1 #include <linux/init.h> 2 3 #include <linux/mm.h> 4 #include <linux/spinlock.h> 5 #include <linux/smp.h> 6 #include <linux/interrupt.h> 7 #include <linux/export.h> 8 #include <linux/cpu.h> 9 10 #include <asm/tlbflush.h> 11 #include <asm/mmu_context.h> 12 #include <asm/cache.h> 13 #include <asm/apic.h> 14 #include <asm/uv/uv.h> 15 #include <linux/debugfs.h> 16 17 /* 18 * Smarter SMP flushing macros. 19 * c/o Linus Torvalds. 20 * 21 * These mean you can really definitely utterly forget about 22 * writing to user space from interrupts. (Its not allowed anyway). 23 * 24 * Optimizations Manfred Spraul <manfred@colorfullife.com> 25 * 26 * More scalable flush, from Andi Kleen 27 * 28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 29 */ 30 31 #ifdef CONFIG_SMP 32 33 struct flush_tlb_info { 34 struct mm_struct *flush_mm; 35 unsigned long flush_start; 36 unsigned long flush_end; 37 }; 38 39 /* 40 * We cannot call mmdrop() because we are in interrupt context, 41 * instead update mm->cpu_vm_mask. 42 */ 43 void leave_mm(int cpu) 44 { 45 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm); 46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) 47 BUG(); 48 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) { 49 cpumask_clear_cpu(cpu, mm_cpumask(active_mm)); 50 load_cr3(swapper_pg_dir); 51 /* 52 * This gets called in the idle path where RCU 53 * functions differently. Tracing normally 54 * uses RCU, so we have to call the tracepoint 55 * specially here. 56 */ 57 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 58 } 59 } 60 EXPORT_SYMBOL_GPL(leave_mm); 61 62 #endif /* CONFIG_SMP */ 63 64 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 65 struct task_struct *tsk) 66 { 67 unsigned long flags; 68 69 local_irq_save(flags); 70 switch_mm_irqs_off(prev, next, tsk); 71 local_irq_restore(flags); 72 } 73 74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 75 struct task_struct *tsk) 76 { 77 unsigned cpu = smp_processor_id(); 78 79 if (likely(prev != next)) { 80 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 81 /* 82 * If our current stack is in vmalloc space and isn't 83 * mapped in the new pgd, we'll double-fault. Forcibly 84 * map it. 85 */ 86 unsigned int stack_pgd_index = pgd_index(current_stack_pointer()); 87 88 pgd_t *pgd = next->pgd + stack_pgd_index; 89 90 if (unlikely(pgd_none(*pgd))) 91 set_pgd(pgd, init_mm.pgd[stack_pgd_index]); 92 } 93 94 #ifdef CONFIG_SMP 95 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 96 this_cpu_write(cpu_tlbstate.active_mm, next); 97 #endif 98 99 cpumask_set_cpu(cpu, mm_cpumask(next)); 100 101 /* 102 * Re-load page tables. 103 * 104 * This logic has an ordering constraint: 105 * 106 * CPU 0: Write to a PTE for 'next' 107 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI. 108 * CPU 1: set bit 1 in next's mm_cpumask 109 * CPU 1: load from the PTE that CPU 0 writes (implicit) 110 * 111 * We need to prevent an outcome in which CPU 1 observes 112 * the new PTE value and CPU 0 observes bit 1 clear in 113 * mm_cpumask. (If that occurs, then the IPI will never 114 * be sent, and CPU 0's TLB will contain a stale entry.) 115 * 116 * The bad outcome can occur if either CPU's load is 117 * reordered before that CPU's store, so both CPUs must 118 * execute full barriers to prevent this from happening. 119 * 120 * Thus, switch_mm needs a full barrier between the 121 * store to mm_cpumask and any operation that could load 122 * from next->pgd. TLB fills are special and can happen 123 * due to instruction fetches or for no reason at all, 124 * and neither LOCK nor MFENCE orders them. 125 * Fortunately, load_cr3() is serializing and gives the 126 * ordering guarantee we need. 127 * 128 */ 129 load_cr3(next->pgd); 130 131 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 132 133 /* Stop flush ipis for the previous mm */ 134 cpumask_clear_cpu(cpu, mm_cpumask(prev)); 135 136 /* Load per-mm CR4 state */ 137 load_mm_cr4(next); 138 139 #ifdef CONFIG_MODIFY_LDT_SYSCALL 140 /* 141 * Load the LDT, if the LDT is different. 142 * 143 * It's possible that prev->context.ldt doesn't match 144 * the LDT register. This can happen if leave_mm(prev) 145 * was called and then modify_ldt changed 146 * prev->context.ldt but suppressed an IPI to this CPU. 147 * In this case, prev->context.ldt != NULL, because we 148 * never set context.ldt to NULL while the mm still 149 * exists. That means that next->context.ldt != 150 * prev->context.ldt, because mms never share an LDT. 151 */ 152 if (unlikely(prev->context.ldt != next->context.ldt)) 153 load_mm_ldt(next); 154 #endif 155 } 156 #ifdef CONFIG_SMP 157 else { 158 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 159 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next); 160 161 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) { 162 /* 163 * On established mms, the mm_cpumask is only changed 164 * from irq context, from ptep_clear_flush() while in 165 * lazy tlb mode, and here. Irqs are blocked during 166 * schedule, protecting us from simultaneous changes. 