xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32 
33 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
34 			    u16 *new_asid, bool *need_flush)
35 {
36 	u16 asid;
37 
38 	if (!static_cpu_has(X86_FEATURE_PCID)) {
39 		*new_asid = 0;
40 		*need_flush = true;
41 		return;
42 	}
43 
44 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
45 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
46 		    next->context.ctx_id)
47 			continue;
48 
49 		*new_asid = asid;
50 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
51 			       next_tlb_gen);
52 		return;
53 	}
54 
55 	/*
56 	 * We don't currently own an ASID slot on this CPU.
57 	 * Allocate a slot.
58 	 */
59 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
60 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
61 		*new_asid = 0;
62 		this_cpu_write(cpu_tlbstate.next_asid, 1);
63 	}
64 	*need_flush = true;
65 }
66 
67 void leave_mm(int cpu)
68 {
69 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
70 
71 	/*
72 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
73 	 * If so, our callers still expect us to flush the TLB, but there
74 	 * aren't any user TLB entries in init_mm to worry about.
75 	 *
76 	 * This needs to happen before any other sanity checks due to
77 	 * intel_idle's shenanigans.
78 	 */
79 	if (loaded_mm == &init_mm)
80 		return;
81 
82 	/* Warn if we're not lazy. */
83 	WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
84 
85 	switch_mm(NULL, &init_mm, NULL);
86 }
87 
88 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
89 	       struct task_struct *tsk)
90 {
91 	unsigned long flags;
92 
93 	local_irq_save(flags);
94 	switch_mm_irqs_off(prev, next, tsk);
95 	local_irq_restore(flags);
96 }
97 
98 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
99 			struct task_struct *tsk)
100 {
101 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
102 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
103 	unsigned cpu = smp_processor_id();
104 	u64 next_tlb_gen;
105 
106 	/*
107 	 * NB: The scheduler will call us with prev == next when switching
108 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
109 	 * When this happens, we don't assume that CR3 (and hence
110 	 * cpu_tlbstate.loaded_mm) matches next.
111 	 *
112 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
113 	 */
114 
115 	/* We don't want flush_tlb_func_* to run concurrently with us. */
116 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
117 		WARN_ON_ONCE(!irqs_disabled());
118 
119 	/*
120 	 * Verify that CR3 is what we think it is.  This will catch
121 	 * hypothetical buggy code that directly switches to swapper_pg_dir
122 	 * without going through leave_mm() / switch_mm_irqs_off() or that
123 	 * does something like write_cr3(read_cr3_pa()).
124 	 *
125 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
126 	 * isn't free.
127 	 */
128 #ifdef CONFIG_DEBUG_VM
129 	if (WARN_ON_ONCE(__read_cr3() !=
130 			 (__sme_pa(real_prev->pgd) | prev_asid))) {
131 		/*
132 		 * If we were to BUG here, we'd be very likely to kill
133 		 * the system so hard that we don't see the call trace.
134 		 * Try to recover instead by ignoring the error and doing
135 		 * a global flush to minimize the chance of corruption.
136 		 *
137 		 * (This is far from being a fully correct recovery.
138 		 *  Architecturally, the CPU could prefetch something
139 		 *  back into an incorrect ASID slot and leave it there
140 		 *  to cause trouble down the road.  It's better than
141 		 *  nothing, though.)
142 		 */
143 		__flush_tlb_all();
144 	}
145 #endif
146 
147 	if (real_prev == next) {
148 		VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
149 			  next->context.ctx_id);
150 
151 		if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
152 			/*
153 			 * There's nothing to do: we weren't lazy, and we
154 			 * aren't changing our mm.  We don't need to flush
155 			 * anything, nor do we need to update CR3, CR4, or
156 			 * LDTR.
157 			 */
158 			return;
159 		}
160 
161 		/* Resume remote flushes and then read tlb_gen. */
162 		cpumask_set_cpu(cpu, mm_cpumask(next));
163 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
164 
165 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
166 		    next_tlb_gen) {
167 			/*
168 			 * Ideally, we'd have a flush_tlb() variant that
169 			 * takes the known CR3 value as input.  This would
170 			 * be faster on Xen PV and on hypothetical CPUs
171 			 * on which INVPCID is fast.
