xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 
14 #include <asm/tlbflush.h>
15 #include <asm/mmu_context.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/cache.h>
18 #include <asm/cacheflush.h>
19 #include <asm/apic.h>
20 #include <asm/perf_event.h>
21 
22 #include "mm_internal.h"
23 
24 #ifdef CONFIG_PARAVIRT
25 # define STATIC_NOPV
26 #else
27 # define STATIC_NOPV			static
28 # define __flush_tlb_local		native_flush_tlb_local
29 # define __flush_tlb_global		native_flush_tlb_global
30 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
31 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
32 #endif
33 
34 /*
35  *	TLB flushing, formerly SMP-only
36  *		c/o Linus Torvalds.
37  *
38  *	These mean you can really definitely utterly forget about
39  *	writing to user space from interrupts. (Its not allowed anyway).
40  *
41  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
42  *
43  *	More scalable flush, from Andi Kleen
44  *
45  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
46  */
47 
48 /*
49  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
50  * stored in cpu_tlb_state.last_user_mm_spec.
51  */
52 #define LAST_USER_MM_IBPB	0x1UL
53 #define LAST_USER_MM_L1D_FLUSH	0x2UL
54 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
55 
56 /* Bits to set when tlbstate and flush is (re)initialized */
57 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
58 
59 /*
60  * The x86 feature is called PCID (Process Context IDentifier). It is similar
61  * to what is traditionally called ASID on the RISC processors.
62  *
63  * We don't use the traditional ASID implementation, where each process/mm gets
64  * its own ASID and flush/restart when we run out of ASID space.
65  *
66  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
67  * that came by on this CPU, allowing cheaper switch_mm between processes on
68  * this CPU.
69  *
70  * We end up with different spaces for different things. To avoid confusion we
71  * use different names for each of them:
72  *
73  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
74  *         the canonical identifier for an mm
75  *
76  * kPCID - [1, TLB_NR_DYN_ASIDS]
77  *         the value we write into the PCID part of CR3; corresponds to the
78  *         ASID+1, because PCID 0 is special.
79  *
80  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
81  *         for KPTI each mm has two address spaces and thus needs two
82  *         PCID values, but we can still do with a single ASID denomination
83  *         for each mm. Corresponds to kPCID + 2048.
84  *
85  */
86 
87 /* There are 12 bits of space for ASIDS in CR3 */
88 #define CR3_HW_ASID_BITS		12
89 
90 /*
91  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
92  * user/kernel switches
93  */
94 #ifdef CONFIG_PAGE_TABLE_ISOLATION
95 # define PTI_CONSUMED_PCID_BITS	1
96 #else
97 # define PTI_CONSUMED_PCID_BITS	0
98 #endif
99 
100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
101 
102 /*
103  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
104  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
105  * use by non-PCID-aware users.
106  */
107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
108 
109 /*
110  * Given @asid, compute kPCID
111  */
112 static inline u16 kern_pcid(u16 asid)
113 {
114 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
115 
116 #ifdef CONFIG_PAGE_TABLE_ISOLATION
117 	/*
118 	 * Make sure that the dynamic ASID space does not conflict with the
119 	 * bit we are using to switch between user and kernel ASIDs.
120 	 */
121 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
122 
123 	/*
124 	 * The ASID being passed in here should have respected the
125 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
126 	 */
127 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
128 #endif
129 	/*
130 	 * The dynamically-assigned ASIDs that get passed in are small
131 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
132 	 * so do not bother to clear it.
133 	 *
134 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
135 	 * PCID bits.  This serves two purposes.  It prevents a nasty
136 	 * situation in which PCID-unaware code saves CR3, loads some other
137 	 * value (with PCID == 0), and then restores CR3, thus corrupting
138 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
139 	 * that any bugs involving loading a PCID-enabled CR3 with
140 	 * CR4.PCIDE off will trigger deterministically.
141 	 */
142 	return asid + 1;
143 }
144 
145 /*
146  * Given @asid, compute uPCID
147  */
148 static inline u16 user_pcid(u16 asid)
149 {
150 	u16 ret = kern_pcid(asid);
151 #ifdef CONFIG_PAGE_TABLE_ISOLATION
152 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
153 #endif
154 	return ret;
155 }
156 
157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
158 {
159 	if (static_cpu_has(X86_FEATURE_PCID)) {
160 		return __sme_pa(pgd) | kern_pcid(asid);
161 	} else {
162 		VM_WARN_ON_ONCE(asid != 0);
163 		return __sme_pa(pgd);
164 	}
165 }
166 
167 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
168 {
169 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
170 	/*
171 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
172 	 * might be called during early boot. This should work even after
173 	 * boot because all CPU's the have same capabilities:
174 	 */
175 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
176 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
177 }
178 
179 /*
180  * We get here when we do something requiring a TLB invalidation
181  * but could not go invalidate all of the contexts.  We do the
182  * necessary invalidation by clearing out the 'ctx_id' which
183  * forces a TLB flush when the context is loaded.