167 */ 168 cpumask_set_cpu(cpu, mm_cpumask(next)); 169 170 /* 171 * We were in lazy tlb mode and leave_mm disabled 172 * tlb flush IPI delivery. We must reload CR3 173 * to make sure to use no freed page tables. 174 * 175 * As above, load_cr3() is serializing and orders TLB 176 * fills with respect to the mm_cpumask write. 177 */ 178 load_cr3(next->pgd); 179 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 180 load_mm_cr4(next); 181 load_mm_ldt(next); 182 } 183 } 184 #endif 185 } 186 187 #ifdef CONFIG_SMP 188 189 /* 190 * The flush IPI assumes that a thread switch happens in this order: 191 * [cpu0: the cpu that switches] 192 * 1) switch_mm() either 1a) or 1b) 193 * 1a) thread switch to a different mm 194 * 1a1) set cpu_tlbstate to TLBSTATE_OK 195 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm 196 * if cpu0 was in lazy tlb mode. 197 * 1a2) update cpu active_mm 198 * Now cpu0 accepts tlb flushes for the new mm. 199 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask); 200 * Now the other cpus will send tlb flush ipis. 201 * 1a4) change cr3. 202 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask); 203 * Stop ipi delivery for the old mm. This is not synchronized with 204 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong 205 * mm, and in the worst case we perform a superfluous tlb flush. 206 * 1b) thread switch without mm change 207 * cpu active_mm is correct, cpu0 already handles flush ipis. 208 * 1b1) set cpu_tlbstate to TLBSTATE_OK 209 * 1b2) test_and_set the cpu bit in cpu_vm_mask. 210 * Atomically set the bit [other cpus will start sending flush ipis], 211 * and test the bit. 212 * 1b3) if the bit was 0: leave_mm was called, flush the tlb. 213 * 2) switch %%esp, ie current 214 * 215 * The interrupt must handle 2 special cases: 216 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. 217 * - the cpu performs speculative tlb reads, i.e. even if the cpu only 218 * runs in kernel space, the cpu could load tlb entries for user space 219 * pages. 220 * 221 * The good news is that cpu_tlbstate is local to each cpu, no 222 * write/read ordering problems. 223 */ 224 225 /* 226 * TLB flush funcation: 227 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. 228 * 2) Leave the mm if we are in the lazy tlb mode. 229 */ 230 static void flush_tlb_func(void *info) 231 { 232 struct flush_tlb_info *f = info; 233 234 inc_irq_stat(irq_tlb_count); 235 236 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm)) 237 return; 238 239 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 240 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { 241 if (f->flush_end == TLB_FLUSH_ALL) { 242 local_flush_tlb(); 243 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL); 244 } else { 245 unsigned long addr; 246 unsigned long nr_pages = 247 (f->flush_end - f->flush_start) / PAGE_SIZE; 248 addr = f->flush_start; 249 while (addr < f->flush_end) { 250 __flush_tlb_single(addr); 251 addr += PAGE_SIZE; 252 } 253 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages); 254 } 255 } else 256 leave_mm(smp_processor_id()); 257 258 } 259 260 void native_flush_tlb_others(const struct cpumask *cpumask, 261 struct mm_struct *mm, unsigned long start, 262 unsigned long end) 263 { 264 struct flush_tlb_info info; 265 266 info.flush_mm = mm; 267 info.flush_start = start; 268 info.flush_end = end; 269 270 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 271 if (end == TLB_FLUSH_ALL) 272 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 273 else 274 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 275 (end - start) >> PAGE_SHIFT); 276 277 if (is_uv_system()) { 278 unsigned int cpu; 279 280 cpu = smp_processor_id(); 281 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu); 282 if (cpumask) 283 smp_call_function_many(cpumask, flush_tlb_func, 284 &info, 1); 285 return; 286 } 287 smp_call_function_many(cpumask, flush_tlb_func, &info, 1); 288 } 289 290 /* 291 * See Documentation/x86/tlb.txt for details. We choose 33 292 * because it is large enough to cover the vast majority (at 293 * least 95%) of allocations, and is small enough that we are 294 * confident it will not cause too much overhead. Each single 295 * flush is about 100 ns, so this caps the maximum overhead at 296 * _about_ 3,000 ns. 297 * 298 * This is in units of pages. 