prediction_barrier();
385 
386 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
387 	}
388 
389 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
390 		/*
391 		 * Only flush when switching to a user space task with a
392 		 * different context than the user space task which ran
393 		 * last on this CPU.
394 		 */
395 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
396 			indirect_branch_prediction_barrier();
397 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
398 		}
399 	}
400 }
401 
402 #ifdef CONFIG_PERF_EVENTS
403 static inline void cr4_update_pce_mm(struct mm_struct *mm)
404 {
405 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
406 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
407 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
408 		cr4_set_bits_irqsoff(X86_CR4_PCE);
409 	else
410 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
411 }
412 
413 void cr4_update_pce(void *ignored)
414 {
415 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
416 }
417 
418 #else
419 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
420 #endif
421 
422 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
423 			struct task_struct *tsk)
424 {
425 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
426 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
427 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
428 	unsigned cpu = smp_processor_id();
429 	u64 next_tlb_gen;
430 	bool need_flush;
431 	u16 new_asid;
432 
433 	/*
434 	 * NB: The scheduler will call us with prev == next when switching
435 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
436 	 * When this happens, we don't assume that CR3 (and hence
437 	 * cpu_tlbstate.loaded_mm) matches next.
438 	 *
439 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
440 	 */
441 
442 	/* We don't want flush_tlb_func_* to run concurrently with us. */
443 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
444 		WARN_ON_ONCE(!irqs_disabled());
445 
446 	/*
447 	 * Verify that CR3 is what we think it is.  This will catch
448 	 * hypothetical buggy code that directly switches to swapper_pg_dir
449 	 * without going through leave_mm() / switch_mm_irqs_off() or that
450 	 * does something like write_cr3(read_cr3_pa()).
451 	 *
452 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
453 	 * isn't free.
454 	 */
455 #ifdef CONFIG_DEBUG_VM
456 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
457 		/*
458 		 * If we were to BUG here, we'd be very likely to kill
459 		 * the system so hard that we don't see the call trace.
460 		 * Try to recover instead by ignoring the error and doing
461 		 * a global flush to minimize the chance of corruption.
462 		 *
463 		 * (This is far from being a fully correct recovery.
464 		 *  Architecturally, the CPU could prefetch something
465 		 *  back into an incorrect ASID slot and leave it there
466 		 *  to cause trouble down the road.  It's better than
467 		 *  nothing, though.)
468 		 */
469 		__flush_tlb_all();
470 	}
471 #endif
472 	this_cpu_write(cpu_tlbstate.is_lazy, false);
473 
474 	/*
475 	 * The membarrier system call requires a full memory barrier and
476 	 * core serialization before returning to user-space, after
477 	 * storing to rq->curr. Writing to CR3 provides that full
478 	 * memory barrier and core serializing instruction.
479 	 */
480 	if (real_prev == next) {
481 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
482 			   next->context.ctx_id);
483 
484 		/*
485 		 * Even in lazy TLB mode, the CPU should stay set in the
486 		 * mm_cpumask. The TLB shootdown code can figure out from
487 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
488 		 */
489 		if (WARN_ON_ONCE(real_prev != &init_mm &&
490 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
491 			cpumask_set_cpu(cpu, mm_cpumask(next));
492 
493 		/*
494 		 * If the CPU is not in lazy TLB mode, we are just switching
495 		 * from one thread in a process to another thread in the same
496 		 * process. No TLB flush required.
497 		 */
498 		if (!was_lazy)
499 			return;
500 
501 		/*
502 		 * Read the tlb_gen to check whether a flush is needed.
503 		 * If the TLB is up to date, just use it.
504 		 * The barrier synchronizes with the tlb_gen increment in
505 		 * the TLB shootdown code.
506 		 */
507 		smp_mb();
508 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
509 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
510 				next_tlb_gen)
511 			return;
512 
513 		/*
514 		 * TLB contents went out of date while we were in lazy
515 		 * mode. Fall through to the TLB switching code below.
