xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 2427f03f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 
13 #include <asm/tlbflush.h>
14 #include <asm/mmu_context.h>
15 #include <asm/nospec-branch.h>
16 #include <asm/cache.h>
17 #include <asm/cacheflush.h>
18 #include <asm/apic.h>
19 #include <asm/perf_event.h>
20 
21 #include "mm_internal.h"
22 
23 #ifdef CONFIG_PARAVIRT
24 # define STATIC_NOPV
25 #else
26 # define STATIC_NOPV			static
27 # define __flush_tlb_local		native_flush_tlb_local
28 # define __flush_tlb_global		native_flush_tlb_global
29 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
30 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
31 #endif
32 
33 /*
34  *	TLB flushing, formerly SMP-only
35  *		c/o Linus Torvalds.
36  *
37  *	These mean you can really definitely utterly forget about
38  *	writing to user space from interrupts. (Its not allowed anyway).
39  *
40  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
41  *
42  *	More scalable flush, from Andi Kleen
43  *
44  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
45  */
46 
47 /*
48  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
49  * stored in cpu_tlb_state.last_user_mm_spec.
50  */
51 #define LAST_USER_MM_IBPB	0x1UL
52 #define LAST_USER_MM_L1D_FLUSH	0x2UL
53 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
54 
55 /* Bits to set when tlbstate and flush is (re)initialized */
56 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
57 
58 /*
59  * The x86 feature is called PCID (Process Context IDentifier). It is similar
60  * to what is traditionally called ASID on the RISC processors.
61  *
62  * We don't use the traditional ASID implementation, where each process/mm gets
63  * its own ASID and flush/restart when we run out of ASID space.
64  *
65  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
66  * that came by on this CPU, allowing cheaper switch_mm between processes on
67  * this CPU.
68  *
69  * We end up with different spaces for different things. To avoid confusion we
70  * use different names for each of them:
71  *
72  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
73  *         the canonical identifier for an mm
74  *
75  * kPCID - [1, TLB_NR_DYN_ASIDS]
76  *         the value we write into the PCID part of CR3; corresponds to the
77  *         ASID+1, because PCID 0 is special.
78  *
79  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
80  *         for KPTI each mm has two address spaces and thus needs two
81  *         PCID values, but we can still do with a single ASID denomination
82  *         for each mm. Corresponds to kPCID + 2048.
83  *
84  */
85 
86 /* There are 12 bits of space for ASIDS in CR3 */
87 #define CR3_HW_ASID_BITS		12
88 
89 /*
90  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
91  * user/kernel switches
92  */
93 #ifdef CONFIG_PAGE_TABLE_ISOLATION
94 # define PTI_CONSUMED_PCID_BITS	1
95 #else
96 # define PTI_CONSUMED_PCID_BITS	0
97 #endif
98 
99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
100 
101 /*
102  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
103  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
104  * use by non-PCID-aware users.
105  */
106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
107 
108 /*
109  * Given @asid, compute kPCID
110  */
111 static inline u16 kern_pcid(u16 asid)
112 {
113 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
114 
115 #ifdef CONFIG_PAGE_TABLE_ISOLATION
116 	/*
117 	 * Make sure that the dynamic ASID space does not conflict with the
118 	 * bit we are using to switch between user and kernel ASIDs.
119 	 */
120 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
121 
122 	/*
123 	 * The ASID being passed in here should have respected the
124 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
125 	 */
126 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
127 #endif
128 	/*
129 	 * The dynamically-assigned ASIDs that get passed in are small
130 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
131 	 * so do not bother to clear it.
132 	 *
133 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
134 	 * PCID bits.  This serves two purposes.  It prevents a nasty
135 	 * situation in which PCID-unaware code saves CR3, loads some other
136 	 * value (with PCID == 0), and then restores CR3, thus corrupting
137 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
138 	 * that any bugs involving loading a PCID-enabled CR3 with
139 	 * CR4.PCIDE off will trigger deterministically.
140 	 */
141 	return asid + 1;
142 }
143 
144 /*
145  * Given @asid, compute uPCID
146  */
147 static inline u16 user_pcid(u16 asid)
148 {
149 	u16 ret = kern_pcid(asid);
150 #ifdef CONFIG_PAGE_TABLE_ISOLATION
151 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
152 #endif
153 	return ret;
154 }
155 
156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
157 {
158 	if (static_cpu_has(X86_FEATURE_PCID)) {
159 		return __sme_pa(pgd) | kern_pcid(asid);
160 	} else {
161 		VM_WARN_ON_ONCE(asid != 0);
162 		return __sme_pa(pgd);
163 	}
164 }
165 
166 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
167 {
168 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
169 	/*
170 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
171 	 * might be called during early boot. This should work even after
172 	 * boot because all CPU's the have same capabilities:
173 	 */
174 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
175 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
176 }
177 
178 /*
179  * We get here when we do something requiring a TLB invalidation
180  * but could not go invalidate all of the contexts.  We do the
181  * necessary invalidation by clearing out the 'ctx_id' which
182  * forces a TLB flush when the context is loaded.
