xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 
18 #include "mm_internal.h"
19 
20 #ifdef CONFIG_PARAVIRT
21 # define STATIC_NOPV
22 #else
23 # define STATIC_NOPV			static
24 # define __flush_tlb_local		native_flush_tlb_local
25 # define __flush_tlb_global		native_flush_tlb_global
26 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
27 # define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
28 #endif
29 
30 /*
31  *	TLB flushing, formerly SMP-only
32  *		c/o Linus Torvalds.
33  *
34  *	These mean you can really definitely utterly forget about
35  *	writing to user space from interrupts. (Its not allowed anyway).
36  *
37  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
38  *
39  *	More scalable flush, from Andi Kleen
40  *
41  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
42  */
43 
44 /*
45  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
46  * stored in cpu_tlb_state.last_user_mm_ibpb.
47  */
48 #define LAST_USER_MM_IBPB	0x1UL
49 
50 /*
51  * The x86 feature is called PCID (Process Context IDentifier). It is similar
52  * to what is traditionally called ASID on the RISC processors.
53  *
54  * We don't use the traditional ASID implementation, where each process/mm gets
55  * its own ASID and flush/restart when we run out of ASID space.
56  *
57  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
58  * that came by on this CPU, allowing cheaper switch_mm between processes on
59  * this CPU.
60  *
61  * We end up with different spaces for different things. To avoid confusion we
62  * use different names for each of them:
63  *
64  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
65  *         the canonical identifier for an mm
66  *
67  * kPCID - [1, TLB_NR_DYN_ASIDS]
68  *         the value we write into the PCID part of CR3; corresponds to the
69  *         ASID+1, because PCID 0 is special.
70  *
71  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
72  *         for KPTI each mm has two address spaces and thus needs two
73  *         PCID values, but we can still do with a single ASID denomination
74  *         for each mm. Corresponds to kPCID + 2048.
75  *
76  */
77 
78 /* There are 12 bits of space for ASIDS in CR3 */
79 #define CR3_HW_ASID_BITS		12
80 
81 /*
82  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
83  * user/kernel switches
84  */
85 #ifdef CONFIG_PAGE_TABLE_ISOLATION
86 # define PTI_CONSUMED_PCID_BITS	1
87 #else
88 # define PTI_CONSUMED_PCID_BITS	0
89 #endif
90 
91 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
92 
93 /*
94  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
95  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
96  * use by non-PCID-aware users.
97  */
98 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
99 
100 /*
101  * Given @asid, compute kPCID
102  */
103 static inline u16 kern_pcid(u16 asid)
104 {
105 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
106 
107 #ifdef CONFIG_PAGE_TABLE_ISOLATION
108 	/*
109 	 * Make sure that the dynamic ASID space does not confict with the
110 	 * bit we are using to switch between user and kernel ASIDs.
111 	 */
112 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
113 
114 	/*
115 	 * The ASID being passed in here should have respected the
116 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
117 	 */
118 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
119 #endif
120 	/*
121 	 * The dynamically-assigned ASIDs that get passed in are small
122 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
123 	 * so do not bother to clear it.
124 	 *
125 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
126 	 * PCID bits.  This serves two purposes.  It prevents a nasty
127 	 * situation in which PCID-unaware code saves CR3, loads some other
128 	 * value (with PCID == 0), and then restores CR3, thus corrupting
129 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
130 	 * that any bugs involving loading a PCID-enabled CR3 with
131 	 * CR4.PCIDE off will trigger deterministically.
132 	 */
133 	return asid + 1;
134 }
135 
136 /*
137  * Given @asid, compute uPCID
138  */
139 static inline u16 user_pcid(u16 asid)
140 {
141 	u16 ret = kern_pcid(asid);
142 #ifdef CONFIG_PAGE_TABLE_ISOLATION
143 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
144 #endif
145 	return ret;
146 }
147 
148 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
149 {
150 	if (static_cpu_has(X86_FEATURE_PCID)) {
151 		return __sme_pa(pgd) | kern_pcid(asid);
152 	} else {
153 		VM_WARN_ON_ONCE(asid != 0);
154 		return __sme_pa(pgd);
155 	}
156 }
157 
158 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
159 {
160 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
161 	/*
162 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
163 	 * might be called during early boot. This should work even after
164 	 * boot because all CPU's the have same capabilities:
165 	 */
166 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
167 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
168 }
169 
170 /*
171  * We get here when we do something requiring a TLB invalidation
172  * but could not go invalidate all of the contexts.  We do the
173  * necessary invalidation by clearing out the 'ctx_id' which
174  * forces a TLB flush when the context is loaded.
