1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 #include <linux/mmu_notifier.h> 14 15 #include <asm/tlbflush.h> 16 #include <asm/mmu_context.h> 17 #include <asm/nospec-branch.h> 18 #include <asm/cache.h> 19 #include <asm/cacheflush.h> 20 #include <asm/apic.h> 21 #include <asm/perf_event.h> 22 23 #include "mm_internal.h" 24 25 #ifdef CONFIG_PARAVIRT 26 # define STATIC_NOPV 27 #else 28 # define STATIC_NOPV static 29 # define __flush_tlb_local native_flush_tlb_local 30 # define __flush_tlb_global native_flush_tlb_global 31 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 32 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 33 #endif 34 35 /* 36 * TLB flushing, formerly SMP-only 37 * c/o Linus Torvalds. 38 * 39 * These mean you can really definitely utterly forget about 40 * writing to user space from interrupts. (Its not allowed anyway). 41 * 42 * Optimizations Manfred Spraul <manfred@colorfullife.com> 43 * 44 * More scalable flush, from Andi Kleen 45 * 46 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 47 */ 48 49 /* 50 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 51 * stored in cpu_tlb_state.last_user_mm_spec. 52 */ 53 #define LAST_USER_MM_IBPB 0x1UL 54 #define LAST_USER_MM_L1D_FLUSH 0x2UL 55 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 56 57 /* Bits to set when tlbstate and flush is (re)initialized */ 58 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 59 60 /* 61 * The x86 feature is called PCID (Process Context IDentifier). It is similar 62 * to what is traditionally called ASID on the RISC processors. 63 * 64 * We don't use the traditional ASID implementation, where each process/mm gets 65 * its own ASID and flush/restart when we run out of ASID space. 66 * 67 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 68 * that came by on this CPU, allowing cheaper switch_mm between processes on 69 * this CPU. 70 * 71 * We end up with different spaces for different things. To avoid confusion we 72 * use different names for each of them: 73 * 74 * ASID - [0, TLB_NR_DYN_ASIDS-1] 75 * the canonical identifier for an mm 76 * 77 * kPCID - [1, TLB_NR_DYN_ASIDS] 78 * the value we write into the PCID part of CR3; corresponds to the 79 * ASID+1, because PCID 0 is special. 80 * 81 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 82 * for KPTI each mm has two address spaces and thus needs two 83 * PCID values, but we can still do with a single ASID denomination 84 * for each mm. Corresponds to kPCID + 2048. 85 * 86 */ 87 88 /* There are 12 bits of space for ASIDS in CR3 */ 89 #define CR3_HW_ASID_BITS 12 90 91 /* 92 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 93 * user/kernel switches 94 */ 95 #ifdef CONFIG_PAGE_TABLE_ISOLATION 96 # define PTI_CONSUMED_PCID_BITS 1 97 #else 98 # define PTI_CONSUMED_PCID_BITS 0 99 #endif 100 101 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 102 103 /* 104 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 105 * for them being zero-based. Another -1 is because PCID 0 is reserved for 106 * use by non-PCID-aware users. 107 */ 108 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 109 110 /* 111 * Given @asid, compute kPCID 112 */ 113 static inline u16 kern_pcid(u16 asid) 114 { 115 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 116 117 #ifdef CONFIG_PAGE_TABLE_ISOLATION 118 /* 119 * Make sure that the dynamic ASID space does not conflict with the 120 * bit we are using to switch between user and kernel ASIDs. 121 */ 122 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 123 124 /* 125 * The ASID being passed in here should have respected the 126 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 127 */ 128 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 129 #endif 130 /* 131 * The dynamically-assigned ASIDs that get passed in are small 132 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 133 * so do not bother to clear it. 134 * 135 * If PCID is on, ASID-aware code paths put the ASID+1 into the 136 * PCID bits. This serves two purposes. It prevents a nasty 137 * situation in which PCID-unaware code saves CR3, loads some other 138 * value (with PCID == 0), and then restores CR3, thus corrupting 139 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 140 * that any bugs involving loading a PCID-enabled CR3 with 141 * CR4.PCIDE off will trigger deterministically. 