516 		 */
517 		new_asid = prev_asid;
518 		need_flush = true;
519 	} else {
520 		/*
521 		 * Avoid user/user BTB poisoning by flushing the branch
522 		 * predictor when switching between processes. This stops
523 		 * one process from doing Spectre-v2 attacks on another.
524 		 */
525 		cond_ibpb(tsk);
526 
527 		/*
528 		 * Stop remote flushes for the previous mm.
529 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
530 		 * but the bitmap manipulation can cause cache line contention.
531 		 */
532 		if (real_prev != &init_mm) {
533 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
534 						mm_cpumask(real_prev)));
535 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
536 		}
537 
538 		/*
539 		 * Start remote flushes and then read tlb_gen.
540 		 */
541 		if (next != &init_mm)
542 			cpumask_set_cpu(cpu, mm_cpumask(next));
543 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
544 
545 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
546 
547 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
548 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
549 		barrier();
550 	}
551 
552 	if (need_flush) {
553 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
554 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
555 		load_new_mm_cr3(next->pgd, new_asid, true);
556 
557 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
558 	} else {
559 		/* The new ASID is already up to date. */
560 		load_new_mm_cr3(next->pgd, new_asid, false);
561 
562 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
563 	}
564 
565 	/* Make sure we write CR3 before loaded_mm. */
566 	barrier();
567 
568 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
569 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
570 
571 	if (next != real_prev) {
572 		cr4_update_pce_mm(next);
573 		switch_ldt(real_prev, next);
574 	}
575 }
576 
577 /*
578  * Please ignore the name of this function.  It should be called
579  * switch_to_kernel_thread().
580  *
581  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
582  * kernel thread or other context without an mm.  Acceptable implementations
583  * include doing nothing whatsoever, switching to init_mm, or various clever
584  * lazy tricks to try to minimize TLB flushes.
585  *
586  * The scheduler reserves the right to call enter_lazy_tlb() several times
587  * in a row.  It will notify us that we're going back to a real mm by
588  * calling switch_mm_irqs_off().
589  */
590 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
591 {
592 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
593 		return;
594 
595 	this_cpu_write(cpu_tlbstate.is_lazy, true);
596 }
597 
598 /*
599  * Call this when reinitializing a CPU.  It fixes the following potential
600  * problems:
601  *
602  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
603  *   because the CPU was taken down and came back up with CR3's PCID
604  *   bits clear.  CPU hotplug can do this.
605  *
606  * - The TLB contains junk in slots corresponding to inactive ASIDs.
607  *
608  * - The CPU went so far out to lunch that it may have missed a TLB
609  *   flush.
610  */
611 void initialize_tlbstate_and_flush(void)
612 {
613 	int i;
614 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
615 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
616 	unsigned long cr3 = __read_cr3();
617 
618 	/* Assert that CR3 already references the right mm. */
619 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
620 
621 	/*
622 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
623 	 * doesn't work like other CR4 bits because it can only be set from
624 	 * long mode.)
625 	 */
626 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
627 		!(cr4_read_shadow() & X86_CR4_PCIDE));
628 
629 	/* Force ASID 0 and force a TLB flush. */
630 	write_cr3(build_cr3(mm->pgd, 0));
631 
632 	/* Reinitialize tlbstate. */
633 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
634 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
635 	this_cpu_write(cpu_tlbstate.next_asid, 1);
636 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
637 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
638 
639 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
640 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
641 }
642 
643 /*
644  * flush_tlb_func_common()'s memory ordering requirement is that any
645  * TLB fills that happen after we flush the TLB are ordered after we
646  * read active_mm's tlb_gen.  We don't need any explicit barriers
647  * because all x86 flush operations are serializing and the
648  * atomic64_read operation won't be reordered by the compiler.
649  */
650 static void flush_tlb_func_common(const struct flush_tlb_info *f,
651 				  bool local, enum tlb_flush_reason reason)
652 {
653 	/*
654 	 * We have three different tlb_gen values in here.  They are:
655 	 *
656 	 * - mm_tlb_gen:     the latest generation.
657 	 * - local_tlb_gen:  the generation that this CPU has already caught
658 	 *                   up to.
