xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 4da722ca)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 void leave_mm(int cpu)
32 {
33 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34 
35 	/*
36 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37 	 * If so, our callers still expect us to flush the TLB, but there
38 	 * aren't any user TLB entries in init_mm to worry about.
39 	 *
40 	 * This needs to happen before any other sanity checks due to
41 	 * intel_idle's shenanigans.
42 	 */
43 	if (loaded_mm == &init_mm)
44 		return;
45 
46 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 		BUG();
48 
49 	switch_mm(NULL, &init_mm, NULL);
50 }
51 EXPORT_SYMBOL_GPL(leave_mm);
52 
53 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54 	       struct task_struct *tsk)
55 {
56 	unsigned long flags;
57 
58 	local_irq_save(flags);
59 	switch_mm_irqs_off(prev, next, tsk);
60 	local_irq_restore(flags);
61 }
62 
63 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64 			struct task_struct *tsk)
65 {
66 	unsigned cpu = smp_processor_id();
67 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
68 
69 	/*
70 	 * NB: The scheduler will call us with prev == next when
71 	 * switching from lazy TLB mode to normal mode if active_mm
72 	 * isn't changing.  When this happens, there is no guarantee
73 	 * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74 	 *
75 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76 	 */
77 
78 	this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
79 
80 	if (real_prev == next) {
81 		/*
82 		 * There's nothing to do: we always keep the per-mm control
83 		 * regs in sync with cpu_tlbstate.loaded_mm.  Just
84 		 * sanity-check mm_cpumask.
85 		 */
86 		if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87 			cpumask_set_cpu(cpu, mm_cpumask(next));
88 		return;
89 	}
90 
91 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
92 		/*
93 		 * If our current stack is in vmalloc space and isn't
94 		 * mapped in the new pgd, we'll double-fault.  Forcibly
95 		 * map it.
96 		 */
97 		unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
98 
99 		pgd_t *pgd = next->pgd + stack_pgd_index;
100 
101 		if (unlikely(pgd_none(*pgd)))
102 			set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103 	}
104 
105 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
106 
107 	WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108 	cpumask_set_cpu(cpu, mm_cpumask(next));
109 
110 	/*
111 	 * Re-load page tables.
112 	 *
113 	 * This logic has an ordering constraint:
114 	 *
115 	 *  CPU 0: Write to a PTE for 'next'
116 	 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
117 	 *  CPU 1: set bit 1 in next's mm_cpumask
118 	 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
119 	 *
120 	 * We need to prevent an outcome in which CPU 1 observes
121 	 * the new PTE value and CPU 0 observes bit 1 clear in
122 	 * mm_cpumask.  (If that occurs, then the IPI will never
123 	 * be sent, and CPU 0's TLB will contain a stale entry.)
124 	 *
125 	 * The bad outcome can occur if either CPU's load is
126 	 * reordered before that CPU's store, so both CPUs must
127 	 * execute full barriers to prevent this from happening.
128 	 *
129 	 * Thus, switch_mm needs a full barrier between the
130 	 * store to mm_cpumask and any operation that could load
131 	 * from next->pgd.  TLB fills are special and can happen
132 	 * due to instruction fetches or for no reason at all,
133 	 * and neither LOCK nor MFENCE orders them.
134 	 * Fortunately, load_cr3() is serializing and gives the
135 	 * ordering guarantee we need.
136 	 */
137 	load_cr3(next->pgd);
138 
139 	/*
140 	 * This gets called via leave_mm() in the idle path where RCU
141 	 * functions differently.  Tracing normally uses RCU, so we have to
142 	 * call the tracepoint specially here.
143 	 */
144 	trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145 
146 	/* Stop flush ipis for the previous mm */
147 	WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148 		     real_prev != &init_mm);
149 	cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150 
151 	/* Load per-mm CR4 and LDTR state */
152 	load_mm_cr4(next);
153 	switch_ldt(real_prev, next);
154 }
155 
156 static void flush_tlb_func_common(const struct flush_tlb_info *f,
157 				  bool local, enum tlb_flush_reason reason)
158 {
159 	/* This code cannot presently handle being reentered. */
160 	VM_WARN_ON(!irqs_disabled());
161 
162 	if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
163 		leave_mm(smp_processor_id());
164 		return;
165 	}
166 
167 	if (f->end == TLB_FLUSH_ALL) {
168 		local_flush_tlb();
169 		if (local)
170 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
171 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
172 	} else {
173 		unsigned long addr;
174 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
175 		addr = f->start;
176 		while (addr < f->end) {
177 			__flush_tlb_single(addr);
178 			addr += PAGE_SIZE;
179 		}
180 		if (local)
181 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
182 		trace_tlb_flush(reason, nr_pages);
183 	}
184 }
185 
186 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
187 {
188 	const struct flush_tlb_info *f = info;
189 
190 	flush_tlb_func_common(f, true, reason);
191 }
192 
193 static void flush_tlb_func_remote(void *info)
194 {
195 	const struct flush_tlb_info *f = info;
196 
197 	inc_irq_stat(irq_tlb_count);
198 
199 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
200 		return;
201 
202 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
203 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
204 }
205 
206 void native_flush_tlb_others(const struct cpumask *cpumask,
207 			     const struct flush_tlb_info *info)
208 {
209 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
210 	if (info->end == TLB_FLUSH_ALL)
211 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
212 	else
213 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
214 				(info->end - info->start) >> PAGE_SHIFT);
215 
216 	if (is_uv_system()) {
217 		unsigned int cpu;
218 
219 		cpu = smp_processor_id();
220 		cpumask = uv_flush_tlb_others(cpumask, info);
221 		if (cpumask)
222 			smp_call_function_many(cpumask, flush_tlb_func_remote,
223 					       (void *)info, 1);
224 		return;
225 	}
226 	smp_call_function_many(cpumask, flush_tlb_func_remote,
227 			       (void *)info, 1);
228 }
229 
230 /*
231  * See Documentation/x86/tlb.txt for details.  We choose 33
232  * because it is large enough to cover the vast majority (at
233  * least 95%) of allocations, and is small enough that we are
234  * confident it will not cause too much overhead.  Each single
235  * flush is about 100 ns, so this caps the maximum overhead at
236  * _about_ 3,000 ns.