184  */
185 static void clear_asid_other(void)
186 {
187 	u16 asid;
188 
189 	/*
190 	 * This is only expected to be set if we have disabled
191 	 * kernel _PAGE_GLOBAL pages.
192 	 */
193 	if (!static_cpu_has(X86_FEATURE_PTI)) {
194 		WARN_ON_ONCE(1);
195 		return;
196 	}
197 
198 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
199 		/* Do not need to flush the current asid */
200 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
201 			continue;
202 		/*
203 		 * Make sure the next time we go to switch to
204 		 * this asid, we do a flush:
205 		 */
206 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
207 	}
208 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
209 }
210 
211 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
212 
213 
214 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
215 			    u16 *new_asid, bool *need_flush)
216 {
217 	u16 asid;
218 
219 	if (!static_cpu_has(X86_FEATURE_PCID)) {
220 		*new_asid = 0;
221 		*need_flush = true;
222 		return;
223 	}
224 
225 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
226 		clear_asid_other();
227 
228 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
229 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
230 		    next->context.ctx_id)
231 			continue;
232 
233 		*new_asid = asid;
234 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
235 			       next_tlb_gen);
236 		return;
237 	}
238 
239 	/*
240 	 * We don't currently own an ASID slot on this CPU.
241 	 * Allocate a slot.
242 	 */
243 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
244 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
245 		*new_asid = 0;
246 		this_cpu_write(cpu_tlbstate.next_asid, 1);
247 	}
248 	*need_flush = true;
249 }
250 
251 /*
252  * Given an ASID, flush the corresponding user ASID.  We can delay this
253  * until the next time we switch to it.
254  *
255  * See SWITCH_TO_USER_CR3.
256  */
257 static inline void invalidate_user_asid(u16 asid)
258 {
259 	/* There is no user ASID if address space separation is off */
260 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
261 		return;
262 
263 	/*
264 	 * We only have a single ASID if PCID is off and the CR3
265 	 * write will have flushed it.
266 	 */
267 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
268 		return;
269 
270 	if (!static_cpu_has(X86_FEATURE_PTI))
271 		return;
272 
273 	__set_bit(kern_pcid(asid),
274 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
275 }
276 
277 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
278 {
279 	unsigned long new_mm_cr3;
280 
281 	if (need_flush) {
282 		invalidate_user_asid(new_asid);
283 		new_mm_cr3 = build_cr3(pgdir, new_asid);
284 	} else {
285 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
286 	}
287 
288 	/*
289 	 * Caution: many callers of this function expect
290 	 * that load_cr3() is serializing and orders TLB
291 	 * fills with respect to the mm_cpumask writes.
292 	 */
293 	write_cr3(new_mm_cr3);
294 }
295 
296 void leave_mm(int cpu)
297 {
298 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
299 
300 	/*
301 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
302 	 * If so, our callers still expect us to flush the TLB, but there
303 	 * aren't any user TLB entries in init_mm to worry about.
304 	 *
305 	 * This needs to happen before any other sanity checks due to
306 	 * intel_idle's shenanigans.
307 	 */
308 	if (loaded_mm == &init_mm)
309 		return;
310 
311 	/* Warn if we're not lazy. */
312 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
313 
314 	switch_mm(NULL, &init_mm, NULL);
315 }
316 EXPORT_SYMBOL_GPL(leave_mm);
317 
318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319 	       struct task_struct *tsk)
320 {
321 	unsigned long flags;
322 
323 	local_irq_save(flags);
324 	switch_mm_irqs_off(prev, next, tsk);
325 	local_irq_restore(flags);
326 }
327 
328 /*
329  * Invoked from return to user/guest by a task that opted-in to L1D
330  * flushing but ended up running on an SMT enabled core due to wrong
331  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
332  * contract which this task requested.
333  */
334 static void l1d_flush_force_sigbus(struct callback_head *ch)
335 {
336 	force_sig(SIGBUS);
337 }
338 
339 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
340 				struct task_struct *next)
341 {
342 	/* Flush L1D if the outgoing task requests it */
343 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
344 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
345 
346 	/* Check whether the incoming task opted in for L1D flush */
347 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
348 		return;
349 
350 	/*
351 	 * Validate that it is not running on an SMT sibling as this would
352 	 * make the excercise pointless because the siblings share L1D. If
353 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
354 	 * user/guest
355 	 */
356 	if (this_cpu_read(cpu_info.smt_active)) {
357 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
358 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
359 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
360 	}
361 }
362 
363 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
364 {
365 	unsigned long next_tif = read_task_thread_flags(next);
366 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
367 
368 	/*
369 	 * Ensure that the bit shift above works as expected and the two flags
370 	 * end up in bit 0 and 1.