299 */ 300 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 301 302 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 303 unsigned long end, unsigned long vmflag) 304 { 305 unsigned long addr; 306 /* do a global flush by default */ 307 unsigned long base_pages_to_flush = TLB_FLUSH_ALL; 308 309 preempt_disable(); 310 311 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB)) 312 base_pages_to_flush = (end - start) >> PAGE_SHIFT; 313 if (base_pages_to_flush > tlb_single_page_flush_ceiling) 314 base_pages_to_flush = TLB_FLUSH_ALL; 315 316 if (current->active_mm != mm) { 317 /* Synchronize with switch_mm. */ 318 smp_mb(); 319 320 goto out; 321 } 322 323 if (!current->mm) { 324 leave_mm(smp_processor_id()); 325 326 /* Synchronize with switch_mm. */ 327 smp_mb(); 328 329 goto out; 330 } 331 332 /* 333 * Both branches below are implicit full barriers (MOV to CR or 334 * INVLPG) that synchronize with switch_mm. 335 */ 336 if (base_pages_to_flush == TLB_FLUSH_ALL) { 337 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 338 local_flush_tlb(); 339 } else { 340 /* flush range by one by one 'invlpg' */ 341 for (addr = start; addr < end; addr += PAGE_SIZE) { 342 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 343 __flush_tlb_single(addr); 344 } 345 } 346 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush); 347 out: 348 if (base_pages_to_flush == TLB_FLUSH_ALL) { 349 start = 0UL; 350 end = TLB_FLUSH_ALL; 351 } 352 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) 353 flush_tlb_others(mm_cpumask(mm), mm, start, end); 354 preempt_enable(); 355 } 356 357 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start) 358 { 359 struct mm_struct *mm = vma->vm_mm; 360 361 preempt_disable(); 362 363 if (current->active_mm == mm) { 364 if (current->mm) { 365 /* 366 * Implicit full barrier (INVLPG) that synchronizes 367 * with switch_mm. 368 */ 369 __flush_tlb_one(start); 370 } else { 371 leave_mm(smp_processor_id()); 372 373 /* Synchronize with switch_mm. */ 374 smp_mb(); 375 } 376 } 377 378 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) 379 flush_tlb_others(mm_cpumask(mm), mm, start, start + PAGE_SIZE); 380 381 preempt_enable(); 382 } 383 384 static void do_flush_tlb_all(void *info) 385 { 386 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 387 __flush_tlb_all(); 388 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) 389 leave_mm(smp_processor_id()); 390 } 391 392 void flush_tlb_all(void) 393 { 394 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 395 on_each_cpu(do_flush_tlb_all, NULL, 1); 396 } 397 398 static void do_kernel_range_flush(void *info) 399 { 400 struct flush_tlb_info *f = info; 401 unsigned long addr; 402 403 /* flush range by one by one 'invlpg' */ 404 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE) 405 __flush_tlb_single(addr); 406 } 407 408 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 409 { 410 411 /* Balance as user space task's flush, a bit conservative */ 412 if (end == TLB_FLUSH_ALL || 413 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) { 414 on_each_cpu(do_flush_tlb_all, NULL, 1); 415 } else { 416 struct flush_tlb_info info; 417 info.flush_start = start; 418 info.flush_end = end; 419 on_each_cpu(do_kernel_range_flush, &info, 1); 420 } 421 } 422 423 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 424 size_t count, loff_t *ppos) 425 { 426 char buf[32]; 427 unsigned int len; 428 429 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 430 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 431 } 432 433 static ssize_t tlbflush_write_file(struct file *file, 434 const char __user *user_buf, size_t count, loff_t *ppos) 435 { 436 char buf[32]; 437 ssize_t len; 438 int ceiling; 439 440 len = min(count, sizeof(buf) - 1); 441 if (copy_from_user(buf, user_buf, len)) 442 return -EFAULT; 443 444 buf[len] = '\0'; 445 if (kstrtoint(buf, 0, &ceiling)) 446 return -EINVAL; 447 448 if (ceiling < 0) 449 return -EINVAL; 450 451 tlb_single_page_flush_ceiling = ceiling; 452 return count; 453 } 454 455 static const struct file_operations fops_tlbflush = { 456 .read = tlbflush_read_file, 457 .write = tlbflush_write_file, 458 .llseek = default_llseek, 459 }; 460 461 static int __init create_tlb_single_page_flush_ceiling(void) 462 { 463 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 464 arch_debugfs_dir, NULL, &fops_tlbflush); 465 return 0; 466 } 467 late_initcall(create_tlb_single_page_flush_ceiling); 468 469 #endif /* CONFIG_SMP */ 470