183  */
184 static void clear_asid_other(void)
185 {
186 	u16 asid;
187 
188 	/*
189 	 * This is only expected to be set if we have disabled
190 	 * kernel _PAGE_GLOBAL pages.
191 	 */
192 	if (!static_cpu_has(X86_FEATURE_PTI)) {
193 		WARN_ON_ONCE(1);
194 		return;
195 	}
196 
197 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
198 		/* Do not need to flush the current asid */
199 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
200 			continue;
201 		/*
202 		 * Make sure the next time we go to switch to
203 		 * this asid, we do a flush:
204 		 */
205 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
206 	}
207 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
208 }
209 
210 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
211 
212 
213 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
214 			    u16 *new_asid, bool *need_flush)
215 {
216 	u16 asid;
217 
218 	if (!static_cpu_has(X86_FEATURE_PCID)) {
219 		*new_asid = 0;
220 		*need_flush = true;
221 		return;
222 	}
223 
224 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
225 		clear_asid_other();
226 
227 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
228 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
229 		    next->context.ctx_id)
230 			continue;
231 
232 		*new_asid = asid;
233 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
234 			       next_tlb_gen);
235 		return;
236 	}
237 
238 	/*
239 	 * We don't currently own an ASID slot on this CPU.
240 	 * Allocate a slot.
241 	 */
242 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
243 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
244 		*new_asid = 0;
245 		this_cpu_write(cpu_tlbstate.next_asid, 1);
246 	}
247 	*need_flush = true;
248 }
249 
250 /*
251  * Given an ASID, flush the corresponding user ASID.  We can delay this
252  * until the next time we switch to it.
253  *
254  * See SWITCH_TO_USER_CR3.
255  */
256 static inline void invalidate_user_asid(u16 asid)
257 {
258 	/* There is no user ASID if address space separation is off */
259 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
260 		return;
261 
262 	/*
263 	 * We only have a single ASID if PCID is off and the CR3
264 	 * write will have flushed it.
265 	 */
266 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
267 		return;
268 
269 	if (!static_cpu_has(X86_FEATURE_PTI))
270 		return;
271 
272 	__set_bit(kern_pcid(asid),
273 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
274 }
275 
276 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
277 {
278 	unsigned long new_mm_cr3;
279 
280 	if (need_flush) {
281 		invalidate_user_asid(new_asid);
282 		new_mm_cr3 = build_cr3(pgdir, new_asid);
283 	} else {
284 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
285 	}
286 
287 	/*
288 	 * Caution: many callers of this function expect
289 	 * that load_cr3() is serializing and orders TLB
290 	 * fills with respect to the mm_cpumask writes.
291 	 */
292 	write_cr3(new_mm_cr3);
293 }
294 
295 void leave_mm(int cpu)
296 {
297 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
298 
299 	/*
300 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
301 	 * If so, our callers still expect us to flush the TLB, but there
302 	 * aren't any user TLB entries in init_mm to worry about.
303 	 *
304 	 * This needs to happen before any other sanity checks due to
305 	 * intel_idle's shenanigans.
306 	 */
307 	if (loaded_mm == &init_mm)
308 		return;
309 
310 	/* Warn if we're not lazy. */
311 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
312 
313 	switch_mm(NULL, &init_mm, NULL);
314 }
315 EXPORT_SYMBOL_GPL(leave_mm);
316 
317 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
318 	       struct task_struct *tsk)
319 {
320 	unsigned long flags;
321 
322 	local_irq_save(flags);
323 	switch_mm_irqs_off(prev, next, tsk);
324 	local_irq_restore(flags);
325 }
326 
327 /*
328  * Invoked from return to user/guest by a task that opted-in to L1D
329  * flushing but ended up running on an SMT enabled core due to wrong
330  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
331  * contract which this task requested.
332  */
333 static void l1d_flush_force_sigbus(struct callback_head *ch)
334 {
335 	force_sig(SIGBUS);
336 }
337 
338 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
339 				struct task_struct *next)
340 {
341 	/* Flush L1D if the outgoing task requests it */
342 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
343 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
344 
345 	/* Check whether the incoming task opted in for L1D flush */
346 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
347 		return;
348 
349 	/*
350 	 * Validate that it is not running on an SMT sibling as this would
351 	 * make the excercise pointless because the siblings share L1D. If
352 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
353 	 * user/guest
354 	 */
355 	if (this_cpu_read(cpu_info.smt_active)) {
356 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
357 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
358 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
359 	}
360 }
361 
362 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
363 {
364 	unsigned long next_tif = read_task_thread_flags(next);
365 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
366 
367 	/*
368 	 * Ensure that the bit shift above works as expected and the two flags
369 	 * end up in bit 0 and 1.