142 */ 143 return asid + 1; 144 } 145 146 /* 147 * Given @asid, compute uPCID 148 */ 149 static inline u16 user_pcid(u16 asid) 150 { 151 u16 ret = kern_pcid(asid); 152 #ifdef CONFIG_PAGE_TABLE_ISOLATION 153 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 154 #endif 155 return ret; 156 } 157 158 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) 159 { 160 unsigned long cr3 = __sme_pa(pgd) | lam; 161 162 if (static_cpu_has(X86_FEATURE_PCID)) { 163 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 164 cr3 |= kern_pcid(asid); 165 } else { 166 VM_WARN_ON_ONCE(asid != 0); 167 } 168 169 return cr3; 170 } 171 172 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, 173 unsigned long lam) 174 { 175 /* 176 * Use boot_cpu_has() instead of this_cpu_has() as this function 177 * might be called during early boot. This should work even after 178 * boot because all CPU's the have same capabilities: 179 */ 180 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 181 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; 182 } 183 184 /* 185 * We get here when we do something requiring a TLB invalidation 186 * but could not go invalidate all of the contexts. We do the 187 * necessary invalidation by clearing out the 'ctx_id' which 188 * forces a TLB flush when the context is loaded. 189 */ 190 static void clear_asid_other(void) 191 { 192 u16 asid; 193 194 /* 195 * This is only expected to be set if we have disabled 196 * kernel _PAGE_GLOBAL pages. 197 */ 198 if (!static_cpu_has(X86_FEATURE_PTI)) { 199 WARN_ON_ONCE(1); 200 return; 201 } 202 203 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 204 /* Do not need to flush the current asid */ 205 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 206 continue; 207 /* 208 * Make sure the next time we go to switch to 209 * this asid, we do a flush: 210 */ 211 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 212 } 213 this_cpu_write(cpu_tlbstate.invalidate_other, false); 214 } 215 216 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 217 218 219 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 220 u16 *new_asid, bool *need_flush) 221 { 222 u16 asid; 223 224 if (!static_cpu_has(X86_FEATURE_PCID)) { 225 *new_asid = 0; 226 *need_flush = true; 227 return; 228 } 229 230 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 231 clear_asid_other(); 232 233 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 234 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 235 next->context.ctx_id) 236 continue; 237 238 *new_asid = asid; 239 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 240 next_tlb_gen); 241 return; 242 } 243 244 /* 245 * We don't currently own an ASID slot on this CPU. 246 * Allocate a slot. 247 */ 248 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 249 if (*new_asid >= TLB_NR_DYN_ASIDS) { 250 *new_asid = 0; 251 this_cpu_write(cpu_tlbstate.next_asid, 1); 252 } 253 *need_flush = true; 254 } 255 256 /* 257 * Given an ASID, flush the corresponding user ASID. We can delay this 258 * until the next time we switch to it. 259 * 260 * See SWITCH_TO_USER_CR3. 261 */ 262 static inline void invalidate_user_asid(u16 asid) 263 { 264 /* There is no user ASID if address space separation is off */ 265 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 266 return; 267 268 /* 269 * We only have a single ASID if PCID is off and the CR3 270 * write will have flushed it. 271 */ 272 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 273 return; 274 275 if (!static_cpu_has(X86_FEATURE_PTI)) 276 return; 277 278 __set_bit(kern_pcid(asid), 279 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 280 } 281 282 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, 283 bool need_flush) 284 { 285 unsigned long new_mm_cr3; 286 287 if (need_flush) { 288 invalidate_user_asid(new_asid); 289 new_mm_cr3 = build_cr3(pgdir, new_asid, lam); 290 } else { 291 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); 292 } 293 294 /* 295 * Caution: many callers of this function expect 296 * that load_cr3() is serializing and orders TLB 297 * fills with respect to the mm_cpumask writes. 298 */ 299 write_cr3(new_mm_cr3); 300 } 301 302 void leave_mm(int cpu) 303 { 304 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 305 306 /* 307 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 308 * If so, our callers still expect us to flush the TLB, but there 309 * aren't any user TLB entries in init_mm to worry about. 310 * 311 * This needs to happen before any other sanity checks due to 312 * intel_idle's shenanigans. 