659 	 * - f->new_tlb_gen: the generation that the requester of the flush
660 	 *                   wants us to catch up to.
661 	 */
662 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
663 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
664 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
665 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
666 
667 	/* This code cannot presently handle being reentered. */
668 	VM_WARN_ON(!irqs_disabled());
669 
670 	if (unlikely(loaded_mm == &init_mm))
671 		return;
672 
673 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
674 		   loaded_mm->context.ctx_id);
675 
676 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
677 		/*
678 		 * We're in lazy mode.  We need to at least flush our
679 		 * paging-structure cache to avoid speculatively reading
680 		 * garbage into our TLB.  Since switching to init_mm is barely
681 		 * slower than a minimal flush, just switch to init_mm.
682 		 *
683 		 * This should be rare, with native_flush_tlb_others skipping
684 		 * IPIs to lazy TLB mode CPUs.
685 		 */
686 		switch_mm_irqs_off(NULL, &init_mm, NULL);
687 		return;
688 	}
689 
690 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
691 		/*
692 		 * There's nothing to do: we're already up to date.  This can
693 		 * happen if two concurrent flushes happen -- the first flush to
694 		 * be handled can catch us all the way up, leaving no work for
695 		 * the second flush.
696 		 */
697 		trace_tlb_flush(reason, 0);
698 		return;
699 	}
700 
701 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
702 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
703 
704 	/*
705 	 * If we get to this point, we know that our TLB is out of date.
706 	 * This does not strictly imply that we need to flush (it's
707 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
708 	 * going to need to flush in the very near future, so we might
709 	 * as well get it over with.
710 	 *
711 	 * The only question is whether to do a full or partial flush.
712 	 *
713 	 * We do a partial flush if requested and two extra conditions
714 	 * are met:
715 	 *
716 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
717 	 *    we've always done all needed flushes to catch up to
718 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
719 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
720 	 *    us up to date for tlb_gen 3 is the partial flush we're
721 	 *    processing.
722 	 *
723 	 *    As an example of why this check is needed, suppose that there
724 	 *    are two concurrent flushes.  The first is a full flush that
725 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
726 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
727 	 *    processed on this CPU in reverse order, we'll see
728 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
729 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
730 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
731 	 *    1 without the full flush that's needed for tlb_gen 2.
732 	 *
733 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
734 	 *    Partial TLB flushes are not all that much cheaper than full TLB
735 	 *    flushes, so it seems unlikely that it would be a performance win
736 	 *    to do a partial flush if that won't bring our TLB fully up to
737 	 *    date.  By doing a full flush instead, we can increase
738 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
739 	 *    avoid another flush in the very near future.
740 	 */
741 	if (f->end != TLB_FLUSH_ALL &&
742 	    f->new_tlb_gen == local_tlb_gen + 1 &&
743 	    f->new_tlb_gen == mm_tlb_gen) {
744 		/* Partial flush */
745 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
746 		unsigned long addr = f->start;
747 
748 		while (addr < f->end) {
749 			flush_tlb_one_user(addr);
750 			addr += 1UL << f->stride_shift;
751 		}
752 		if (local)
753 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
754 		trace_tlb_flush(reason, nr_invalidate);
755 	} else {
756 		/* Full flush. */
757 		flush_tlb_local();
758 		if (local)
759 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
760 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
761 	}
762 
763 	/* Both paths above update our state to mm_tlb_gen. */
764 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
765 }
766 
767 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
768 {
769 	const struct flush_tlb_info *f = info;
770 
771 	flush_tlb_func_common(f, true, reason);
772 }
773 
774 static void flush_tlb_func_remote(void *info)
775 {
776 	const struct flush_tlb_info *f = info;
777 
778 	inc_irq_stat(irq_tlb_count);
779 
780 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
781 		return;
782 
783 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
784 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
785 }
786 
787 static bool tlb_is_not_lazy(int cpu, void *data)
788 {
789 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
790 }
791 
792 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
793 					 const struct flush_tlb_info *info)
794 {
795 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
796 	if (info->end == TLB_FLUSH_ALL)
797 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
798 	else
799 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
800 				(info->end - info->start) >> PAGE_SHIFT);
801 
802 	/*
803 	 * If no page tables were freed, we can skip sending IPIs to
804 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
805 	 * at the next context switch.