370 	 */
371 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
372 
373 	return (unsigned long)next->mm | spec_bits;
374 }
375 
376 static void cond_mitigation(struct task_struct *next)
377 {
378 	unsigned long prev_mm, next_mm;
379 
380 	if (!next || !next->mm)
381 		return;
382 
383 	next_mm = mm_mangle_tif_spec_bits(next);
384 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
385 
386 	/*
387 	 * Avoid user/user BTB poisoning by flushing the branch predictor
388 	 * when switching between processes. This stops one process from
389 	 * doing Spectre-v2 attacks on another.
390 	 *
391 	 * Both, the conditional and the always IBPB mode use the mm
392 	 * pointer to avoid the IBPB when switching between tasks of the
393 	 * same process. Using the mm pointer instead of mm->context.ctx_id
394 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
395 	 * less impossible to control by an attacker. Aside of that it
396 	 * would only affect the first schedule so the theoretically
397 	 * exposed data is not really interesting.
398 	 */
399 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
400 		/*
401 		 * This is a bit more complex than the always mode because
402 		 * it has to handle two cases:
403 		 *
404 		 * 1) Switch from a user space task (potential attacker)
405 		 *    which has TIF_SPEC_IB set to a user space task
406 		 *    (potential victim) which has TIF_SPEC_IB not set.
407 		 *
408 		 * 2) Switch from a user space task (potential attacker)
409 		 *    which has TIF_SPEC_IB not set to a user space task
410 		 *    (potential victim) which has TIF_SPEC_IB set.
411 		 *
412 		 * This could be done by unconditionally issuing IBPB when
413 		 * a task which has TIF_SPEC_IB set is either scheduled in
414 		 * or out. Though that results in two flushes when:
415 		 *
416 		 * - the same user space task is scheduled out and later
417 		 *   scheduled in again and only a kernel thread ran in
418 		 *   between.
419 		 *
420 		 * - a user space task belonging to the same process is
421 		 *   scheduled in after a kernel thread ran in between
422 		 *
423 		 * - a user space task belonging to the same process is
424 		 *   scheduled in immediately.
425 		 *
426 		 * Optimize this with reasonably small overhead for the
427 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
428 		 * pointer of the incoming task which is stored in
429 		 * cpu_tlbstate.last_user_mm_spec for comparison.
430 		 *
431 		 * Issue IBPB only if the mm's are different and one or
432 		 * both have the IBPB bit set.
433 		 */
434 		if (next_mm != prev_mm &&
435 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
436 			indirect_branch_prediction_barrier();
437 	}
438 
439 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
440 		/*
441 		 * Only flush when switching to a user space task with a
442 		 * different context than the user space task which ran
443 		 * last on this CPU.
444 		 */
445 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
446 					(unsigned long)next->mm)
447 			indirect_branch_prediction_barrier();
448 	}
449 
450 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
451 		/*
452 		 * Flush L1D when the outgoing task requested it and/or
453 		 * check whether the incoming task requested L1D flushing
454 		 * and ended up on an SMT sibling.
455 		 */
456 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
457 			l1d_flush_evaluate(prev_mm, next_mm, next);
458 	}
459 
460 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
461 }
462 
463 #ifdef CONFIG_PERF_EVENTS
464 static inline void cr4_update_pce_mm(struct mm_struct *mm)
465 {
466 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
467 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
468 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
469 		/*
470 		 * Clear the existing dirty counters to
471 		 * prevent the leak for an RDPMC task.
472 		 */
473 		perf_clear_dirty_counters();
474 		cr4_set_bits_irqsoff(X86_CR4_PCE);
475 	} else
476 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
477 }
478 
479 void cr4_update_pce(void *ignored)
480 {
481 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
482 }
483 
484 #else
485 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
486 #endif
487 
488 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
489 			struct task_struct *tsk)
490 {
491 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
492 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
493 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
494 	unsigned cpu = smp_processor_id();
495 	u64 next_tlb_gen;
496 	bool need_flush;
497 	u16 new_asid;
498 
499 	/*
500 	 * NB: The scheduler will call us with prev == next when switching
501 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
502 	 * When this happens, we don't assume that CR3 (and hence
503 	 * cpu_tlbstate.loaded_mm) matches next.
504 	 *
505 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
506 	 */
507 
508 	/* We don't want flush_tlb_func() to run concurrently with us. */
509 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
510 		WARN_ON_ONCE(!irqs_disabled());
511 
512 	/*
513 	 * Verify that CR3 is what we think it is.  This will catch
514 	 * hypothetical buggy code that directly switches to swapper_pg_dir
515 	 * without going through leave_mm() / switch_mm_irqs_off() or that
516 	 * does something like write_cr3(read_cr3_pa()).