371 	 */
372 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
373 
374 	return (unsigned long)next->mm | spec_bits;
375 }
376 
377 static void cond_mitigation(struct task_struct *next)
378 {
379 	unsigned long prev_mm, next_mm;
380 
381 	if (!next || !next->mm)
382 		return;
383 
384 	next_mm = mm_mangle_tif_spec_bits(next);
385 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
386 
387 	/*
388 	 * Avoid user/user BTB poisoning by flushing the branch predictor
389 	 * when switching between processes. This stops one process from
390 	 * doing Spectre-v2 attacks on another.
391 	 *
392 	 * Both, the conditional and the always IBPB mode use the mm
393 	 * pointer to avoid the IBPB when switching between tasks of the
394 	 * same process. Using the mm pointer instead of mm->context.ctx_id
395 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
396 	 * less impossible to control by an attacker. Aside of that it
397 	 * would only affect the first schedule so the theoretically
398 	 * exposed data is not really interesting.
399 	 */
400 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
401 		/*
402 		 * This is a bit more complex than the always mode because
403 		 * it has to handle two cases:
404 		 *
405 		 * 1) Switch from a user space task (potential attacker)
406 		 *    which has TIF_SPEC_IB set to a user space task
407 		 *    (potential victim) which has TIF_SPEC_IB not set.
408 		 *
409 		 * 2) Switch from a user space task (potential attacker)
410 		 *    which has TIF_SPEC_IB not set to a user space task
411 		 *    (potential victim) which has TIF_SPEC_IB set.
412 		 *
413 		 * This could be done by unconditionally issuing IBPB when
414 		 * a task which has TIF_SPEC_IB set is either scheduled in
415 		 * or out. Though that results in two flushes when:
416 		 *
417 		 * - the same user space task is scheduled out and later
418 		 *   scheduled in again and only a kernel thread ran in
419 		 *   between.
420 		 *
421 		 * - a user space task belonging to the same process is
422 		 *   scheduled in after a kernel thread ran in between
423 		 *
424 		 * - a user space task belonging to the same process is
425 		 *   scheduled in immediately.
426 		 *
427 		 * Optimize this with reasonably small overhead for the
428 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
429 		 * pointer of the incoming task which is stored in
430 		 * cpu_tlbstate.last_user_mm_spec for comparison.
431 		 *
432 		 * Issue IBPB only if the mm's are different and one or
433 		 * both have the IBPB bit set.
434 		 */
435 		if (next_mm != prev_mm &&
436 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
437 			indirect_branch_prediction_barrier();
438 	}
439 
440 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
441 		/*
442 		 * Only flush when switching to a user space task with a
443 		 * different context than the user space task which ran
444 		 * last on this CPU.
445 		 */
446 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
447 					(unsigned long)next->mm)
448 			indirect_branch_prediction_barrier();
449 	}
450 
451 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
452 		/*
453 		 * Flush L1D when the outgoing task requested it and/or
454 		 * check whether the incoming task requested L1D flushing
455 		 * and ended up on an SMT sibling.
456 		 */
457 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
458 			l1d_flush_evaluate(prev_mm, next_mm, next);
459 	}
460 
461 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
462 }
463 
464 #ifdef CONFIG_PERF_EVENTS
465 static inline void cr4_update_pce_mm(struct mm_struct *mm)
466 {
467 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
468 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
469 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
470 		/*
471 		 * Clear the existing dirty counters to
472 		 * prevent the leak for an RDPMC task.
473 		 */
474 		perf_clear_dirty_counters();
475 		cr4_set_bits_irqsoff(X86_CR4_PCE);
476 	} else
477 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
478 }
479 
480 void cr4_update_pce(void *ignored)
481 {
482 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
483 }
484 
485 #else
486 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
487 #endif
488 
489 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
490 			struct task_struct *tsk)
491 {
492 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
493 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
494 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
495 	unsigned cpu = smp_processor_id();
496 	u64 next_tlb_gen;
497 	bool need_flush;
498 	u16 new_asid;
499 
500 	/*
501 	 * NB: The scheduler will call us with prev == next when switching
502 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
503 	 * When this happens, we don't assume that CR3 (and hence
504 	 * cpu_tlbstate.loaded_mm) matches next.