175  */
176 static void clear_asid_other(void)
177 {
178 	u16 asid;
179 
180 	/*
181 	 * This is only expected to be set if we have disabled
182 	 * kernel _PAGE_GLOBAL pages.
183 	 */
184 	if (!static_cpu_has(X86_FEATURE_PTI)) {
185 		WARN_ON_ONCE(1);
186 		return;
187 	}
188 
189 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
190 		/* Do not need to flush the current asid */
191 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
192 			continue;
193 		/*
194 		 * Make sure the next time we go to switch to
195 		 * this asid, we do a flush:
196 		 */
197 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
198 	}
199 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
200 }
201 
202 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
203 
204 
205 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
206 			    u16 *new_asid, bool *need_flush)
207 {
208 	u16 asid;
209 
210 	if (!static_cpu_has(X86_FEATURE_PCID)) {
211 		*new_asid = 0;
212 		*need_flush = true;
213 		return;
214 	}
215 
216 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
217 		clear_asid_other();
218 
219 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
220 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
221 		    next->context.ctx_id)
222 			continue;
223 
224 		*new_asid = asid;
225 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
226 			       next_tlb_gen);
227 		return;
228 	}
229 
230 	/*
231 	 * We don't currently own an ASID slot on this CPU.
232 	 * Allocate a slot.
233 	 */
234 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
235 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
236 		*new_asid = 0;
237 		this_cpu_write(cpu_tlbstate.next_asid, 1);
238 	}
239 	*need_flush = true;
240 }
241 
242 /*
243  * Given an ASID, flush the corresponding user ASID.  We can delay this
244  * until the next time we switch to it.
245  *
246  * See SWITCH_TO_USER_CR3.
247  */
248 static inline void invalidate_user_asid(u16 asid)
249 {
250 	/* There is no user ASID if address space separation is off */
251 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
252 		return;
253 
254 	/*
255 	 * We only have a single ASID if PCID is off and the CR3
256 	 * write will have flushed it.
257 	 */
258 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
259 		return;
260 
261 	if (!static_cpu_has(X86_FEATURE_PTI))
262 		return;
263 
264 	__set_bit(kern_pcid(asid),
265 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
266 }
267 
268 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
269 {
270 	unsigned long new_mm_cr3;
271 
272 	if (need_flush) {
273 		invalidate_user_asid(new_asid);
274 		new_mm_cr3 = build_cr3(pgdir, new_asid);
275 	} else {
276 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
277 	}
278 
279 	/*
280 	 * Caution: many callers of this function expect
281 	 * that load_cr3() is serializing and orders TLB
282 	 * fills with respect to the mm_cpumask writes.
283 	 */
284 	write_cr3(new_mm_cr3);
285 }
286 
287 void leave_mm(int cpu)
288 {
289 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
290 
291 	/*
292 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
293 	 * If so, our callers still expect us to flush the TLB, but there
294 	 * aren't any user TLB entries in init_mm to worry about.
295 	 *
296 	 * This needs to happen before any other sanity checks due to
297 	 * intel_idle's shenanigans.
298 	 */
299 	if (loaded_mm == &init_mm)
300 		return;
301 
302 	/* Warn if we're not lazy. */
303 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
304 
305 	switch_mm(NULL, &init_mm, NULL);
306 }
307 EXPORT_SYMBOL_GPL(leave_mm);
308 
309 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
310 	       struct task_struct *tsk)
311 {
312 	unsigned long flags;
313 
314 	local_irq_save(flags);
315 	switch_mm_irqs_off(prev, next, tsk);
316 	local_irq_restore(flags);
317 }
318 
319 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
320 {
321 	unsigned long next_tif = task_thread_info(next)->flags;
322 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
323 
324 	return (unsigned long)next->mm | ibpb;
325 }
326 
327 static void cond_ibpb(struct task_struct *next)
328 {
329 	if (!next || !next->mm)
330 		return;
331 
332 	/*
333 	 * Both, the conditional and the always IBPB mode use the mm
334 	 * pointer to avoid the IBPB when switching between tasks of the
335 	 * same process. Using the mm pointer instead of mm->context.ctx_id
336 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
337 	 * less impossible to control by an attacker. Aside of that it
338 	 * would only affect the first schedule so the theoretically
339 	 * exposed data is not really interesting.