517 	 *
518 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
519 	 * isn't free.
520 	 */
521 #ifdef CONFIG_DEBUG_VM
522 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
523 		/*
524 		 * If we were to BUG here, we'd be very likely to kill
525 		 * the system so hard that we don't see the call trace.
526 		 * Try to recover instead by ignoring the error and doing
527 		 * a global flush to minimize the chance of corruption.
528 		 *
529 		 * (This is far from being a fully correct recovery.
530 		 *  Architecturally, the CPU could prefetch something
531 		 *  back into an incorrect ASID slot and leave it there
532 		 *  to cause trouble down the road.  It's better than
533 		 *  nothing, though.)
534 		 */
535 		__flush_tlb_all();
536 	}
537 #endif
538 	if (was_lazy)
539 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
540 
541 	/*
542 	 * The membarrier system call requires a full memory barrier and
543 	 * core serialization before returning to user-space, after
544 	 * storing to rq->curr, when changing mm.  This is because
545 	 * membarrier() sends IPIs to all CPUs that are in the target mm
546 	 * to make them issue memory barriers.  However, if another CPU
547 	 * switches to/from the target mm concurrently with
548 	 * membarrier(), it can cause that CPU not to receive an IPI
549 	 * when it really should issue a memory barrier.  Writing to CR3
550 	 * provides that full memory barrier and core serializing
551 	 * instruction.
552 	 */
553 	if (real_prev == next) {
554 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
555 			   next->context.ctx_id);
556 
557 		/*
558 		 * Even in lazy TLB mode, the CPU should stay set in the
559 		 * mm_cpumask. The TLB shootdown code can figure out from
560 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
561 		 */
562 		if (WARN_ON_ONCE(real_prev != &init_mm &&
563 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
564 			cpumask_set_cpu(cpu, mm_cpumask(next));
565 
566 		/*
567 		 * If the CPU is not in lazy TLB mode, we are just switching
568 		 * from one thread in a process to another thread in the same
569 		 * process. No TLB flush required.
570 		 */
571 		if (!was_lazy)
572 			return;
573 
574 		/*
575 		 * Read the tlb_gen to check whether a flush is needed.
576 		 * If the TLB is up to date, just use it.
577 		 * The barrier synchronizes with the tlb_gen increment in
578 		 * the TLB shootdown code.
579 		 */
580 		smp_mb();
581 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
582 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
583 				next_tlb_gen)
584 			return;
585 
586 		/*
587 		 * TLB contents went out of date while we were in lazy
588 		 * mode. Fall through to the TLB switching code below.
589 		 */
590 		new_asid = prev_asid;
591 		need_flush = true;
592 	} else {
593 		/*
594 		 * Apply process to process speculation vulnerability
595 		 * mitigations if applicable.
596 		 */
597 		cond_mitigation(tsk);
598 
599 		/*
600 		 * Stop remote flushes for the previous mm.
601 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
602 		 * but the bitmap manipulation can cause cache line contention.
603 		 */
604 		if (real_prev != &init_mm) {
605 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
606 						mm_cpumask(real_prev)));
607 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
608 		}
609 
610 		/*
611 		 * Start remote flushes and then read tlb_gen.
612 		 */
613 		if (next != &init_mm)
614 			cpumask_set_cpu(cpu, mm_cpumask(next));
615 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
616 
617 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
618 
619 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
620 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
621 		barrier();
622 	}
623 
624 	if (need_flush) {
625 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
626 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
627 		load_new_mm_cr3(next->pgd, new_asid, true);
628 
629 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
630 	} else {
631 		/* The new ASID is already up to date. */
632 		load_new_mm_cr3(next->pgd, new_asid, false);
633 
634 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
635 	}
636 
637 	/* Make sure we write CR3 before loaded_mm. */
638 	barrier();
639 
640 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
641 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
642 
643 	if (next != real_prev) {
644 		cr4_update_pce_mm(next);
645 		switch_ldt(real_prev, next);
646 	}
647 }
648 
649 /*
650  * Please ignore the name of this function.  It should be called
651  * switch_to_kernel_thread().
652  *
653  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
654  * kernel thread or other context without an mm.  Acceptable implementations
655  * include doing nothing whatsoever, switching to init_mm, or various clever
656  * lazy tricks to try to minimize TLB flushes.
657  *
658  * The scheduler reserves the right to call enter_lazy_tlb() several times
659  * in a row.  It will notify us that we're going back to a real mm by
660  * calling switch_mm_irqs_off().
661  */
662 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
663 {
664 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
665 		return;
666 
667 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
668 }
669 
670 /*
671  * Call this when reinitializing a CPU.  It fixes the following potential
672  * problems:
673  *
674  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
675  *   because the CPU was taken down and came back up with CR3's PCID
676  *   bits clear.  CPU hotplug can do this.