505 	 *
506 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
507 	 */
508 
509 	/* We don't want flush_tlb_func() to run concurrently with us. */
510 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
511 		WARN_ON_ONCE(!irqs_disabled());
512 
513 	/*
514 	 * Verify that CR3 is what we think it is.  This will catch
515 	 * hypothetical buggy code that directly switches to swapper_pg_dir
516 	 * without going through leave_mm() / switch_mm_irqs_off() or that
517 	 * does something like write_cr3(read_cr3_pa()).
518 	 *
519 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
520 	 * isn't free.
521 	 */
522 #ifdef CONFIG_DEBUG_VM
523 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
524 		/*
525 		 * If we were to BUG here, we'd be very likely to kill
526 		 * the system so hard that we don't see the call trace.
527 		 * Try to recover instead by ignoring the error and doing
528 		 * a global flush to minimize the chance of corruption.
529 		 *
530 		 * (This is far from being a fully correct recovery.
531 		 *  Architecturally, the CPU could prefetch something
532 		 *  back into an incorrect ASID slot and leave it there
533 		 *  to cause trouble down the road.  It's better than
534 		 *  nothing, though.)
535 		 */
536 		__flush_tlb_all();
537 	}
538 #endif
539 	if (was_lazy)
540 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
541 
542 	/*
543 	 * The membarrier system call requires a full memory barrier and
544 	 * core serialization before returning to user-space, after
545 	 * storing to rq->curr, when changing mm.  This is because
546 	 * membarrier() sends IPIs to all CPUs that are in the target mm
547 	 * to make them issue memory barriers.  However, if another CPU
548 	 * switches to/from the target mm concurrently with
549 	 * membarrier(), it can cause that CPU not to receive an IPI
550 	 * when it really should issue a memory barrier.  Writing to CR3
551 	 * provides that full memory barrier and core serializing
552 	 * instruction.
553 	 */
554 	if (real_prev == next) {
555 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
556 			   next->context.ctx_id);
557 
558 		/*
559 		 * Even in lazy TLB mode, the CPU should stay set in the
560 		 * mm_cpumask. The TLB shootdown code can figure out from
561 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
562 		 */
563 		if (WARN_ON_ONCE(real_prev != &init_mm &&
564 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
565 			cpumask_set_cpu(cpu, mm_cpumask(next));
566 
567 		/*
568 		 * If the CPU is not in lazy TLB mode, we are just switching
569 		 * from one thread in a process to another thread in the same
570 		 * process. No TLB flush required.
571 		 */
572 		if (!was_lazy)
573 			return;
574 
575 		/*
576 		 * Read the tlb_gen to check whether a flush is needed.
577 		 * If the TLB is up to date, just use it.
578 		 * The barrier synchronizes with the tlb_gen increment in
579 		 * the TLB shootdown code.
580 		 */
581 		smp_mb();
582 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
583 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
584 				next_tlb_gen)
585 			return;
586 
587 		/*
588 		 * TLB contents went out of date while we were in lazy
589 		 * mode. Fall through to the TLB switching code below.
590 		 */
591 		new_asid = prev_asid;
592 		need_flush = true;
593 	} else {
594 		/*
595 		 * Apply process to process speculation vulnerability
596 		 * mitigations if applicable.
597 		 */
598 		cond_mitigation(tsk);
599 
600 		/*
601 		 * Stop remote flushes for the previous mm.
602 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
603 		 * but the bitmap manipulation can cause cache line contention.
604 		 */
605 		if (real_prev != &init_mm) {
606 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
607 						mm_cpumask(real_prev)));
608 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
609 		}
610 
611 		/*
612 		 * Start remote flushes and then read tlb_gen.
613 		 */
614 		if (next != &init_mm)
615 			cpumask_set_cpu(cpu, mm_cpumask(next));
616 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
617 
618 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
619 
620 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
621 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
622 		barrier();
623 	}
624 
625 	if (need_flush) {
626 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
627 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
628 		load_new_mm_cr3(next->pgd, new_asid, true);
629 
630 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
631 	} else {
632 		/* The new ASID is already up to date. */
633 		load_new_mm_cr3(next->pgd, new_asid, false);
634 
635 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
636 	}
637 
638 	/* Make sure we write CR3 before loaded_mm. */
639 	barrier();
640 
641 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
642 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
643 
644 	if (next != real_prev) {
645 		cr4_update_pce_mm(next);
646 		switch_ldt(real_prev, next);
647 	}
648 }
649 
650 /*
651  * Please ignore the name of this function.  It should be called
652  * switch_to_kernel_thread().
653  *
654  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
655  * kernel thread or other context without an mm.  Acceptable implementations
656  * include doing nothing whatsoever, switching to init_mm, or various clever
657  * lazy tricks to try to minimize TLB flushes.