340 	 */
341 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
342 		unsigned long prev_mm, next_mm;
343 
344 		/*
345 		 * This is a bit more complex than the always mode because
346 		 * it has to handle two cases:
347 		 *
348 		 * 1) Switch from a user space task (potential attacker)
349 		 *    which has TIF_SPEC_IB set to a user space task
350 		 *    (potential victim) which has TIF_SPEC_IB not set.
351 		 *
352 		 * 2) Switch from a user space task (potential attacker)
353 		 *    which has TIF_SPEC_IB not set to a user space task
354 		 *    (potential victim) which has TIF_SPEC_IB set.
355 		 *
356 		 * This could be done by unconditionally issuing IBPB when
357 		 * a task which has TIF_SPEC_IB set is either scheduled in
358 		 * or out. Though that results in two flushes when:
359 		 *
360 		 * - the same user space task is scheduled out and later
361 		 *   scheduled in again and only a kernel thread ran in
362 		 *   between.
363 		 *
364 		 * - a user space task belonging to the same process is
365 		 *   scheduled in after a kernel thread ran in between
366 		 *
367 		 * - a user space task belonging to the same process is
368 		 *   scheduled in immediately.
369 		 *
370 		 * Optimize this with reasonably small overhead for the
371 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
372 		 * pointer of the incoming task which is stored in
373 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
374 		 */
375 		next_mm = mm_mangle_tif_spec_ib(next);
376 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
377 
378 		/*
379 		 * Issue IBPB only if the mm's are different and one or
380 		 * both have the IBPB bit set.
381 		 */
382 		if (next_mm != prev_mm &&
383 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
384 			indirect_branch_prediction_barrier();
385 
386 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
387 	}
388 
389 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
390 		/*
391 		 * Only flush when switching to a user space task with a
392 		 * different context than the user space task which ran
393 		 * last on this CPU.
394 		 */
395 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
396 			indirect_branch_prediction_barrier();
397 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
398 		}
399 	}
400 }
401 
402 #ifdef CONFIG_PERF_EVENTS
403 static inline void cr4_update_pce_mm(struct mm_struct *mm)
404 {
405 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
406 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
407 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
408 		cr4_set_bits_irqsoff(X86_CR4_PCE);
409 	else
410 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
411 }
412 
413 void cr4_update_pce(void *ignored)
414 {
415 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
416 }
417 
418 #else
419 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
420 #endif
421 
422 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
423 			struct task_struct *tsk)
424 {
425 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
426 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
427 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
428 	unsigned cpu = smp_processor_id();
429 	u64 next_tlb_gen;
430 	bool need_flush;
431 	u16 new_asid;
432 
433 	/*
434 	 * NB: The scheduler will call us with prev == next when switching
435 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
436 	 * When this happens, we don't assume that CR3 (and hence
437 	 * cpu_tlbstate.loaded_mm) matches next.
438 	 *
439 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
440 	 */
441 
442 	/* We don't want flush_tlb_func_* to run concurrently with us. */
443 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
444 		WARN_ON_ONCE(!irqs_disabled());
445 
446 	/*
447 	 * Verify that CR3 is what we think it is.  This will catch
448 	 * hypothetical buggy code that directly switches to swapper_pg_dir
449 	 * without going through leave_mm() / switch_mm_irqs_off() or that
450 	 * does something like write_cr3(read_cr3_pa()).
451 	 *
452 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
453 	 * isn't free.
454 	 */
455 #ifdef CONFIG_DEBUG_VM
456 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
457 		/*
458 		 * If we were to BUG here, we'd be very likely to kill
459 		 * the system so hard that we don't see the call trace.
460 		 * Try to recover instead by ignoring the error and doing
461 		 * a global flush to minimize the chance of corruption.
462 		 *
463 		 * (This is far from being a fully correct recovery.
464 		 *  Architecturally, the CPU could prefetch something
465 		 *  back into an incorrect ASID slot and leave it there
466 		 *  to cause trouble down the road.  It's better than
467 		 *  nothing, though.)