313 */ 314 if (loaded_mm == &init_mm) 315 return; 316 317 /* Warn if we're not lazy. */ 318 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 319 320 switch_mm(NULL, &init_mm, NULL); 321 } 322 EXPORT_SYMBOL_GPL(leave_mm); 323 324 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 325 struct task_struct *tsk) 326 { 327 unsigned long flags; 328 329 local_irq_save(flags); 330 switch_mm_irqs_off(prev, next, tsk); 331 local_irq_restore(flags); 332 } 333 334 /* 335 * Invoked from return to user/guest by a task that opted-in to L1D 336 * flushing but ended up running on an SMT enabled core due to wrong 337 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 338 * contract which this task requested. 339 */ 340 static void l1d_flush_force_sigbus(struct callback_head *ch) 341 { 342 force_sig(SIGBUS); 343 } 344 345 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 346 struct task_struct *next) 347 { 348 /* Flush L1D if the outgoing task requests it */ 349 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 350 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 351 352 /* Check whether the incoming task opted in for L1D flush */ 353 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 354 return; 355 356 /* 357 * Validate that it is not running on an SMT sibling as this would 358 * make the excercise pointless because the siblings share L1D. If 359 * it runs on a SMT sibling, notify it with SIGBUS on return to 360 * user/guest 361 */ 362 if (this_cpu_read(cpu_info.smt_active)) { 363 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 364 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 365 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 366 } 367 } 368 369 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 370 { 371 unsigned long next_tif = read_task_thread_flags(next); 372 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 373 374 /* 375 * Ensure that the bit shift above works as expected and the two flags 376 * end up in bit 0 and 1. 377 */ 378 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 379 380 return (unsigned long)next->mm | spec_bits; 381 } 382 383 static void cond_mitigation(struct task_struct *next) 384 { 385 unsigned long prev_mm, next_mm; 386 387 if (!next || !next->mm) 388 return; 389 390 next_mm = mm_mangle_tif_spec_bits(next); 391 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 392 393 /* 394 * Avoid user/user BTB poisoning by flushing the branch predictor 395 * when switching between processes. This stops one process from 396 * doing Spectre-v2 attacks on another. 397 * 398 * Both, the conditional and the always IBPB mode use the mm 399 * pointer to avoid the IBPB when switching between tasks of the 400 * same process. Using the mm pointer instead of mm->context.ctx_id 401 * opens a hypothetical hole vs. mm_struct reuse, which is more or 402 * less impossible to control by an attacker. Aside of that it 403 * would only affect the first schedule so the theoretically 404 * exposed data is not really interesting. 405 */ 406 if (static_branch_likely(&switch_mm_cond_ibpb)) { 407 /* 408 * This is a bit more complex than the always mode because 409 * it has to handle two cases: 410 * 411 * 1) Switch from a user space task (potential attacker) 412 * which has TIF_SPEC_IB set to a user space task 413 * (potential victim) which has TIF_SPEC_IB not set. 414 * 415 * 2) Switch from a user space task (potential attacker) 416 * which has TIF_SPEC_IB not set to a user space task 417 * (potential victim) which has TIF_SPEC_IB set. 418 * 419 * This could be done by unconditionally issuing IBPB when 420 * a task which has TIF_SPEC_IB set is either scheduled in 421 * or out. Though that results in two flushes when: 422 * 423 * - the same user space task is scheduled out and later 424 * scheduled in again and only a kernel thread ran in 425 * between. 426 * 427 * - a user space task belonging to the same process is 428 * scheduled in after a kernel thread ran in between 429 * 430 * - a user space task belonging to the same process is 431 * scheduled in immediately. 432 * 433 * Optimize this with reasonably small overhead for the 434 * above cases. Mangle the TIF_SPEC_IB bit into the mm 435 * pointer of the incoming task which is stored in 436 * cpu_tlbstate.last_user_mm_spec for comparison. 437 * 438 * Issue IBPB only if the mm's are different and one or 439 * both have the IBPB bit set. 440 */ 441 if (next_mm != prev_mm && 442 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 443 indirect_branch_prediction_barrier(); 444 } 445 446 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 447 /* 448 * Only flush when switching to a user space task with a 449 * different context than the user space task which ran 450 * last on this CPU. 451 */ 452 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != