xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 275876e2)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18 			= { &init_mm, 0, };
19 
20 /*
21  *	Smarter SMP flushing macros.
22  *		c/o Linus Torvalds.
23  *
24  *	These mean you can really definitely utterly forget about
25  *	writing to user space from interrupts. (Its not allowed anyway).
26  *
27  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
28  *
29  *	More scalable flush, from Andi Kleen
30  *
31  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32  */
33 
34 struct flush_tlb_info {
35 	struct mm_struct *flush_mm;
36 	unsigned long flush_start;
37 	unsigned long flush_end;
38 };
39 
40 /*
41  * We cannot call mmdrop() because we are in interrupt context,
42  * instead update mm->cpu_vm_mask.
43  */
44 void leave_mm(int cpu)
45 {
46 	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
47 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
48 		BUG();
49 	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
50 		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
51 		load_cr3(swapper_pg_dir);
52 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
53 	}
54 }
55 EXPORT_SYMBOL_GPL(leave_mm);
56 
57 /*
58  * The flush IPI assumes that a thread switch happens in this order:
59  * [cpu0: the cpu that switches]
60  * 1) switch_mm() either 1a) or 1b)
61  * 1a) thread switch to a different mm
62  * 1a1) set cpu_tlbstate to TLBSTATE_OK
63  *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
64  *	if cpu0 was in lazy tlb mode.
65  * 1a2) update cpu active_mm
66  *	Now cpu0 accepts tlb flushes for the new mm.
67  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
68  *	Now the other cpus will send tlb flush ipis.
69  * 1a4) change cr3.
70  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
71  *	Stop ipi delivery for the old mm. This is not synchronized with
72  *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
73  *	mm, and in the worst case we perform a superfluous tlb flush.
74  * 1b) thread switch without mm change
75  *	cpu active_mm is correct, cpu0 already handles flush ipis.
76  * 1b1) set cpu_tlbstate to TLBSTATE_OK
77  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
78  *	Atomically set the bit [other cpus will start sending flush ipis],
79  *	and test the bit.
80  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
81  * 2) switch %%esp, ie current
82  *
83  * The interrupt must handle 2 special cases:
84  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
85  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
86  *   runs in kernel space, the cpu could load tlb entries for user space
87  *   pages.
88  *
89  * The good news is that cpu_tlbstate is local to each cpu, no
90  * write/read ordering problems.
91  */
92 
93 /*
94  * TLB flush funcation:
95  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
96  * 2) Leave the mm if we are in the lazy tlb mode.
97  */
98 static void flush_tlb_func(void *info)
99 {
100 	struct flush_tlb_info *f = info;
101 
102 	inc_irq_stat(irq_tlb_count);
103 
104 	if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
105 		return;
106 	if (!f->flush_end)
107 		f->flush_end = f->flush_start + PAGE_SIZE;
108 
109 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
110 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
111 		if (f->flush_end == TLB_FLUSH_ALL) {
112 			local_flush_tlb();
113 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
114 		} else {
115 			unsigned long addr;
116 			unsigned long nr_pages =
117 				f->flush_end - f->flush_start / PAGE_SIZE;
118 			addr = f->flush_start;
119 			while (addr < f->flush_end) {
120 				__flush_tlb_single(addr);
121 				addr += PAGE_SIZE;
122 			}
123 			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
124 		}
125 	} else
126 		leave_mm(smp_processor_id());
127 
128 }
129 
130 void native_flush_tlb_others(const struct cpumask *cpumask,
131 				 struct mm_struct *mm, unsigned long start,
132 				 unsigned long end)
133 {
134 	struct flush_tlb_info info;
135 	info.flush_mm = mm;
136 	info.flush_start = start;
137 	info.flush_end = end;
138 
139 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
140 	if (is_uv_system()) {
141 		unsigned int cpu;
142 
143 		cpu = smp_processor_id();
144 		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
145 		if (cpumask)
146 			smp_call_function_many(cpumask, flush_tlb_func,
147 								&info, 1);
148 		return;
149 	}
150 	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
151 }
152 
153 void flush_tlb_current_task(void)
154 {
155 	struct mm_struct *mm = current->mm;
156 
157 	preempt_disable();
158 
159 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
160 	local_flush_tlb();
161 	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
162 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
163 		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
164 	preempt_enable();
165 }
166 
167 /*
168  * See Documentation/x86/tlb.txt for details.  We choose 33
169  * because it is large enough to cover the vast majority (at
170  * least 95%) of allocations, and is small enough that we are
171  * confident it will not cause too much overhead.  Each single
172  * flush is about 100 ns, so this caps the maximum overhead at
173  * _about_ 3,000 ns.