468 		 */
469 		__flush_tlb_all();
470 	}
471 #endif
472 	this_cpu_write(cpu_tlbstate.is_lazy, false);
473 
474 	/*
475 	 * The membarrier system call requires a full memory barrier and
476 	 * core serialization before returning to user-space, after
477 	 * storing to rq->curr, when changing mm.  This is because
478 	 * membarrier() sends IPIs to all CPUs that are in the target mm
479 	 * to make them issue memory barriers.  However, if another CPU
480 	 * switches to/from the target mm concurrently with
481 	 * membarrier(), it can cause that CPU not to receive an IPI
482 	 * when it really should issue a memory barrier.  Writing to CR3
483 	 * provides that full memory barrier and core serializing
484 	 * instruction.
485 	 */
486 	if (real_prev == next) {
487 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
488 			   next->context.ctx_id);
489 
490 		/*
491 		 * Even in lazy TLB mode, the CPU should stay set in the
492 		 * mm_cpumask. The TLB shootdown code can figure out from
493 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
494 		 */
495 		if (WARN_ON_ONCE(real_prev != &init_mm &&
496 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
497 			cpumask_set_cpu(cpu, mm_cpumask(next));
498 
499 		/*
500 		 * If the CPU is not in lazy TLB mode, we are just switching
501 		 * from one thread in a process to another thread in the same
502 		 * process. No TLB flush required.
503 		 */
504 		if (!was_lazy)
505 			return;
506 
507 		/*
508 		 * Read the tlb_gen to check whether a flush is needed.
509 		 * If the TLB is up to date, just use it.
510 		 * The barrier synchronizes with the tlb_gen increment in
511 		 * the TLB shootdown code.
512 		 */
513 		smp_mb();
514 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
515 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
516 				next_tlb_gen)
517 			return;
518 
519 		/*
520 		 * TLB contents went out of date while we were in lazy
521 		 * mode. Fall through to the TLB switching code below.
522 		 */
523 		new_asid = prev_asid;
524 		need_flush = true;
525 	} else {
526 		/*
527 		 * Avoid user/user BTB poisoning by flushing the branch
528 		 * predictor when switching between processes. This stops
529 		 * one process from doing Spectre-v2 attacks on another.
530 		 */
531 		cond_ibpb(tsk);
532 
533 		/*
534 		 * Stop remote flushes for the previous mm.
535 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
536 		 * but the bitmap manipulation can cause cache line contention.
537 		 */
538 		if (real_prev != &init_mm) {
539 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
540 						mm_cpumask(real_prev)));
541 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
542 		}
543 
544 		/*
545 		 * Start remote flushes and then read tlb_gen.
546 		 */
547 		if (next != &init_mm)
548 			cpumask_set_cpu(cpu, mm_cpumask(next));
549 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
550 
551 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
552 
553 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
554 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
555 		barrier();
556 	}
557 
558 	if (need_flush) {
559 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
560 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
561 		load_new_mm_cr3(next->pgd, new_asid, true);
562 
563 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
564 	} else {
565 		/* The new ASID is already up to date. */
566 		load_new_mm_cr3(next->pgd, new_asid, false);
567 
568 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
569 	}
570 
571 	/* Make sure we write CR3 before loaded_mm. */
572 	barrier();
573 
574 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
575 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
576 
577 	if (next != real_prev) {
578 		cr4_update_pce_mm(next);
579 		switch_ldt(real_prev, next);
580 	}
581 }
582 
583 /*
584  * Please ignore the name of this function.  It should be called
585  * switch_to_kernel_thread().
586  *
587  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
588  * kernel thread or other context without an mm.  Acceptable implementations
589  * include doing nothing whatsoever, switching to init_mm, or various clever
590  * lazy tricks to try to minimize TLB flushes.
591  *
592  * The scheduler reserves the right to call enter_lazy_tlb() several times
593  * in a row.  It will notify us that we're going back to a real mm by
594  * calling switch_mm_irqs_off().
595  */
596 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
597 {
598 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
599 		return;
600 
601 	this_cpu_write(cpu_tlbstate.is_lazy, true);
602 }
603 
604 /*
605  * Call this when reinitializing a CPU.  It fixes the following potential
606  * problems:
607  *
608  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
609  *   because the CPU was taken down and came back up with CR3's PCID
610  *   bits clear.  CPU hotplug can do this.
611  *
612  * - The TLB contains junk in slots corresponding to inactive ASIDs.
613  *
614  * - The CPU went so far out to lunch that it may have missed a TLB
615  *   flush.