 453 (unsigned long)next->mm) 454 indirect_branch_prediction_barrier(); 455 } 456 457 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 458 /* 459 * Flush L1D when the outgoing task requested it and/or 460 * check whether the incoming task requested L1D flushing 461 * and ended up on an SMT sibling. 462 */ 463 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 464 l1d_flush_evaluate(prev_mm, next_mm, next); 465 } 466 467 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 468 } 469 470 #ifdef CONFIG_PERF_EVENTS 471 static inline void cr4_update_pce_mm(struct mm_struct *mm) 472 { 473 if (static_branch_unlikely(&rdpmc_always_available_key) || 474 (!static_branch_unlikely(&rdpmc_never_available_key) && 475 atomic_read(&mm->context.perf_rdpmc_allowed))) { 476 /* 477 * Clear the existing dirty counters to 478 * prevent the leak for an RDPMC task. 479 */ 480 perf_clear_dirty_counters(); 481 cr4_set_bits_irqsoff(X86_CR4_PCE); 482 } else 483 cr4_clear_bits_irqsoff(X86_CR4_PCE); 484 } 485 486 void cr4_update_pce(void *ignored) 487 { 488 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 489 } 490 491 #else 492 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 493 #endif 494 495 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 496 struct task_struct *tsk) 497 { 498 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 499 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 500 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 501 unsigned cpu = smp_processor_id(); 502 unsigned long new_lam; 503 u64 next_tlb_gen; 504 bool need_flush; 505 u16 new_asid; 506 507 /* 508 * NB: The scheduler will call us with prev == next when switching 509 * from lazy TLB mode to normal mode if active_mm isn't changing. 510 * When this happens, we don't assume that CR3 (and hence 511 * cpu_tlbstate.loaded_mm) matches next. 512 * 513 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 514 */ 515 516 /* We don't want flush_tlb_func() to run concurrently with us. */ 517 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 518 WARN_ON_ONCE(!irqs_disabled()); 519 520 /* 521 * Verify that CR3 is what we think it is. This will catch 522 * hypothetical buggy code that directly switches to swapper_pg_dir 523 * without going through leave_mm() / switch_mm_irqs_off() or that 524 * does something like write_cr3(read_cr3_pa()). 525 * 526 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 527 * isn't free. 528 */ 529 #ifdef CONFIG_DEBUG_VM 530 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid, 531 tlbstate_lam_cr3_mask()))) { 532 /* 533 * If we were to BUG here, we'd be very likely to kill 534 * the system so hard that we don't see the call trace. 535 * Try to recover instead by ignoring the error and doing 536 * a global flush to minimize the chance of corruption. 537 * 538 * (This is far from being a fully correct recovery. 539 * Architecturally, the CPU could prefetch something 540 * back into an incorrect ASID slot and leave it there 541 * to cause trouble down the road. It's better than 542 * nothing, though.) 543 */ 544 __flush_tlb_all(); 545 } 546 #endif 547 if (was_lazy) 548 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 549 550 /* 551 * The membarrier system call requires a full memory barrier and 552 * core serialization before returning to user-space, after 553 * storing to rq->curr, when changing mm. This is because 554 * membarrier() sends IPIs to all CPUs that are in the target mm 555 * to make them issue memory barriers. However, if another CPU 556 * switches to/from the target mm concurrently with 557 * membarrier(), it can cause that CPU not to receive an IPI 558 * when it really should issue a memory barrier. Writing to CR3 559 * provides that full memory barrier and core serializing 560 * instruction. 561 */ 562 if (real_prev == next) { 563 /* Not actually switching mm's */ 564 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 565 next->context.ctx_id); 566 567 /* 568 * If this races with another thread that enables lam, 'new_lam' 569 * might not match tlbstate_lam_cr3_mask(). 570 */ 571 572 /* 573 * Even in lazy TLB mode, the CPU should stay set in the 574 * mm_cpumask. The TLB shootdown code can figure out from 575 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 576 */ 577 if (WARN_ON_ONCE(real_prev != &init_mm && 578 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 579 cpumask_set_cpu(cpu, mm_cpumask(next)); 580 581 /* 582 * If the CPU is not in lazy TLB mode, we are just switching 583 * from one thread in a process to another thread in the same 584 * process. No TLB flush required. 585 */ 586 if (!was_lazy) 587 return; 588 589 /* 590 * Read the tlb_gen to check whether a flush is needed. 