172 			 */
173 			this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
174 				       next_tlb_gen);
175 			write_cr3(__sme_pa(next->pgd) | prev_asid);
176 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
177 					TLB_FLUSH_ALL);
178 		}
179 
180 		/*
181 		 * We just exited lazy mode, which means that CR4 and/or LDTR
182 		 * may be stale.  (Changes to the required CR4 and LDTR states
183 		 * are not reflected in tlb_gen.)
184 		 */
185 	} else {
186 		u16 new_asid;
187 		bool need_flush;
188 
189 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
190 			/*
191 			 * If our current stack is in vmalloc space and isn't
192 			 * mapped in the new pgd, we'll double-fault.  Forcibly
193 			 * map it.
194 			 */
195 			unsigned int index = pgd_index(current_stack_pointer());
196 			pgd_t *pgd = next->pgd + index;
197 
198 			if (unlikely(pgd_none(*pgd)))
199 				set_pgd(pgd, init_mm.pgd[index]);
200 		}
201 
202 		/* Stop remote flushes for the previous mm */
203 		if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
204 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
205 
206 		VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
207 
208 		/*
209 		 * Start remote flushes and then read tlb_gen.
210 		 */
211 		cpumask_set_cpu(cpu, mm_cpumask(next));
212 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
213 
214 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
215 
216 		if (need_flush) {
217 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
218 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
219 			write_cr3(__sme_pa(next->pgd) | new_asid);
220 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
221 					TLB_FLUSH_ALL);
222 		} else {
223 			/* The new ASID is already up to date. */
224 			write_cr3(__sme_pa(next->pgd) | new_asid | CR3_NOFLUSH);
225 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
226 		}
227 
228 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
229 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
230 	}
231 
232 	load_mm_cr4(next);
233 	switch_ldt(real_prev, next);
234 }
235 
236 /*
237  * Call this when reinitializing a CPU.  It fixes the following potential
238  * problems:
239  *
240  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
241  *   because the CPU was taken down and came back up with CR3's PCID
242  *   bits clear.  CPU hotplug can do this.
243  *
244  * - The TLB contains junk in slots corresponding to inactive ASIDs.
245  *
246  * - The CPU went so far out to lunch that it may have missed a TLB
247  *   flush.
248  */
249 void initialize_tlbstate_and_flush(void)
250 {
251 	int i;
252 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
253 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
254 	unsigned long cr3 = __read_cr3();
255 
256 	/* Assert that CR3 already references the right mm. */
257 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
258 
259 	/*
260 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
261 	 * doesn't work like other CR4 bits because it can only be set from
262 	 * long mode.)
263 	 */
264 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
265 		!(cr4_read_shadow() & X86_CR4_PCIDE));
266 
267 	/* Force ASID 0 and force a TLB flush. */
268 	write_cr3(cr3 & ~CR3_PCID_MASK);
269 
270 	/* Reinitialize tlbstate. */
271 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
272 	this_cpu_write(cpu_tlbstate.next_asid, 1);
273 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
274 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
275 
276 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
277 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
278 }
279 
280 /*
281  * flush_tlb_func_common()'s memory ordering requirement is that any
282  * TLB fills that happen after we flush the TLB are ordered after we
283  * read active_mm's tlb_gen.  We don't need any explicit barriers
284  * because all x86 flush operations are serializing and the
285  * atomic64_read operation won't be reordered by the compiler.
286  */
287 static void flush_tlb_func_common(const struct flush_tlb_info *f,
288 				  bool local, enum tlb_flush_reason reason)
289 {
290 	/*
291 	 * We have three different tlb_gen values in here.  They are:
292 	 *
293 	 * - mm_tlb_gen:     the latest generation.
294 	 * - local_tlb_gen:  the generation that this CPU has already caught
295 	 *                   up to.
296 	 * - f->new_tlb_gen: the generation that the requester of the flush
297 	 *                   wants us to catch up to.
298 	 */
299 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
300 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
301 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
302 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
303 
304 	/* This code cannot presently handle being reentered. */
305 	VM_WARN_ON(!irqs_disabled());
306 
307 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
308 		   loaded_mm->context.ctx_id);
309 
310 	if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
311 		/*
312 		 * We're in lazy mode -- don't flush.  We can get here on
313 		 * remote flushes due to races and on local flushes if a
314 		 * kernel thread coincidentally flushes the mm it's lazily
315 		 * still using.