616  */
617 void initialize_tlbstate_and_flush(void)
618 {
619 	int i;
620 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
621 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
622 	unsigned long cr3 = __read_cr3();
623 
624 	/* Assert that CR3 already references the right mm. */
625 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
626 
627 	/*
628 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
629 	 * doesn't work like other CR4 bits because it can only be set from
630 	 * long mode.)
631 	 */
632 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
633 		!(cr4_read_shadow() & X86_CR4_PCIDE));
634 
635 	/* Force ASID 0 and force a TLB flush. */
636 	write_cr3(build_cr3(mm->pgd, 0));
637 
638 	/* Reinitialize tlbstate. */
639 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
640 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
641 	this_cpu_write(cpu_tlbstate.next_asid, 1);
642 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
643 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
644 
645 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
646 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
647 }
648 
649 /*
650  * flush_tlb_func_common()'s memory ordering requirement is that any
651  * TLB fills that happen after we flush the TLB are ordered after we
652  * read active_mm's tlb_gen.  We don't need any explicit barriers
653  * because all x86 flush operations are serializing and the
654  * atomic64_read operation won't be reordered by the compiler.
655  */
656 static void flush_tlb_func_common(const struct flush_tlb_info *f,
657 				  bool local, enum tlb_flush_reason reason)
658 {
659 	/*
660 	 * We have three different tlb_gen values in here.  They are:
661 	 *
662 	 * - mm_tlb_gen:     the latest generation.
663 	 * - local_tlb_gen:  the generation that this CPU has already caught
664 	 *                   up to.
665 	 * - f->new_tlb_gen: the generation that the requester of the flush
666 	 *                   wants us to catch up to.
667 	 */
668 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
669 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
670 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
671 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
672 
673 	/* This code cannot presently handle being reentered. */
674 	VM_WARN_ON(!irqs_disabled());
675 
676 	if (unlikely(loaded_mm == &init_mm))
677 		return;
678 
679 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
680 		   loaded_mm->context.ctx_id);
681 
682 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
683 		/*
684 		 * We're in lazy mode.  We need to at least flush our
685 		 * paging-structure cache to avoid speculatively reading
686 		 * garbage into our TLB.  Since switching to init_mm is barely
687 		 * slower than a minimal flush, just switch to init_mm.
688 		 *
689 		 * This should be rare, with native_flush_tlb_others skipping
690 		 * IPIs to lazy TLB mode CPUs.
691 		 */
692 		switch_mm_irqs_off(NULL, &init_mm, NULL);
693 		return;
694 	}
695 
696 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
697 		/*
698 		 * There's nothing to do: we're already up to date.  This can
699 		 * happen if two concurrent flushes happen -- the first flush to
700 		 * be handled can catch us all the way up, leaving no work for
701 		 * the second flush.
702 		 */
703 		trace_tlb_flush(reason, 0);
704 		return;
705 	}
706 
707 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
708 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
709 
710 	/*
711 	 * If we get to this point, we know that our TLB is out of date.
712 	 * This does not strictly imply that we need to flush (it's
713 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
714 	 * going to need to flush in the very near future, so we might
715 	 * as well get it over with.
716 	 *
717 	 * The only question is whether to do a full or partial flush.
718 	 *
719 	 * We do a partial flush if requested and two extra conditions
720 	 * are met:
721 	 *
722 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
723 	 *    we've always done all needed flushes to catch up to
724 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
725 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
726 	 *    us up to date for tlb_gen 3 is the partial flush we're
727 	 *    processing.
728 	 *
729 	 *    As an example of why this check is needed, suppose that there
730 	 *    are two concurrent flushes.  The first is a full flush that
731 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
732 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
733 	 *    processed on this CPU in reverse order, we'll see
734 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
735 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
736 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
737 	 *    1 without the full flush that's needed for tlb_gen 2.
738 	 *
739 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
740 	 *    Partial TLB flushes are not all that much cheaper than full TLB
741 	 *    flushes, so it seems unlikely that it would be a performance win
742 	 *    to do a partial flush if that won't bring our TLB fully up to
743 	 *    date.  By doing a full flush instead, we can increase
744 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
745 	 *    avoid another flush in the very near future.