677  *
678  * - The TLB contains junk in slots corresponding to inactive ASIDs.
679  *
680  * - The CPU went so far out to lunch that it may have missed a TLB
681  *   flush.
682  */
683 void initialize_tlbstate_and_flush(void)
684 {
685 	int i;
686 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
687 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
688 	unsigned long cr3 = __read_cr3();
689 
690 	/* Assert that CR3 already references the right mm. */
691 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
692 
693 	/*
694 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
695 	 * doesn't work like other CR4 bits because it can only be set from
696 	 * long mode.)
697 	 */
698 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
699 		!(cr4_read_shadow() & X86_CR4_PCIDE));
700 
701 	/* Force ASID 0 and force a TLB flush. */
702 	write_cr3(build_cr3(mm->pgd, 0));
703 
704 	/* Reinitialize tlbstate. */
705 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
706 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
707 	this_cpu_write(cpu_tlbstate.next_asid, 1);
708 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
709 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
710 
711 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
712 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
713 }
714 
715 /*
716  * flush_tlb_func()'s memory ordering requirement is that any
717  * TLB fills that happen after we flush the TLB are ordered after we
718  * read active_mm's tlb_gen.  We don't need any explicit barriers
719  * because all x86 flush operations are serializing and the
720  * atomic64_read operation won't be reordered by the compiler.
721  */
722 static void flush_tlb_func(void *info)
723 {
724 	/*
725 	 * We have three different tlb_gen values in here.  They are:
726 	 *
727 	 * - mm_tlb_gen:     the latest generation.
728 	 * - local_tlb_gen:  the generation that this CPU has already caught
729 	 *                   up to.
730 	 * - f->new_tlb_gen: the generation that the requester of the flush
731 	 *                   wants us to catch up to.
732 	 */
733 	const struct flush_tlb_info *f = info;
734 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
735 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
736 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
737 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
738 	bool local = smp_processor_id() == f->initiating_cpu;
739 	unsigned long nr_invalidate = 0;
740 
741 	/* This code cannot presently handle being reentered. */
742 	VM_WARN_ON(!irqs_disabled());
743 
744 	if (!local) {
745 		inc_irq_stat(irq_tlb_count);
746 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
747 
748 		/* Can only happen on remote CPUs */
749 		if (f->mm && f->mm != loaded_mm)
750 			return;
751 	}
752 
753 	if (unlikely(loaded_mm == &init_mm))
754 		return;
755 
756 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
757 		   loaded_mm->context.ctx_id);
758 
759 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
760 		/*
761 		 * We're in lazy mode.  We need to at least flush our
762 		 * paging-structure cache to avoid speculatively reading
763 		 * garbage into our TLB.  Since switching to init_mm is barely
764 		 * slower than a minimal flush, just switch to init_mm.
765 		 *
766 		 * This should be rare, with native_flush_tlb_multi() skipping
767 		 * IPIs to lazy TLB mode CPUs.
768 		 */
769 		switch_mm_irqs_off(NULL, &init_mm, NULL);
770 		return;
771 	}
772 
773 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
774 		/*
775 		 * There's nothing to do: we're already up to date.  This can
776 		 * happen if two concurrent flushes happen -- the first flush to
777 		 * be handled can catch us all the way up, leaving no work for
778 		 * the second flush.
779 		 */
780 		goto done;
781 	}
782 
783 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
784 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
785 
786 	/*
787 	 * If we get to this point, we know that our TLB is out of date.
788 	 * This does not strictly imply that we need to flush (it's
789 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
790 	 * going to need to flush in the very near future, so we might
791 	 * as well get it over with.
792 	 *
793 	 * The only question is whether to do a full or partial flush.
794 	 *
795 	 * We do a partial flush if requested and two extra conditions
796 	 * are met:
797 	 *
798 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
799 	 *    we've always done all needed flushes to catch up to
800 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
801 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
802 	 *    us up to date for tlb_gen 3 is the partial flush we're
803 	 *    processing.
804 	 *
805 	 *    As an example of why this check is needed, suppose that there
806 	 *    are two concurrent flushes.  The first is a full flush that
807 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
808 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
809 	 *    processed on this CPU in reverse order, we'll see
810 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
811 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
812 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
813 	 *    1 without the full flush that's needed for tlb_gen 2.
814 	 *
815 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
816 	 *    Partial TLB flushes are not all that much cheaper than full TLB
817 	 *    flushes, so it seems unlikely that it would be a performance win
818 	 *    to do a partial flush if that won't bring our TLB fully up to
819 	 *    date.  By doing a full flush instead, we can increase
820 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
821 	 *    avoid another flush in the very near future.