316 		 */
317 		return;
318 	}
319 
320 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
321 		/*
322 		 * There's nothing to do: we're already up to date.  This can
323 		 * happen if two concurrent flushes happen -- the first flush to
324 		 * be handled can catch us all the way up, leaving no work for
325 		 * the second flush.
326 		 */
327 		trace_tlb_flush(reason, 0);
328 		return;
329 	}
330 
331 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
332 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
333 
334 	/*
335 	 * If we get to this point, we know that our TLB is out of date.
336 	 * This does not strictly imply that we need to flush (it's
337 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
338 	 * going to need to flush in the very near future, so we might
339 	 * as well get it over with.
340 	 *
341 	 * The only question is whether to do a full or partial flush.
342 	 *
343 	 * We do a partial flush if requested and two extra conditions
344 	 * are met:
345 	 *
346 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
347 	 *    we've always done all needed flushes to catch up to
348 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
349 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
350 	 *    us up to date for tlb_gen 3 is the partial flush we're
351 	 *    processing.
352 	 *
353 	 *    As an example of why this check is needed, suppose that there
354 	 *    are two concurrent flushes.  The first is a full flush that
355 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
356 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
357 	 *    processed on this CPU in reverse order, we'll see
358 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
359 	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
360 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
361 	 *    1 without the full flush that's needed for tlb_gen 2.
362 	 *
363 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
364 	 *    Partial TLB flushes are not all that much cheaper than full TLB
365 	 *    flushes, so it seems unlikely that it would be a performance win
366 	 *    to do a partial flush if that won't bring our TLB fully up to
367 	 *    date.  By doing a full flush instead, we can increase
368 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
369 	 *    avoid another flush in the very near future.
370 	 */
371 	if (f->end != TLB_FLUSH_ALL &&
372 	    f->new_tlb_gen == local_tlb_gen + 1 &&
373 	    f->new_tlb_gen == mm_tlb_gen) {
374 		/* Partial flush */
375 		unsigned long addr;
376 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
377 
378 		addr = f->start;
379 		while (addr < f->end) {
380 			__flush_tlb_single(addr);
381 			addr += PAGE_SIZE;
382 		}
383 		if (local)
384 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
385 		trace_tlb_flush(reason, nr_pages);
386 	} else {
387 		/* Full flush. */
388 		local_flush_tlb();
389 		if (local)
390 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
391 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
392 	}
393 
394 	/* Both paths above update our state to mm_tlb_gen. */
395 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
396 }
397 
398 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
399 {
400 	const struct flush_tlb_info *f = info;
401 
402 	flush_tlb_func_common(f, true, reason);
403 }
404 
405 static void flush_tlb_func_remote(void *info)
406 {
407 	const struct flush_tlb_info *f = info;
408 
409 	inc_irq_stat(irq_tlb_count);
410 
411 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
412 		return;
413 
414 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
415 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
416 }
417 
418 void native_flush_tlb_others(const struct cpumask *cpumask,
419 			     const struct flush_tlb_info *info)
420 {
421 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
422 	if (info->end == TLB_FLUSH_ALL)
423 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
424 	else
425 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
426 				(info->end - info->start) >> PAGE_SHIFT);
427 
428 	if (is_uv_system()) {
429 		/*
430 		 * This whole special case is confused.  UV has a "Broadcast
431 		 * Assist Unit", which seems to be a fancy way to send IPIs.
432 		 * Back when x86 used an explicit TLB flush IPI, UV was
433 		 * optimized to use its own mechanism.  These days, x86 uses
434 		 * smp_call_function_many(), but UV still uses a manual IPI,
435 		 * and that IPI's action is out of date -- it does a manual
436 		 * flush instead of calling flush_tlb_func_remote().  This
437 		 * means that the percpu tlb_gen variables won't be updated
438 		 * and we'll do pointless flushes on future context switches.
439 		 *
440 		 * Rather than hooking native_flush_tlb_others() here, I think
441 		 * that UV should be updated so that smp_call_function_many(),
442 		 * etc, are optimal on UV.