746 	 */
747 	if (f->end != TLB_FLUSH_ALL &&
748 	    f->new_tlb_gen == local_tlb_gen + 1 &&
749 	    f->new_tlb_gen == mm_tlb_gen) {
750 		/* Partial flush */
751 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
752 		unsigned long addr = f->start;
753 
754 		while (addr < f->end) {
755 			flush_tlb_one_user(addr);
756 			addr += 1UL << f->stride_shift;
757 		}
758 		if (local)
759 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
760 		trace_tlb_flush(reason, nr_invalidate);
761 	} else {
762 		/* Full flush. */
763 		flush_tlb_local();
764 		if (local)
765 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
766 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
767 	}
768 
769 	/* Both paths above update our state to mm_tlb_gen. */
770 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
771 }
772 
773 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
774 {
775 	const struct flush_tlb_info *f = info;
776 
777 	flush_tlb_func_common(f, true, reason);
778 }
779 
780 static void flush_tlb_func_remote(void *info)
781 {
782 	const struct flush_tlb_info *f = info;
783 
784 	inc_irq_stat(irq_tlb_count);
785 
786 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
787 		return;
788 
789 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
790 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
791 }
792 
793 static bool tlb_is_not_lazy(int cpu, void *data)
794 {
795 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
796 }
797 
798 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
799 					 const struct flush_tlb_info *info)
800 {
801 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
802 	if (info->end == TLB_FLUSH_ALL)
803 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
804 	else
805 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
806 				(info->end - info->start) >> PAGE_SHIFT);
807 
808 	/*
809 	 * If no page tables were freed, we can skip sending IPIs to
810 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
811 	 * at the next context switch.
812 	 *
813 	 * However, if page tables are getting freed, we need to send the
814 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
815 	 * up on the new contents of what used to be page tables, while
816 	 * doing a speculative memory access.
817 	 */
818 	if (info->freed_tables)
819 		smp_call_function_many(cpumask, flush_tlb_func_remote,
820 			       (void *)info, 1);
821 	else
822 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
823 				(void *)info, 1, cpumask);
824 }
825 
826 void flush_tlb_others(const struct cpumask *cpumask,
827 		      const struct flush_tlb_info *info)
828 {
829 	__flush_tlb_others(cpumask, info);
830 }
831 
832 /*
833  * See Documentation/x86/tlb.rst for details.  We choose 33
834  * because it is large enough to cover the vast majority (at
835  * least 95%) of allocations, and is small enough that we are
836  * confident it will not cause too much overhead.  Each single
837  * flush is about 100 ns, so this caps the maximum overhead at
838  * _about_ 3,000 ns.
839  *
840  * This is in units of pages.
841  */
842 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
843 
844 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
845 
846 #ifdef CONFIG_DEBUG_VM
847 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
848 #endif
849 
850 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
851 			unsigned long start, unsigned long end,
852 			unsigned int stride_shift, bool freed_tables,
853 			u64 new_tlb_gen)
854 {
855 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
856 
857 #ifdef CONFIG_DEBUG_VM
858 	/*
859 	 * Ensure that the following code is non-reentrant and flush_tlb_info
860 	 * is not overwritten. This means no TLB flushing is initiated by
861 	 * interrupt handlers and machine-check exception handlers.
862 	 */
863 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
864 #endif
865 
866 	info->start		= start;
867 	info->end		= end;
868 	info->mm		= mm;
869 	info->stride_shift	= stride_shift;
870 	info->freed_tables	= freed_tables;
871 	info->new_tlb_gen	= new_tlb_gen;
872 
873 	return info;
874 }
875 
876 static inline void put_flush_tlb_info(void)
877 {
878 #ifdef CONFIG_DEBUG_VM
879 	/* Complete reentrency prevention checks */
880 	barrier();
881 	this_cpu_dec(flush_tlb_info_idx);
882 #endif
883 }
884 
885 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
886 				unsigned long end, unsigned int stride_shift,
887 				bool freed_tables)
888 {
889 	struct flush_tlb_info *info;
890 	u64 new_tlb_gen;
891 	int cpu;
892 
893 	cpu = get_cpu();
894 
895 	/* Should we flush just the requested range? */
896 	if ((end == TLB_FLUSH_ALL) ||
897 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
898 		start = 0;
899 		end = TLB_FLUSH_ALL;
900 	}
901 
902 	/* This is also a barrier that synchronizes with switch_mm(). */
903 	new_tlb_gen = inc_mm_tlb_gen(mm);