822 	 */
823 	if (f->end != TLB_FLUSH_ALL &&
824 	    f->new_tlb_gen == local_tlb_gen + 1 &&
825 	    f->new_tlb_gen == mm_tlb_gen) {
826 		/* Partial flush */
827 		unsigned long addr = f->start;
828 
829 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
830 
831 		while (addr < f->end) {
832 			flush_tlb_one_user(addr);
833 			addr += 1UL << f->stride_shift;
834 		}
835 		if (local)
836 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
837 	} else {
838 		/* Full flush. */
839 		nr_invalidate = TLB_FLUSH_ALL;
840 
841 		flush_tlb_local();
842 		if (local)
843 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
844 	}
845 
846 	/* Both paths above update our state to mm_tlb_gen. */
847 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
848 
849 	/* Tracing is done in a unified manner to reduce the code size */
850 done:
851 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
852 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
853 						  TLB_LOCAL_MM_SHOOTDOWN,
854 			nr_invalidate);
855 }
856 
857 static bool tlb_is_not_lazy(int cpu)
858 {
859 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
860 }
861 
862 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
863 
864 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
865 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
866 
867 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
868 					 const struct flush_tlb_info *info)
869 {
870 	/*
871 	 * Do accounting and tracing. Note that there are (and have always been)
872 	 * cases in which a remote TLB flush will be traced, but eventually
873 	 * would not happen.
874 	 */
875 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
876 	if (info->end == TLB_FLUSH_ALL)
877 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
878 	else
879 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
880 				(info->end - info->start) >> PAGE_SHIFT);
881 
882 	/*
883 	 * If no page tables were freed, we can skip sending IPIs to
884 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
885 	 * at the next context switch.
886 	 *
887 	 * However, if page tables are getting freed, we need to send the
888 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
889 	 * up on the new contents of what used to be page tables, while
890 	 * doing a speculative memory access.
891 	 */
892 	if (info->freed_tables) {
893 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
894 	} else {
895 		/*
896 		 * Although we could have used on_each_cpu_cond_mask(),
897 		 * open-coding it has performance advantages, as it eliminates
898 		 * the need for indirect calls or retpolines. In addition, it
899 		 * allows to use a designated cpumask for evaluating the
900 		 * condition, instead of allocating one.
901 		 *
902 		 * This code works under the assumption that there are no nested
903 		 * TLB flushes, an assumption that is already made in
904 		 * flush_tlb_mm_range().
905 		 *
906 		 * cond_cpumask is logically a stack-local variable, but it is
907 		 * more efficient to have it off the stack and not to allocate
908 		 * it on demand. Preemption is disabled and this code is
909 		 * non-reentrant.
910 		 */
911 		struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask);
912 		int cpu;
913 
914 		cpumask_clear(cond_cpumask);
915 
916 		for_each_cpu(cpu, cpumask) {
917 			if (tlb_is_not_lazy(cpu))
918 				__cpumask_set_cpu(cpu, cond_cpumask);
919 		}
920 		on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true);
921 	}
922 }
923 
924 void flush_tlb_multi(const struct cpumask *cpumask,
925 		      const struct flush_tlb_info *info)
926 {
927 	__flush_tlb_multi(cpumask, info);
928 }
929 
930 /*
931  * See Documentation/x86/tlb.rst for details.  We choose 33
932  * because it is large enough to cover the vast majority (at
933  * least 95%) of allocations, and is small enough that we are
934  * confident it will not cause too much overhead.  Each single
935  * flush is about 100 ns, so this caps the maximum overhead at
936  * _about_ 3,000 ns.
937  *
938  * This is in units of pages.
939  */
940 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
941 
942 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
943 
944 #ifdef CONFIG_DEBUG_VM
945 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
946 #endif
947 
948 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
949 			unsigned long start, unsigned long end,
950 			unsigned int stride_shift, bool freed_tables,
951 			u64 new_tlb_gen)
952 {
953 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
954 
955 #ifdef CONFIG_DEBUG_VM
956 	/*
957 	 * Ensure that the following code is non-reentrant and flush_tlb_info
958 	 * is not overwritten. This means no TLB flushing is initiated by
959 	 * interrupt handlers and machine-check exception handlers.