806 	 *
807 	 * However, if page tables are getting freed, we need to send the
808 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
809 	 * up on the new contents of what used to be page tables, while
810 	 * doing a speculative memory access.
811 	 */
812 	if (info->freed_tables)
813 		smp_call_function_many(cpumask, flush_tlb_func_remote,
814 			       (void *)info, 1);
815 	else
816 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
817 				(void *)info, 1, cpumask);
818 }
819 
820 void flush_tlb_others(const struct cpumask *cpumask,
821 		      const struct flush_tlb_info *info)
822 {
823 	__flush_tlb_others(cpumask, info);
824 }
825 
826 /*
827  * See Documentation/x86/tlb.rst for details.  We choose 33
828  * because it is large enough to cover the vast majority (at
829  * least 95%) of allocations, and is small enough that we are
830  * confident it will not cause too much overhead.  Each single
831  * flush is about 100 ns, so this caps the maximum overhead at
832  * _about_ 3,000 ns.
833  *
834  * This is in units of pages.
835  */
836 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
837 
838 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
839 
840 #ifdef CONFIG_DEBUG_VM
841 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
842 #endif
843 
844 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
845 			unsigned long start, unsigned long end,
846 			unsigned int stride_shift, bool freed_tables,
847 			u64 new_tlb_gen)
848 {
849 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
850 
851 #ifdef CONFIG_DEBUG_VM
852 	/*
853 	 * Ensure that the following code is non-reentrant and flush_tlb_info
854 	 * is not overwritten. This means no TLB flushing is initiated by
855 	 * interrupt handlers and machine-check exception handlers.
856 	 */
857 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
858 #endif
859 
860 	info->start		= start;
861 	info->end		= end;
862 	info->mm		= mm;
863 	info->stride_shift	= stride_shift;
864 	info->freed_tables	= freed_tables;
865 	info->new_tlb_gen	= new_tlb_gen;
866 
867 	return info;
868 }
869 
870 static inline void put_flush_tlb_info(void)
871 {
872 #ifdef CONFIG_DEBUG_VM
873 	/* Complete reentrency prevention checks */
874 	barrier();
875 	this_cpu_dec(flush_tlb_info_idx);
876 #endif
877 }
878 
879 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
880 				unsigned long end, unsigned int stride_shift,
881 				bool freed_tables)
882 {
883 	struct flush_tlb_info *info;
884 	u64 new_tlb_gen;
885 	int cpu;
886 
887 	cpu = get_cpu();
888 
889 	/* Should we flush just the requested range? */
890 	if ((end == TLB_FLUSH_ALL) ||
891 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
892 		start = 0;
893 		end = TLB_FLUSH_ALL;
894 	}
895 
896 	/* This is also a barrier that synchronizes with switch_mm(). */
897 	new_tlb_gen = inc_mm_tlb_gen(mm);
898 
899 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
900 				  new_tlb_gen);
901 
902 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
903 		lockdep_assert_irqs_enabled();
904 		local_irq_disable();
905 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
906 		local_irq_enable();
907 	}
908 
909 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
910 		flush_tlb_others(mm_cpumask(mm), info);
911 
912 	put_flush_tlb_info();
913 	put_cpu();
914 }
915 
916 
917 static void do_flush_tlb_all(void *info)
918 {
919 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
920 	__flush_tlb_all();
921 }
922 
923 void flush_tlb_all(void)
924 {
925 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
926 	on_each_cpu(do_flush_tlb_all, NULL, 1);
927 }
928 
929 static void do_kernel_range_flush(void *info)
930 {
931 	struct flush_tlb_info *f = info;
932 	unsigned long addr;
933 
934 	/* flush range by one by one 'invlpg' */
935 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
936 		flush_tlb_one_kernel(addr);
937 }
938 
939 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
940 {
941 	/* Balance as user space task's flush, a bit conservative */
942 	if (end == TLB_FLUSH_ALL ||
943 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
944 		on_each_cpu(do_flush_tlb_all, NULL, 1);
945 	} else {
946 		struct flush_tlb_info *info;
947 
948 		preempt_disable();
949 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
950 
951 		on_each_cpu(do_kernel_range_flush, info, 1);
952 
953 		put_flush_tlb_info();
954 		preempt_enable();
955 	}
956 }
957 
958 /*
959  * This can be used from process context to figure out what the value of
960  * CR3 is without needing to do a (slow) __read_cr3().