904 
905 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
906 				  new_tlb_gen);
907 
908 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
909 		lockdep_assert_irqs_enabled();
910 		local_irq_disable();
911 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
912 		local_irq_enable();
913 	}
914 
915 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
916 		flush_tlb_others(mm_cpumask(mm), info);
917 
918 	put_flush_tlb_info();
919 	put_cpu();
920 }
921 
922 
923 static void do_flush_tlb_all(void *info)
924 {
925 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
926 	__flush_tlb_all();
927 }
928 
929 void flush_tlb_all(void)
930 {
931 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
932 	on_each_cpu(do_flush_tlb_all, NULL, 1);
933 }
934 
935 static void do_kernel_range_flush(void *info)
936 {
937 	struct flush_tlb_info *f = info;
938 	unsigned long addr;
939 
940 	/* flush range by one by one 'invlpg' */
941 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
942 		flush_tlb_one_kernel(addr);
943 }
944 
945 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
946 {
947 	/* Balance as user space task's flush, a bit conservative */
948 	if (end == TLB_FLUSH_ALL ||
949 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
950 		on_each_cpu(do_flush_tlb_all, NULL, 1);
951 	} else {
952 		struct flush_tlb_info *info;
953 
954 		preempt_disable();
955 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
956 
957 		on_each_cpu(do_kernel_range_flush, info, 1);
958 
959 		put_flush_tlb_info();
960 		preempt_enable();
961 	}
962 }
963 
964 /*
965  * This can be used from process context to figure out what the value of
966  * CR3 is without needing to do a (slow) __read_cr3().
967  *
968  * It's intended to be used for code like KVM that sneakily changes CR3
969  * and needs to restore it.  It needs to be used very carefully.
970  */
971 unsigned long __get_current_cr3_fast(void)
972 {
973 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
974 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
975 
976 	/* For now, be very restrictive about when this can be called. */
977 	VM_WARN_ON(in_nmi() || preemptible());
978 
979 	VM_BUG_ON(cr3 != __read_cr3());
980 	return cr3;
981 }
982 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
983 
984 /*
985  * Flush one page in the kernel mapping
986  */
987 void flush_tlb_one_kernel(unsigned long addr)
988 {
989 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
990 
991 	/*
992 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
993 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
994 	 * use PCID if we also use global PTEs for the kernel mapping, and
995 	 * INVLPG flushes global translations across all address spaces.
996 	 *
997 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
998 	 * __flush_tlb_one_user() will flush the given address for the current
999 	 * kernel address space and for its usermode counterpart, but it does
1000 	 * not flush it for other address spaces.
1001 	 */
1002 	flush_tlb_one_user(addr);
1003 
1004 	if (!static_cpu_has(X86_FEATURE_PTI))
1005 		return;
1006 
1007 	/*
1008 	 * See above.  We need to propagate the flush to all other address
1009 	 * spaces.  In principle, we only need to propagate it to kernelmode
1010 	 * address spaces, but the extra bookkeeping we would need is not
1011 	 * worth it.
1012 	 */
1013 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1014 }
1015 
1016 /*
1017  * Flush one page in the user mapping
1018  */
1019 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1020 {
1021 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1022 
1023 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1024 
1025 	if (!static_cpu_has(X86_FEATURE_PTI))
1026 		return;
1027 
1028 	/*
1029 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1030 	 * Just use invalidate_user_asid() in case we are called early.
1031 	 */
1032 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1033 		invalidate_user_asid(loaded_mm_asid);
1034 	else
1035 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1036 }
1037 
1038 void flush_tlb_one_user(unsigned long addr)
1039 {
1040 	__flush_tlb_one_user(addr);
1041 }
1042 
1043 /*
1044  * Flush everything
1045  */
1046 STATIC_NOPV void native_flush_tlb_global(void)
1047 {
1048 	unsigned long cr4, flags;
1049 
1050 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1051 		/*
1052 		 * Using INVPCID is considerably faster than a pair of writes
1053 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1054 		 *
1055 		 * Note, this works with CR4.PCIDE=0 or 1.
1056 		 */
1057 		invpcid_flush_all();
1058 		return;
1059 	}
1060 
1061 	/*
1062 	 * Read-modify-write to CR4 - protect it from preemption and
1063 	 * from interrupts. (Use the raw variant because this code can
1064 	 * be called from deep inside debugging code.)