658  *
659  * The scheduler reserves the right to call enter_lazy_tlb() several times
660  * in a row.  It will notify us that we're going back to a real mm by
661  * calling switch_mm_irqs_off().
662  */
663 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
664 {
665 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
666 		return;
667 
668 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
669 }
670 
671 /*
672  * Call this when reinitializing a CPU.  It fixes the following potential
673  * problems:
674  *
675  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
676  *   because the CPU was taken down and came back up with CR3's PCID
677  *   bits clear.  CPU hotplug can do this.
678  *
679  * - The TLB contains junk in slots corresponding to inactive ASIDs.
680  *
681  * - The CPU went so far out to lunch that it may have missed a TLB
682  *   flush.
683  */
684 void initialize_tlbstate_and_flush(void)
685 {
686 	int i;
687 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
688 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
689 	unsigned long cr3 = __read_cr3();
690 
691 	/* Assert that CR3 already references the right mm. */
692 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
693 
694 	/*
695 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
696 	 * doesn't work like other CR4 bits because it can only be set from
697 	 * long mode.)
698 	 */
699 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
700 		!(cr4_read_shadow() & X86_CR4_PCIDE));
701 
702 	/* Force ASID 0 and force a TLB flush. */
703 	write_cr3(build_cr3(mm->pgd, 0));
704 
705 	/* Reinitialize tlbstate. */
706 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
707 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
708 	this_cpu_write(cpu_tlbstate.next_asid, 1);
709 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
710 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
711 
712 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
713 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
714 }
715 
716 /*
717  * flush_tlb_func()'s memory ordering requirement is that any
718  * TLB fills that happen after we flush the TLB are ordered after we
719  * read active_mm's tlb_gen.  We don't need any explicit barriers
720  * because all x86 flush operations are serializing and the
721  * atomic64_read operation won't be reordered by the compiler.
722  */
723 static void flush_tlb_func(void *info)
724 {
725 	/*
726 	 * We have three different tlb_gen values in here.  They are:
727 	 *
728 	 * - mm_tlb_gen:     the latest generation.
729 	 * - local_tlb_gen:  the generation that this CPU has already caught
730 	 *                   up to.
731 	 * - f->new_tlb_gen: the generation that the requester of the flush
732 	 *                   wants us to catch up to.
733 	 */
734 	const struct flush_tlb_info *f = info;
735 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
736 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
737 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
738 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
739 	bool local = smp_processor_id() == f->initiating_cpu;
740 	unsigned long nr_invalidate = 0;
741 
742 	/* This code cannot presently handle being reentered. */
743 	VM_WARN_ON(!irqs_disabled());
744 
745 	if (!local) {
746 		inc_irq_stat(irq_tlb_count);
747 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
748 
749 		/* Can only happen on remote CPUs */
750 		if (f->mm && f->mm != loaded_mm)
751 			return;
752 	}
753 
754 	if (unlikely(loaded_mm == &init_mm))
755 		return;
756 
757 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
758 		   loaded_mm->context.ctx_id);
759 
760 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
761 		/*
762 		 * We're in lazy mode.  We need to at least flush our
763 		 * paging-structure cache to avoid speculatively reading
764 		 * garbage into our TLB.  Since switching to init_mm is barely
765 		 * slower than a minimal flush, just switch to init_mm.
766 		 *
767 		 * This should be rare, with native_flush_tlb_multi() skipping
768 		 * IPIs to lazy TLB mode CPUs.
769 		 */
770 		switch_mm_irqs_off(NULL, &init_mm, NULL);
771 		return;
772 	}
773 
774 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
775 		/*
776 		 * There's nothing to do: we're already up to date.  This can
777 		 * happen if two concurrent flushes happen -- the first flush to
778 		 * be handled can catch us all the way up, leaving no work for
779 		 * the second flush.
780 		 */
781 		goto done;
782 	}
783 
784 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
785 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
786 
787 	/*
788 	 * If we get to this point, we know that our TLB is out of date.
789 	 * This does not strictly imply that we need to flush (it's
790 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
791 	 * going to need to flush in the very near future, so we might
792 	 * as well get it over with.
793 	 *
794 	 * The only question is whether to do a full or partial flush.
795 	 *
796 	 * We do a partial flush if requested and two extra conditions
797 	 * are met:
798 	 *
799 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
800 	 *    we've always done all needed flushes to catch up to
801 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
802 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
803 	 *    us up to date for tlb_gen 3 is the partial flush we're
804 	 *    processing.
805 	 *
806 	 *    As an example of why this check is needed, suppose that there
807 	 *    are two concurrent flushes.  The first is a full flush that
808 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
809 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
810 	 *    processed on this CPU in reverse order, we'll see
811 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
812 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
813 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
814 	 *    1 without the full flush that's needed for tlb_gen 2.