961  *
962  * It's intended to be used for code like KVM that sneakily changes CR3
963  * and needs to restore it.  It needs to be used very carefully.
964  */
965 unsigned long __get_current_cr3_fast(void)
966 {
967 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
968 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
969 
970 	/* For now, be very restrictive about when this can be called. */
971 	VM_WARN_ON(in_nmi() || preemptible());
972 
973 	VM_BUG_ON(cr3 != __read_cr3());
974 	return cr3;
975 }
976 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
977 
978 /*
979  * Flush one page in the kernel mapping
980  */
981 void flush_tlb_one_kernel(unsigned long addr)
982 {
983 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
984 
985 	/*
986 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
987 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
988 	 * use PCID if we also use global PTEs for the kernel mapping, and
989 	 * INVLPG flushes global translations across all address spaces.
990 	 *
991 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
992 	 * __flush_tlb_one_user() will flush the given address for the current
993 	 * kernel address space and for its usermode counterpart, but it does
994 	 * not flush it for other address spaces.
995 	 */
996 	flush_tlb_one_user(addr);
997 
998 	if (!static_cpu_has(X86_FEATURE_PTI))
999 		return;
1000 
1001 	/*
1002 	 * See above.  We need to propagate the flush to all other address
1003 	 * spaces.  In principle, we only need to propagate it to kernelmode
1004 	 * address spaces, but the extra bookkeeping we would need is not
1005 	 * worth it.
1006 	 */
1007 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1008 }
1009 
1010 /*
1011  * Flush one page in the user mapping
1012  */
1013 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1014 {
1015 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1016 
1017 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1018 
1019 	if (!static_cpu_has(X86_FEATURE_PTI))
1020 		return;
1021 
1022 	/*
1023 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1024 	 * Just use invalidate_user_asid() in case we are called early.
1025 	 */
1026 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1027 		invalidate_user_asid(loaded_mm_asid);
1028 	else
1029 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1030 }
1031 
1032 void flush_tlb_one_user(unsigned long addr)
1033 {
1034 	__flush_tlb_one_user(addr);
1035 }
1036 
1037 /*
1038  * Flush everything
1039  */
1040 STATIC_NOPV void native_flush_tlb_global(void)
1041 {
1042 	unsigned long cr4, flags;
1043 
1044 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1045 		/*
1046 		 * Using INVPCID is considerably faster than a pair of writes
1047 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1048 		 *
1049 		 * Note, this works with CR4.PCIDE=0 or 1.
1050 		 */
1051 		invpcid_flush_all();
1052 		return;
1053 	}
1054 
1055 	/*
1056 	 * Read-modify-write to CR4 - protect it from preemption and
1057 	 * from interrupts. (Use the raw variant because this code can
1058 	 * be called from deep inside debugging code.)
1059 	 */
1060 	raw_local_irq_save(flags);
1061 
1062 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
1063 	/* toggle PGE */
1064 	native_write_cr4(cr4 ^ X86_CR4_PGE);
1065 	/* write old PGE again and flush TLBs */
1066 	native_write_cr4(cr4);
1067 
1068 	raw_local_irq_restore(flags);
1069 }
1070 
1071 /*
1072  * Flush the entire current user mapping
1073  */
1074 STATIC_NOPV void native_flush_tlb_local(void)
1075 {
1076 	/*
1077 	 * Preemption or interrupts must be disabled to protect the access
1078 	 * to the per CPU variable and to prevent being preempted between
1079 	 * read_cr3() and write_cr3().