1065 	 */
1066 	raw_local_irq_save(flags);
1067 
1068 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
1069 	/* toggle PGE */
1070 	native_write_cr4(cr4 ^ X86_CR4_PGE);
1071 	/* write old PGE again and flush TLBs */
1072 	native_write_cr4(cr4);
1073 
1074 	raw_local_irq_restore(flags);
1075 }
1076 
1077 /*
1078  * Flush the entire current user mapping
1079  */
1080 STATIC_NOPV void native_flush_tlb_local(void)
1081 {
1082 	/*
1083 	 * Preemption or interrupts must be disabled to protect the access
1084 	 * to the per CPU variable and to prevent being preempted between
1085 	 * read_cr3() and write_cr3().
1086 	 */
1087 	WARN_ON_ONCE(preemptible());
1088 
1089 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1090 
1091 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1092 	native_write_cr3(__native_read_cr3());
1093 }
1094 
1095 void flush_tlb_local(void)
1096 {
1097 	__flush_tlb_local();
1098 }
1099 
1100 /*
1101  * Flush everything
1102  */
1103 void __flush_tlb_all(void)
1104 {
1105 	/*
1106 	 * This is to catch users with enabled preemption and the PGE feature
1107 	 * and don't trigger the warning in __native_flush_tlb().
1108 	 */
1109 	VM_WARN_ON_ONCE(preemptible());
1110 
1111 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1112 		__flush_tlb_global();
1113 	} else {
1114 		/*
1115 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1116 		 */
1117 		flush_tlb_local();
1118 	}
1119 }
1120 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1121 
1122 /*
1123  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1124  * This means that the 'struct flush_tlb_info' that describes which mappings to
1125  * flush is actually fixed. We therefore set a single fixed struct and use it in
1126  * arch_tlbbatch_flush().
1127  */
1128 static const struct flush_tlb_info full_flush_tlb_info = {
1129 	.mm = NULL,
1130 	.start = 0,
1131 	.end = TLB_FLUSH_ALL,
1132 };
1133 
1134 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1135 {
1136 	int cpu = get_cpu();
1137 
1138 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1139 		lockdep_assert_irqs_enabled();
1140 		local_irq_disable();
1141 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1142 		local_irq_enable();
1143 	}
1144 
1145 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1146 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1147 
1148 	cpumask_clear(&batch->cpumask);
1149 
1150 	put_cpu();
1151 }
1152 
1153 /*
1154  * Blindly accessing user memory from NMI context can be dangerous
1155  * if we're in the middle of switching the current user task or
1156  * switching the loaded mm.  It can also be dangerous if we
1157  * interrupted some kernel code that was temporarily using a
1158  * different mm.
1159  */
1160 bool nmi_uaccess_okay(void)
1161 {
1162 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1163 	struct mm_struct *current_mm = current->mm;
1164 
1165 	VM_WARN_ON_ONCE(!loaded_mm);
1166 
1167 	/*
1168 	 * The condition we want to check is
1169 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1170 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1171 	 * is supposed to be reasonably fast.
1172 	 *
1173 	 * Instead, we check the almost equivalent but somewhat conservative
1174 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1175 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1176 	 */
1177 	if (loaded_mm != current_mm)
1178 		return false;
1179 
1180 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1181 
1182 	return true;
1183 }
1184 
1185 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1186 			     size_t count, loff_t *ppos)
1187 {
1188 	char buf[32];
1189 	unsigned int len;
1190 
1191 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1192 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1193 }
1194 
1195 static ssize_t tlbflush_write_file(struct file *file,
1196 		 const char __user *user_buf, size_t count, loff_t *ppos)
1197 {
1198 	char buf[32];
1199 	ssize_t len;
1200 	int ceiling;
1201 
1202 	len = min(count, sizeof(buf) - 1);
1203 	if (copy_from_user(buf, user_buf, len))
1204 		return -EFAULT;
1205 
1206 	buf[len] = '\0';
1207 	if (kstrtoint(buf, 0, &ceiling))
1208 		return -EINVAL;
1209 
1210 	if (ceiling < 0)
1211 		return -EINVAL;
1212 
1213 	tlb_single_page_flush_ceiling = ceiling;
1214 	return count;
1215 }
1216 
1217 static const struct file_operations fops_tlbflush = {
1218 	.read = tlbflush_read_file,
1219 	.write = tlbflush_write_file,
1220 	.llseek = default_llseek,
1221 };
1222 
1223 static int __init create_tlb_single_page_flush_ceiling(void)
1224 {
1225 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1226 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1227 	return 0;
1228 }
1229 late_initcall(create_tlb_single_page_flush_ceiling);
1230