815 	 *
816 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
817 	 *    Partial TLB flushes are not all that much cheaper than full TLB
818 	 *    flushes, so it seems unlikely that it would be a performance win
819 	 *    to do a partial flush if that won't bring our TLB fully up to
820 	 *    date.  By doing a full flush instead, we can increase
821 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
822 	 *    avoid another flush in the very near future.
823 	 */
824 	if (f->end != TLB_FLUSH_ALL &&
825 	    f->new_tlb_gen == local_tlb_gen + 1 &&
826 	    f->new_tlb_gen == mm_tlb_gen) {
827 		/* Partial flush */
828 		unsigned long addr = f->start;
829 
830 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
831 
832 		while (addr < f->end) {
833 			flush_tlb_one_user(addr);
834 			addr += 1UL << f->stride_shift;
835 		}
836 		if (local)
837 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
838 	} else {
839 		/* Full flush. */
840 		nr_invalidate = TLB_FLUSH_ALL;
841 
842 		flush_tlb_local();
843 		if (local)
844 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
845 	}
846 
847 	/* Both paths above update our state to mm_tlb_gen. */
848 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
849 
850 	/* Tracing is done in a unified manner to reduce the code size */
851 done:
852 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
853 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
854 						  TLB_LOCAL_MM_SHOOTDOWN,
855 			nr_invalidate);
856 }
857 
858 static bool tlb_is_not_lazy(int cpu, void *data)
859 {
860 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
861 }
862 
863 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
864 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
865 
866 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
867 					 const struct flush_tlb_info *info)
868 {
869 	/*
870 	 * Do accounting and tracing. Note that there are (and have always been)
871 	 * cases in which a remote TLB flush will be traced, but eventually
872 	 * would not happen.
873 	 */
874 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
875 	if (info->end == TLB_FLUSH_ALL)
876 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
877 	else
878 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
879 				(info->end - info->start) >> PAGE_SHIFT);
880 
881 	/*
882 	 * If no page tables were freed, we can skip sending IPIs to
883 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
884 	 * at the next context switch.
885 	 *
886 	 * However, if page tables are getting freed, we need to send the
887 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
888 	 * up on the new contents of what used to be page tables, while
889 	 * doing a speculative memory access.
890 	 */
891 	if (info->freed_tables)
892 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
893 	else
894 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
895 				(void *)info, 1, cpumask);
896 }
897 
898 void flush_tlb_multi(const struct cpumask *cpumask,
899 		      const struct flush_tlb_info *info)
900 {
901 	__flush_tlb_multi(cpumask, info);
902 }
903 
904 /*
905  * See Documentation/x86/tlb.rst for details.  We choose 33
906  * because it is large enough to cover the vast majority (at
907  * least 95%) of allocations, and is small enough that we are
908  * confident it will not cause too much overhead.  Each single
909  * flush is about 100 ns, so this caps the maximum overhead at
910  * _about_ 3,000 ns.
911  *
912  * This is in units of pages.
913  */
914 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
915 
916 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
917 
918 #ifdef CONFIG_DEBUG_VM
919 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
920 #endif
921 
922 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
923 			unsigned long start, unsigned long end,
924 			unsigned int stride_shift, bool freed_tables,
925 			u64 new_tlb_gen)
926 {
927 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
928 
929 #ifdef CONFIG_DEBUG_VM
930 	/*
931 	 * Ensure that the following code is non-reentrant and flush_tlb_info
932 	 * is not overwritten. This means no TLB flushing is initiated by
933 	 * interrupt handlers and machine-check exception handlers.
934 	 */
935 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
936 #endif
937 
938 	info->start		= start;
939 	info->end		= end;
940 	info->mm		= mm;
941 	info->stride_shift	= stride_shift;
942 	info->freed_tables	= freed_tables;
943 	info->new_tlb_gen	= new_tlb_gen;
944 	info->initiating_cpu	= smp_processor_id();
945 
946 	return info;
947 }
948 
949 static void put_flush_tlb_info(void)
950 {
951 #ifdef CONFIG_DEBUG_VM
952 	/* Complete reentrancy prevention checks */
953 	barrier();
954 	this_cpu_dec(flush_tlb_info_idx);
955 #endif
956 }
957 
958 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
959 				unsigned long end, unsigned int stride_shift,
960 				bool freed_tables)
961 {
962 	struct flush_tlb_info *info;
963 	u64 new_tlb_gen;
964 	int cpu;
965 
966 	cpu = get_cpu();
967 
968 	/* Should we flush just the requested range? */
969 	if ((end == TLB_FLUSH_ALL) ||
970 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
971 		start = 0;
972 		end = TLB_FLUSH_ALL;
973 	}
974 
975 	/* This is also a barrier that synchronizes with switch_mm(). */
976 	new_tlb_gen = inc_mm_tlb_gen(mm);
977 
978 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
979 				  new_tlb_gen);
980 
981 	/*
982 	 * flush_tlb_multi() is not optimized for the common case in which only
983 	 * a local TLB flush is needed. Optimize this use-case by calling
984 	 * flush_tlb_func_local() directly in this case.