591 * If the TLB is up to date, just use it. 592 * The barrier synchronizes with the tlb_gen increment in 593 * the TLB shootdown code. 594 */ 595 smp_mb(); 596 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 597 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 598 next_tlb_gen) 599 return; 600 601 /* 602 * TLB contents went out of date while we were in lazy 603 * mode. Fall through to the TLB switching code below. 604 */ 605 new_asid = prev_asid; 606 need_flush = true; 607 } else { 608 /* 609 * Apply process to process speculation vulnerability 610 * mitigations if applicable. 611 */ 612 cond_mitigation(tsk); 613 614 /* 615 * Stop remote flushes for the previous mm. 616 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 617 * but the bitmap manipulation can cause cache line contention. 618 */ 619 if (real_prev != &init_mm) { 620 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 621 mm_cpumask(real_prev))); 622 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 623 } 624 625 /* Start receiving IPIs and then read tlb_gen (and LAM below) */ 626 if (next != &init_mm) 627 cpumask_set_cpu(cpu, mm_cpumask(next)); 628 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 629 630 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 631 632 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 633 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 634 barrier(); 635 } 636 637 new_lam = mm_lam_cr3_mask(next); 638 set_tlbstate_lam_mode(next); 639 if (need_flush) { 640 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 641 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 642 load_new_mm_cr3(next->pgd, new_asid, new_lam, true); 643 644 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 645 } else { 646 /* The new ASID is already up to date. */ 647 load_new_mm_cr3(next->pgd, new_asid, new_lam, false); 648 649 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 650 } 651 652 /* Make sure we write CR3 before loaded_mm. */ 653 barrier(); 654 655 this_cpu_write(cpu_tlbstate.loaded_mm, next); 656 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 657 658 if (next != real_prev) { 659 cr4_update_pce_mm(next); 660 switch_ldt(real_prev, next); 661 } 662 } 663 664 /* 665 * Please ignore the name of this function. It should be called 666 * switch_to_kernel_thread(). 667 * 668 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 669 * kernel thread or other context without an mm. Acceptable implementations 670 * include doing nothing whatsoever, switching to init_mm, or various clever 671 * lazy tricks to try to minimize TLB flushes. 672 * 673 * The scheduler reserves the right to call enter_lazy_tlb() several times 674 * in a row. It will notify us that we're going back to a real mm by 675 * calling switch_mm_irqs_off(). 676 */ 677 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 678 { 679 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 680 return; 681 682 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 683 } 684 685 /* 686 * Call this when reinitializing a CPU. It fixes the following potential 687 * problems: 688 * 689 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 690 * because the CPU was taken down and came back up with CR3's PCID 691 * bits clear. CPU hotplug can do this. 692 * 693 * - The TLB contains junk in slots corresponding to inactive ASIDs. 694 * 695 * - The CPU went so far out to lunch that it may have missed a TLB 696 * flush. 697 */ 698 void initialize_tlbstate_and_flush(void) 699 { 700 int i; 701 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 702 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 703 unsigned long cr3 = __read_cr3(); 704 705 /* Assert that CR3 already references the right mm. */ 706 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 707 708 /* LAM expected to be disabled */ 709 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); 710 WARN_ON(mm_lam_cr3_mask(mm)); 711 712 /* 713 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 714 * doesn't work like other CR4 bits because it can only be set from 715 * long mode.) 716 */ 717 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 718 !