1080 	 */
1081 	WARN_ON_ONCE(preemptible());
1082 
1083 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1084 
1085 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1086 	native_write_cr3(__native_read_cr3());
1087 }
1088 
1089 void flush_tlb_local(void)
1090 {
1091 	__flush_tlb_local();
1092 }
1093 
1094 /*
1095  * Flush everything
1096  */
1097 void __flush_tlb_all(void)
1098 {
1099 	/*
1100 	 * This is to catch users with enabled preemption and the PGE feature
1101 	 * and don't trigger the warning in __native_flush_tlb().
1102 	 */
1103 	VM_WARN_ON_ONCE(preemptible());
1104 
1105 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1106 		__flush_tlb_global();
1107 	} else {
1108 		/*
1109 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1110 		 */
1111 		flush_tlb_local();
1112 	}
1113 }
1114 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1115 
1116 /*
1117  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1118  * This means that the 'struct flush_tlb_info' that describes which mappings to
1119  * flush is actually fixed. We therefore set a single fixed struct and use it in
1120  * arch_tlbbatch_flush().
1121  */
1122 static const struct flush_tlb_info full_flush_tlb_info = {
1123 	.mm = NULL,
1124 	.start = 0,
1125 	.end = TLB_FLUSH_ALL,
1126 };
1127 
1128 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1129 {
1130 	int cpu = get_cpu();
1131 
1132 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1133 		lockdep_assert_irqs_enabled();
1134 		local_irq_disable();
1135 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1136 		local_irq_enable();
1137 	}
1138 
1139 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1140 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1141 
1142 	cpumask_clear(&batch->cpumask);
1143 
1144 	put_cpu();
1145 }
1146 
1147 /*
1148  * Blindly accessing user memory from NMI context can be dangerous
1149  * if we're in the middle of switching the current user task or
1150  * switching the loaded mm.  It can also be dangerous if we
1151  * interrupted some kernel code that was temporarily using a
1152  * different mm.
1153  */
1154 bool nmi_uaccess_okay(void)
1155 {
1156 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1157 	struct mm_struct *current_mm = current->mm;
1158 
1159 	VM_WARN_ON_ONCE(!loaded_mm);
1160 
1161 	/*
1162 	 * The condition we want to check is
1163 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1164 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1165 	 * is supposed to be reasonably fast.
1166 	 *
1167 	 * Instead, we check the almost equivalent but somewhat conservative
1168 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1169 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1170 	 */
1171 	if (loaded_mm != current_mm)
1172 		return false;
1173 
1174 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1175 
1176 	return true;
1177 }
1178 
1179 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1180 			     size_t count, loff_t *ppos)
1181 {
1182 	char buf[32];
1183 	unsigned int len;
1184 
1185 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1186 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1187 }
1188 
1189 static ssize_t tlbflush_write_file(struct file *file,
1190 		 const char __user *user_buf, size_t count, loff_t *ppos)
1191 {
1192 	char buf[32];
1193 	ssize_t len;
1194 	int ceiling;
1195 
1196 	len = min(count, sizeof(buf) - 1);
1197 	if (copy_from_user(buf, user_buf, len))
1198 		return -EFAULT;
1199 
1200 	buf[len] = '\0';
1201 	if (kstrtoint(buf, 0, &ceiling))
1202 		return -EINVAL;
1203 
1204 	if (ceiling < 0)
1205 		return -EINVAL;
1206 
1207 	tlb_single_page_flush_ceiling = ceiling;
1208 	return count;
1209 }
1210 
1211 static const struct file_operations fops_tlbflush = {
1212 	.read = tlbflush_read_file,
1213 	.write = tlbflush_write_file,
1214 	.llseek = default_llseek,
1215 };
1216 
1217 static int __init create_tlb_single_page_flush_ceiling(void)
1218 {
1219 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1220 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1221 	return 0;
1222 }
1223 late_initcall(create_tlb_single_page_flush_ceiling);
1224