985 	 */
986 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
987 		flush_tlb_multi(mm_cpumask(mm), info);
988 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
989 		lockdep_assert_irqs_enabled();
990 		local_irq_disable();
991 		flush_tlb_func(info);
992 		local_irq_enable();
993 	}
994 
995 	put_flush_tlb_info();
996 	put_cpu();
997 }
998 
999 
1000 static void do_flush_tlb_all(void *info)
1001 {
1002 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1003 	__flush_tlb_all();
1004 }
1005 
1006 void flush_tlb_all(void)
1007 {
1008 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1009 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1010 }
1011 
1012 static void do_kernel_range_flush(void *info)
1013 {
1014 	struct flush_tlb_info *f = info;
1015 	unsigned long addr;
1016 
1017 	/* flush range by one by one 'invlpg' */
1018 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1019 		flush_tlb_one_kernel(addr);
1020 }
1021 
1022 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1023 {
1024 	/* Balance as user space task's flush, a bit conservative */
1025 	if (end == TLB_FLUSH_ALL ||
1026 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1027 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1028 	} else {
1029 		struct flush_tlb_info *info;
1030 
1031 		preempt_disable();
1032 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1033 
1034 		on_each_cpu(do_kernel_range_flush, info, 1);
1035 
1036 		put_flush_tlb_info();
1037 		preempt_enable();
1038 	}
1039 }
1040 
1041 /*
1042  * This can be used from process context to figure out what the value of
1043  * CR3 is without needing to do a (slow) __read_cr3().
1044  *
1045  * It's intended to be used for code like KVM that sneakily changes CR3
1046  * and needs to restore it.  It needs to be used very carefully.
1047  */
1048 unsigned long __get_current_cr3_fast(void)
1049 {
1050 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1051 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1052 
1053 	/* For now, be very restrictive about when this can be called. */
1054 	VM_WARN_ON(in_nmi() || preemptible());
1055 
1056 	VM_BUG_ON(cr3 != __read_cr3());
1057 	return cr3;
1058 }
1059 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1060 
1061 /*
1062  * Flush one page in the kernel mapping
1063  */
1064 void flush_tlb_one_kernel(unsigned long addr)
1065 {
1066 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1067 
1068 	/*
1069 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1070 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1071 	 * use PCID if we also use global PTEs for the kernel mapping, and
1072 	 * INVLPG flushes global translations across all address spaces.
1073 	 *
1074 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1075 	 * __flush_tlb_one_user() will flush the given address for the current
1076 	 * kernel address space and for its usermode counterpart, but it does
1077 	 * not flush it for other address spaces.
1078 	 */
1079 	flush_tlb_one_user(addr);
1080 
1081 	if (!static_cpu_has(X86_FEATURE_PTI))
1082 		return;
1083 
1084 	/*
1085 	 * See above.  We need to propagate the flush to all other address
1086 	 * spaces.  In principle, we only need to propagate it to kernelmode
1087 	 * address spaces, but the extra bookkeeping we would need is not
1088 	 * worth it.
1089 	 */
1090 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1091 }
1092 
1093 /*
1094  * Flush one page in the user mapping
1095  */
1096 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1097 {
1098 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1099 
1100 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1101 
1102 	if (!static_cpu_has(X86_FEATURE_PTI))
1103 		return;
1104 
1105 	/*
1106 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1107 	 * Just use invalidate_user_asid() in case we are called early.
1108 	 */
1109 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1110 		invalidate_user_asid(loaded_mm_asid);
1111 	else
1112 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1113 }
1114 
1115 void flush_tlb_one_user(unsigned long addr)
1116 {
1117 	__flush_tlb_one_user(addr);
1118 }
1119 
1120 /*
1121  * Flush everything
1122  */
1123 STATIC_NOPV void native_flush_tlb_global(void)
1124 {
1125 	unsigned long flags;
1126 
1127 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1128 		/*
1129 		 * Using INVPCID is considerably faster than a pair of writes
1130 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1131 		 *
1132 		 * Note, this works with CR4.PCIDE=0 or 1.