237  *
238  * This is in units of pages.
239  */
240 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
241 
242 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
243 				unsigned long end, unsigned long vmflag)
244 {
245 	int cpu;
246 
247 	struct flush_tlb_info info = {
248 		.mm = mm,
249 	};
250 
251 	cpu = get_cpu();
252 
253 	/* Synchronize with switch_mm. */
254 	smp_mb();
255 
256 	/* Should we flush just the requested range? */
257 	if ((end != TLB_FLUSH_ALL) &&
258 	    !(vmflag & VM_HUGETLB) &&
259 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
260 		info.start = start;
261 		info.end = end;
262 	} else {
263 		info.start = 0UL;
264 		info.end = TLB_FLUSH_ALL;
265 	}
266 
267 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
268 		VM_WARN_ON(irqs_disabled());
269 		local_irq_disable();
270 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
271 		local_irq_enable();
272 	}
273 
274 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
275 		flush_tlb_others(mm_cpumask(mm), &info);
276 	put_cpu();
277 }
278 
279 
280 static void do_flush_tlb_all(void *info)
281 {
282 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
283 	__flush_tlb_all();
284 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
285 		leave_mm(smp_processor_id());
286 }
287 
288 void flush_tlb_all(void)
289 {
290 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
291 	on_each_cpu(do_flush_tlb_all, NULL, 1);
292 }
293 
294 static void do_kernel_range_flush(void *info)
295 {
296 	struct flush_tlb_info *f = info;
297 	unsigned long addr;
298 
299 	/* flush range by one by one 'invlpg' */
300 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
301 		__flush_tlb_single(addr);
302 }
303 
304 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
305 {
306 
307 	/* Balance as user space task's flush, a bit conservative */
308 	if (end == TLB_FLUSH_ALL ||
309 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
310 		on_each_cpu(do_flush_tlb_all, NULL, 1);
311 	} else {
312 		struct flush_tlb_info info;
313 		info.start = start;
314 		info.end = end;
315 		on_each_cpu(do_kernel_range_flush, &info, 1);
316 	}
317 }
318 
319 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
320 {
321 	struct flush_tlb_info info = {
322 		.mm = NULL,
323 		.start = 0UL,
324 		.end = TLB_FLUSH_ALL,
325 	};
326 
327 	int cpu = get_cpu();
328 
329 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
330 		VM_WARN_ON(irqs_disabled());
331 		local_irq_disable();
332 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
333 		local_irq_enable();
334 	}
335 
336 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
337 		flush_tlb_others(&batch->cpumask, &info);
338 	cpumask_clear(&batch->cpumask);
339 
340 	put_cpu();
341 }
342 
343 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
344 			     size_t count, loff_t *ppos)
345 {
346 	char buf[32];
347 	unsigned int len;
348 
349 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
350 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
351 }
352 
353 static ssize_t tlbflush_write_file(struct file *file,
354 		 const char __user *user_buf, size_t count, loff_t *ppos)
355 {
356 	char buf[32];
357 	ssize_t len;
358 	int ceiling;
359 
360 	len = min(count, sizeof(buf) - 1);
361 	if (copy_from_user(buf, user_buf, len))
362 		return -EFAULT;
363 
364 	buf[len] = '\0';
365 	if (kstrtoint(buf, 0, &ceiling))
366 		return -EINVAL;
367 
368 	if (ceiling < 0)
369 		return -EINVAL;
370 
371 	tlb_single_page_flush_ceiling = ceiling;
372 	return count;
373 }
374 
375 static const struct file_operations fops_tlbflush = {
376 	.read = tlbflush_read_file,
377 	.write = tlbflush_write_file,
378 	.llseek = default_llseek,
379 };
380 
381 static int __init create_tlb_single_page_flush_ceiling(void)
382 {
383 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
384 			    arch_debugfs_dir, NULL, &fops_tlbflush);
385 	return 0;
386 }
387 late_initcall(create_tlb_single_page_flush_ceiling);
388