174  *
175  * This is in units of pages.
176  */
177 unsigned long tlb_single_page_flush_ceiling = 33;
178 
179 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
180 				unsigned long end, unsigned long vmflag)
181 {
182 	unsigned long addr;
183 	/* do a global flush by default */
184 	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
185 
186 	preempt_disable();
187 	if (current->active_mm != mm)
188 		goto out;
189 
190 	if (!current->mm) {
191 		leave_mm(smp_processor_id());
192 		goto out;
193 	}
194 
195 	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
196 		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
197 
198 	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
199 		base_pages_to_flush = TLB_FLUSH_ALL;
200 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
201 		local_flush_tlb();
202 	} else {
203 		/* flush range by one by one 'invlpg' */
204 		for (addr = start; addr < end;	addr += PAGE_SIZE) {
205 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
206 			__flush_tlb_single(addr);
207 		}
208 	}
209 	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
210 out:
211 	if (base_pages_to_flush == TLB_FLUSH_ALL) {
212 		start = 0UL;
213 		end = TLB_FLUSH_ALL;
214 	}
215 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
216 		flush_tlb_others(mm_cpumask(mm), mm, start, end);
217 	preempt_enable();
218 }
219 
220 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
221 {
222 	struct mm_struct *mm = vma->vm_mm;
223 
224 	preempt_disable();
225 
226 	if (current->active_mm == mm) {
227 		if (current->mm)
228 			__flush_tlb_one(start);
229 		else
230 			leave_mm(smp_processor_id());
231 	}
232 
233 	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
234 		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
235 
236 	preempt_enable();
237 }
238 
239 static void do_flush_tlb_all(void *info)
240 {
241 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
242 	__flush_tlb_all();
243 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
244 		leave_mm(smp_processor_id());
245 }
246 
247 void flush_tlb_all(void)
248 {
249 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
250 	on_each_cpu(do_flush_tlb_all, NULL, 1);
251 }
252 
253 static void do_kernel_range_flush(void *info)
254 {
255 	struct flush_tlb_info *f = info;
256 	unsigned long addr;
257 
258 	/* flush range by one by one 'invlpg' */
259 	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
260 		__flush_tlb_single(addr);
261 }
262 
263 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
264 {
265 
266 	/* Balance as user space task's flush, a bit conservative */
267 	if (end == TLB_FLUSH_ALL ||
268 	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
269 		on_each_cpu(do_flush_tlb_all, NULL, 1);
270 	} else {
271 		struct flush_tlb_info info;
272 		info.flush_start = start;
273 		info.flush_end = end;
274 		on_each_cpu(do_kernel_range_flush, &info, 1);
275 	}
276 }
277 
278 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
279 			     size_t count, loff_t *ppos)
280 {
281 	char buf[32];
282 	unsigned int len;
283 
284 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
285 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
286 }
287 
288 static ssize_t tlbflush_write_file(struct file *file,
289 		 const char __user *user_buf, size_t count, loff_t *ppos)
290 {
291 	char buf[32];
292 	ssize_t len;
293 	int ceiling;
294 
295 	len = min(count, sizeof(buf) - 1);
296 	if (copy_from_user(buf, user_buf, len))
297 		return -EFAULT;
298 
299 	buf[len] = '\0';
300 	if (kstrtoint(buf, 0, &ceiling))
301 		return -EINVAL;
302 
303 	if (ceiling < 0)
304 		return -EINVAL;
305 
306 	tlb_single_page_flush_ceiling = ceiling;
307 	return count;
308 }
309 
310 static const struct file_operations fops_tlbflush = {
311 	.read = tlbflush_read_file,
312 	.write = tlbflush_write_file,
313 	.llseek = default_llseek,
314 };
315 
316 static int __init create_tlb_single_page_flush_ceiling(void)
317 {
318 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
319 			    arch_debugfs_dir, NULL, &fops_tlbflush);
320 	return 0;
321 }
322 late_initcall(create_tlb_single_page_flush_ceiling);
323