1133 		 */
1134 		invpcid_flush_all();
1135 		return;
1136 	}
1137 
1138 	/*
1139 	 * Read-modify-write to CR4 - protect it from preemption and
1140 	 * from interrupts. (Use the raw variant because this code can
1141 	 * be called from deep inside debugging code.)
1142 	 */
1143 	raw_local_irq_save(flags);
1144 
1145 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1146 
1147 	raw_local_irq_restore(flags);
1148 }
1149 
1150 /*
1151  * Flush the entire current user mapping
1152  */
1153 STATIC_NOPV void native_flush_tlb_local(void)
1154 {
1155 	/*
1156 	 * Preemption or interrupts must be disabled to protect the access
1157 	 * to the per CPU variable and to prevent being preempted between
1158 	 * read_cr3() and write_cr3().
1159 	 */
1160 	WARN_ON_ONCE(preemptible());
1161 
1162 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1163 
1164 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1165 	native_write_cr3(__native_read_cr3());
1166 }
1167 
1168 void flush_tlb_local(void)
1169 {
1170 	__flush_tlb_local();
1171 }
1172 
1173 /*
1174  * Flush everything
1175  */
1176 void __flush_tlb_all(void)
1177 {
1178 	/*
1179 	 * This is to catch users with enabled preemption and the PGE feature
1180 	 * and don't trigger the warning in __native_flush_tlb().
1181 	 */
1182 	VM_WARN_ON_ONCE(preemptible());
1183 
1184 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1185 		__flush_tlb_global();
1186 	} else {
1187 		/*
1188 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1189 		 */
1190 		flush_tlb_local();
1191 	}
1192 }
1193 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1194 
1195 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1196 {
1197 	struct flush_tlb_info *info;
1198 
1199 	int cpu = get_cpu();
1200 
1201 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1202 	/*
1203 	 * flush_tlb_multi() is not optimized for the common case in which only
1204 	 * a local TLB flush is needed. Optimize this use-case by calling
1205 	 * flush_tlb_func_local() directly in this case.
1206 	 */
1207 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1208 		flush_tlb_multi(&batch->cpumask, info);
1209 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1210 		lockdep_assert_irqs_enabled();
1211 		local_irq_disable();
1212 		flush_tlb_func(info);
1213 		local_irq_enable();
1214 	}
1215 
1216 	cpumask_clear(&batch->cpumask);
1217 
1218 	put_flush_tlb_info();
1219 	put_cpu();
1220 }
1221 
1222 /*
1223  * Blindly accessing user memory from NMI context can be dangerous
1224  * if we're in the middle of switching the current user task or
1225  * switching the loaded mm.  It can also be dangerous if we
1226  * interrupted some kernel code that was temporarily using a
1227  * different mm.
1228  */
1229 bool nmi_uaccess_okay(void)
1230 {
1231 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1232 	struct mm_struct *current_mm = current->mm;
1233 
1234 	VM_WARN_ON_ONCE(!loaded_mm);
1235 
1236 	/*
1237 	 * The condition we want to check is
1238 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1239 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1240 	 * is supposed to be reasonably fast.
1241 	 *
1242 	 * Instead, we check the almost equivalent but somewhat conservative
1243 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1244 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1245 	 */
1246 	if (loaded_mm != current_mm)
1247 		return false;
1248 
1249 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1250 
1251 	return true;
1252 }
1253 
1254 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1255 			     size_t count, loff_t *ppos)
1256 {
1257 	char buf[32];
1258 	unsigned int len;
1259 
1260 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1261 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1262 }
1263 
1264 static ssize_t tlbflush_write_file(struct file *file,
1265 		 const char __user *user_buf, size_t count, loff_t *ppos)
1266 {
1267 	char buf[32];
1268 	ssize_t len;
1269 	int ceiling;
1270 
1271 	len = min(count, sizeof(buf) - 1);
1272 	if (copy_from_user(buf, user_buf, len))
1273 		return -EFAULT;
1274 
1275 	buf[len] = '\0';
1276 	if (kstrtoint(buf, 0, &ceiling))
1277 		return -EINVAL;
1278 
1279 	if (ceiling < 0)
1280 		return -EINVAL;
1281 
1282 	tlb_single_page_flush_ceiling = ceiling;
1283 	return count;
1284 }
1285 
1286 static const struct file_operations fops_tlbflush = {
1287 	.read = tlbflush_read_file,
1288 	.write = tlbflush_write_file,
1289 	.llseek = default_llseek,
1290 };
1291 
1292 static int __init create_tlb_single_page_flush_ceiling(void)
1293 {
1294 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1295 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1296 	return 0;
1297 }
1298 late_initcall(create_tlb_single_page_flush_ceiling);
1299