443 		 */
444 		unsigned int cpu;
445 
446 		cpu = smp_processor_id();
447 		cpumask = uv_flush_tlb_others(cpumask, info);
448 		if (cpumask)
449 			smp_call_function_many(cpumask, flush_tlb_func_remote,
450 					       (void *)info, 1);
451 		return;
452 	}
453 	smp_call_function_many(cpumask, flush_tlb_func_remote,
454 			       (void *)info, 1);
455 }
456 
457 /*
458  * See Documentation/x86/tlb.txt for details.  We choose 33
459  * because it is large enough to cover the vast majority (at
460  * least 95%) of allocations, and is small enough that we are
461  * confident it will not cause too much overhead.  Each single
462  * flush is about 100 ns, so this caps the maximum overhead at
463  * _about_ 3,000 ns.
464  *
465  * This is in units of pages.
466  */
467 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
468 
469 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
470 				unsigned long end, unsigned long vmflag)
471 {
472 	int cpu;
473 
474 	struct flush_tlb_info info = {
475 		.mm = mm,
476 	};
477 
478 	cpu = get_cpu();
479 
480 	/* This is also a barrier that synchronizes with switch_mm(). */
481 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
482 
483 	/* Should we flush just the requested range? */
484 	if ((end != TLB_FLUSH_ALL) &&
485 	    !(vmflag & VM_HUGETLB) &&
486 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
487 		info.start = start;
488 		info.end = end;
489 	} else {
490 		info.start = 0UL;
491 		info.end = TLB_FLUSH_ALL;
492 	}
493 
494 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
495 		VM_WARN_ON(irqs_disabled());
496 		local_irq_disable();
497 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
498 		local_irq_enable();
499 	}
500 
501 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
502 		flush_tlb_others(mm_cpumask(mm), &info);
503 
504 	put_cpu();
505 }
506 
507 
508 static void do_flush_tlb_all(void *info)
509 {
510 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
511 	__flush_tlb_all();
512 }
513 
514 void flush_tlb_all(void)
515 {
516 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
517 	on_each_cpu(do_flush_tlb_all, NULL, 1);
518 }
519 
520 static void do_kernel_range_flush(void *info)
521 {
522 	struct flush_tlb_info *f = info;
523 	unsigned long addr;
524 
525 	/* flush range by one by one 'invlpg' */
526 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
527 		__flush_tlb_single(addr);
528 }
529 
530 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
531 {
532 
533 	/* Balance as user space task's flush, a bit conservative */
534 	if (end == TLB_FLUSH_ALL ||
535 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
536 		on_each_cpu(do_flush_tlb_all, NULL, 1);
537 	} else {
538 		struct flush_tlb_info info;
539 		info.start = start;
540 		info.end = end;
541 		on_each_cpu(do_kernel_range_flush, &info, 1);
542 	}
543 }
544 
545 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
546 {
547 	struct flush_tlb_info info = {
548 		.mm = NULL,
549 		.start = 0UL,
550 		.end = TLB_FLUSH_ALL,
551 	};
552 
553 	int cpu = get_cpu();
554 
555 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
556 		VM_WARN_ON(irqs_disabled());
557 		local_irq_disable();
558 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
559 		local_irq_enable();
560 	}
561 
562 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
563 		flush_tlb_others(&batch->cpumask, &info);
564 
565 	cpumask_clear(&batch->cpumask);
566 
567 	put_cpu();
568 }
569 
570 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
571 			     size_t count, loff_t *ppos)
572 {
573 	char buf[32];
574 	unsigned int len;
575 
576 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
577 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
578 }
579 
580 static ssize_t tlbflush_write_file(struct file *file,
581 		 const char __user *user_buf, size_t count, loff_t *ppos)
582 {
583 	char buf[32];
584 	ssize_t len;
585 	int ceiling;
586 
587 	len = min(count, sizeof(buf) - 1);
588 	if (copy_from_user(buf, user_buf, len))
589 		return -EFAULT;
590 
591 	buf[len] = '\0';
592 	if (kstrtoint(buf, 0, &ceiling))
593 		return -EINVAL;
594 
595 	if (ceiling < 0)
596 		return -EINVAL;
597 
598 	tlb_single_page_flush_ceiling = ceiling;
599 	return count;
600 }
601 
602 static const struct file_operations fops_tlbflush = {
603 	.read = tlbflush_read_file,
604 	.write = tlbflush_write_file,
605 	.llseek = default_llseek,
606 };
607 
608 static int __init create_tlb_single_page_flush_ceiling(void)
609 {
610 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
611 			    arch_debugfs_dir, NULL, &fops_tlbflush);
612 	return 0;
613 }
614 late_initcall(create_tlb_single_page_flush_ceiling);
615