960 	 */
961 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
962 #endif
963 
964 	info->start		= start;
965 	info->end		= end;
966 	info->mm		= mm;
967 	info->stride_shift	= stride_shift;
968 	info->freed_tables	= freed_tables;
969 	info->new_tlb_gen	= new_tlb_gen;
970 	info->initiating_cpu	= smp_processor_id();
971 
972 	return info;
973 }
974 
975 static void put_flush_tlb_info(void)
976 {
977 #ifdef CONFIG_DEBUG_VM
978 	/* Complete reentrancy prevention checks */
979 	barrier();
980 	this_cpu_dec(flush_tlb_info_idx);
981 #endif
982 }
983 
984 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
985 				unsigned long end, unsigned int stride_shift,
986 				bool freed_tables)
987 {
988 	struct flush_tlb_info *info;
989 	u64 new_tlb_gen;
990 	int cpu;
991 
992 	cpu = get_cpu();
993 
994 	/* Should we flush just the requested range? */
995 	if ((end == TLB_FLUSH_ALL) ||
996 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
997 		start = 0;
998 		end = TLB_FLUSH_ALL;
999 	}
1000 
1001 	/* This is also a barrier that synchronizes with switch_mm(). */
1002 	new_tlb_gen = inc_mm_tlb_gen(mm);
1003 
1004 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1005 				  new_tlb_gen);
1006 
1007 	/*
1008 	 * flush_tlb_multi() is not optimized for the common case in which only
1009 	 * a local TLB flush is needed. Optimize this use-case by calling
1010 	 * flush_tlb_func_local() directly in this case.
1011 	 */
1012 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1013 		flush_tlb_multi(mm_cpumask(mm), info);
1014 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1015 		lockdep_assert_irqs_enabled();
1016 		local_irq_disable();
1017 		flush_tlb_func(info);
1018 		local_irq_enable();
1019 	}
1020 
1021 	put_flush_tlb_info();
1022 	put_cpu();
1023 }
1024 
1025 
1026 static void do_flush_tlb_all(void *info)
1027 {
1028 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1029 	__flush_tlb_all();
1030 }
1031 
1032 void flush_tlb_all(void)
1033 {
1034 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1035 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1036 }
1037 
1038 static void do_kernel_range_flush(void *info)
1039 {
1040 	struct flush_tlb_info *f = info;
1041 	unsigned long addr;
1042 
1043 	/* flush range by one by one 'invlpg' */
1044 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1045 		flush_tlb_one_kernel(addr);
1046 }
1047 
1048 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1049 {
1050 	/* Balance as user space task's flush, a bit conservative */
1051 	if (end == TLB_FLUSH_ALL ||
1052 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1053 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1054 	} else {
1055 		struct flush_tlb_info *info;
1056 
1057 		preempt_disable();
1058 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1059 
1060 		on_each_cpu(do_kernel_range_flush, info, 1);
1061 
1062 		put_flush_tlb_info();
1063 		preempt_enable();
1064 	}
1065 }
1066 
1067 /*
1068  * This can be used from process context to figure out what the value of
1069  * CR3 is without needing to do a (slow) __read_cr3().
1070  *
1071  * It's intended to be used for code like KVM that sneakily changes CR3
1072  * and needs to restore it.  It needs to be used very carefully.
1073  */
1074 unsigned long __get_current_cr3_fast(void)
1075 {
1076 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1077 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1078 
1079 	/* For now, be very restrictive about when this can be called. */
1080 	VM_WARN_ON(in_nmi() || preemptible());
1081 
1082 	VM_BUG_ON(cr3 != __read_cr3());
1083 	return cr3;
1084 }
1085 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1086 
1087 /*
1088  * Flush one page in the kernel mapping
1089  */
1090 void flush_tlb_one_kernel(unsigned long addr)
1091 {
1092 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1093 
1094 	/*
1095 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1096 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1097 	 * use PCID if we also use global PTEs for the kernel mapping, and
1098 	 * INVLPG flushes global translations across all address spaces.
1099 	 *
1100 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1101 	 * __flush_tlb_one_user() will flush the given address for the current
1102 	 * kernel address space and for its usermode counterpart, but it does
1103 	 * not flush it for other address spaces.
1104 	 */
1105 	flush_tlb_one_user(addr);
1106 
1107 	if (!static_cpu_has(X86_FEATURE_PTI))
1108 		return;
1109 
1110 	/*
1111 	 * See above.  We need to propagate the flush to all other address
1112 	 * spaces.  In principle, we only need to propagate it to kernelmode
1113 	 * address spaces, but the extra bookkeeping we would need is not
1114 	 * worth it.
1115 	 */
1116 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1117 }
1118 
1119 /*
1120  * Flush one page in the user mapping
1121  */
1122 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1123 {
1124 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1125 
1126 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1127 
1128 	if (!static_cpu_has(X86_FEATURE_PTI))
1129 		return;
1130 
1131 	/*
1132 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1133 	 * Just use invalidate_user_asid() in case we are called early.
1134 	 */
1135 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1136 		invalidate_user_asid(loaded_mm_asid);
1137 	else
1138 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1139 }
1140 
1141 void flush_tlb_one_user(unsigned long addr)
1142 {
1143 	__flush_tlb_one_user(addr);
1144 }
1145 
1146 /*
1147  * Flush everything
1148  */
1149 STATIC_NOPV void native_flush_tlb_global(void)
1150 {
1151 	unsigned long flags;
1152 
1153 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1154 		/*
1155 		 * Using INVPCID is considerably faster than a pair of writes
1156 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1157 		 *
1158 		 * Note, this works with CR4.PCIDE=0 or 1.
1159 		 */
1160 		invpcid_flush_all();
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * Read-modify-write to CR4 - protect it from preemption and
1166 	 * from interrupts. (Use the raw variant because this code can
1167 	 * be called from deep inside debugging code.)
1168 	 */
1169 	raw_local_irq_save(flags);
1170 
1171 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1172 
1173 	raw_local_irq_restore(flags);
1174 }
1175 
1176 /*
1177  * Flush the entire current user mapping
1178  */
1179 STATIC_NOPV void native_flush_tlb_local(void)
1180 {
1181 	/*
1182 	 * Preemption or interrupts must be disabled to protect the access
1183 	 * to the per CPU variable and to prevent being preempted between
1184 	 * read_cr3() and write_cr3().
1185 	 */
1186 	WARN_ON_ONCE(preemptible());
1187 
1188 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1189 
1190 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1191 	native_write_cr3(__native_read_cr3());
1192 }
1193 
1194 void flush_tlb_local(void)
1195 {
1196 	__flush_tlb_local();
1197 }
1198 
1199 /*
1200  * Flush everything
1201  */
1202 void __flush_tlb_all(void)
1203 {
1204 	/*
1205 	 * This is to catch users with enabled preemption and the PGE feature
1206 	 * and don't trigger the warning in __native_flush_tlb().
1207 	 */
1208 	VM_WARN_ON_ONCE(preemptible());
1209 
1210 	if (boot_cpu_has(X86_FEATURE_PGE)) {
1211 		__flush_tlb_global();
1212 	} else {
1213 		/*
1214 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1215 		 */
1216 		flush_tlb_local();
1217 	}
1218 }
1219 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1220 
1221 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1222 {
1223 	struct flush_tlb_info *info;
1224 
1225 	int cpu = get_cpu();
1226 
1227 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1228 	/*
1229 	 * flush_tlb_multi() is not optimized for the common case in which only
1230 	 * a local TLB flush is needed. Optimize this use-case by calling
1231 	 * flush_tlb_func_local() directly in this case.
1232 	 */
1233 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1234 		flush_tlb_multi(&batch->cpumask, info);
1235 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1236 		lockdep_assert_irqs_enabled();
1237 		local_irq_disable();
1238 		flush_tlb_func(info);
1239 		local_irq_enable();
1240 	}
1241 
1242 	cpumask_clear(&batch->cpumask);
1243 
1244 	put_flush_tlb_info();
1245 	put_cpu();
1246 }
1247 
1248 /*
1249  * Blindly accessing user memory from NMI context can be dangerous
1250  * if we're in the middle of switching the current user task or
1251  * switching the loaded mm.  It can also be dangerous if we
1252  * interrupted some kernel code that was temporarily using a
1253  * different mm.
1254  */
1255 bool nmi_uaccess_okay(void)
1256 {
1257 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1258 	struct mm_struct *current_mm = current->mm;
1259 
1260 	VM_WARN_ON_ONCE(!loaded_mm);
1261 
1262 	/*
1263 	 * The condition we want to check is
1264 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1265 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1266 	 * is supposed to be reasonably fast.
1267 	 *
1268 	 * Instead, we check the almost equivalent but somewhat conservative
1269 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1270 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1271 	 */
1272 	if (loaded_mm != current_mm)
1273 		return false;
1274 
1275 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1276 
1277 	return true;
1278 }
1279 
1280 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1281 			     size_t count, loff_t *ppos)
1282 {
1283 	char buf[32];
1284 	unsigned int len;
1285 
1286 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1287 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1288 }
1289 
1290 static ssize_t tlbflush_write_file(struct file *file,
1291 		 const char __user *user_buf, size_t count, loff_t *ppos)
1292 {
1293 	char buf[32];
1294 	ssize_t len;
1295 	int ceiling;
1296 
1297 	len = min(count, sizeof(buf) - 1);
1298 	if (copy_from_user(buf, user_buf, len))
1299 		return -EFAULT;
1300 
1301 	buf[len] = '\0';
1302 	if (kstrtoint(buf, 0, &ceiling))
1303 		return -EINVAL;
1304 
1305 	if (ceiling < 0)
1306 		return -EINVAL;
1307 
1308 	tlb_single_page_flush_ceiling = ceiling;
1309 	return count;
1310 }
1311 
1312 static const struct file_operations fops_tlbflush = {
1313 	.read = tlbflush_read_file,
1314 	.write = tlbflush_write_file,
1315 	.llseek = default_llseek,
1316 };
1317 
1318 static int __init create_tlb_single_page_flush_ceiling(void)
1319 {
1320 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1321 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1322 	return 0;
1323 }
1324 late_initcall(create_tlb_single_page_flush_ceiling);
1325