(cr4_read_shadow() & X86_CR4_PCIDE)); 719 720 /* Disable LAM, force ASID 0 and force a TLB flush. */ 721 write_cr3(build_cr3(mm->pgd, 0, 0)); 722 723 /* Reinitialize tlbstate. */ 724 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 725 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 726 this_cpu_write(cpu_tlbstate.next_asid, 1); 727 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 728 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 729 set_tlbstate_lam_mode(mm); 730 731 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 732 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 733 } 734 735 /* 736 * flush_tlb_func()'s memory ordering requirement is that any 737 * TLB fills that happen after we flush the TLB are ordered after we 738 * read active_mm's tlb_gen. We don't need any explicit barriers 739 * because all x86 flush operations are serializing and the 740 * atomic64_read operation won't be reordered by the compiler. 741 */ 742 static void flush_tlb_func(void *info) 743 { 744 /* 745 * We have three different tlb_gen values in here. They are: 746 * 747 * - mm_tlb_gen: the latest generation. 748 * - local_tlb_gen: the generation that this CPU has already caught 749 * up to. 750 * - f->new_tlb_gen: the generation that the requester of the flush 751 * wants us to catch up to. 752 */ 753 const struct flush_tlb_info *f = info; 754 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 755 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 756 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 757 bool local = smp_processor_id() == f->initiating_cpu; 758 unsigned long nr_invalidate = 0; 759 u64 mm_tlb_gen; 760 761 /* This code cannot presently handle being reentered. */ 762 VM_WARN_ON(!irqs_disabled()); 763 764 if (!local) { 765 inc_irq_stat(irq_tlb_count); 766 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 767 768 /* Can only happen on remote CPUs */ 769 if (f->mm && f->mm != loaded_mm) 770 return; 771 } 772 773 if (unlikely(loaded_mm == &init_mm)) 774 return; 775 776 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 777 loaded_mm->context.ctx_id); 778 779 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 780 /* 781 * We're in lazy mode. We need to at least flush our 782 * paging-structure cache to avoid speculatively reading 783 * garbage into our TLB. Since switching to init_mm is barely 784 * slower than a minimal flush, just switch to init_mm. 785 * 786 * This should be rare, with native_flush_tlb_multi() skipping 787 * IPIs to lazy TLB mode CPUs. 788 */ 789 switch_mm_irqs_off(NULL, &init_mm, NULL); 790 return; 791 } 792 793 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 794 f->new_tlb_gen <= local_tlb_gen)) { 795 /* 796 * The TLB is already up to date in respect to f->new_tlb_gen. 797 * While the core might be still behind mm_tlb_gen, checking 798 * mm_tlb_gen unnecessarily would have negative caching effects 799 * so avoid it. 800 */ 801 return; 802 } 803 804 /* 805 * Defer mm_tlb_gen reading as long as possible to avoid cache 806 * contention. 807 */ 808 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 809 810 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 811 /* 812 * There's nothing to do: we're already up to date. This can 813 * happen if two concurrent flushes happen -- the first flush to 814 * be handled can catch us all the way up, leaving no work for 815 * the second flush. 816 */ 817 goto done; 818 } 819 820 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 821 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 822 823 /* 824 * If we get to this point, we know that our TLB is out of date. 825 * This does not strictly imply that we need to flush (it's 826 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 827 * going to need to flush in the very near future, so we might 828 * as well get it over with. 829 * 830 * The only question is whether to do a full or partial flush. 831 * 832 * We do a partial flush if requested and two extra conditions 833 * are met: 834 * 835 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 836 * we've always done all needed flushes to catch up to 837 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 838 * f->new_tlb_gen == 3, then we know that the flush needed to bring 839 * us up to date for tlb_gen 3 is the partial flush we're 840 * processing. 841 * 842 * As an example of why this check is needed, suppose that there 843 * are two concurrent flushes. The first is a full flush that 844 * changes context.tlb_gen from 1 to 2. The second is a partial 845 * flush that changes context.tlb_gen from 2 to 3. If they get 846 * processed on this CPU in reverse order, we'll see 847 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 848 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 849 * 3, we'd be break the invariant: we'd update local_tlb_gen above 850 * 1 without the full flush that's needed for tlb_gen 2. 851 * 852 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 853 * Partial TLB flushes are not all that much cheaper than full TLB 854 * flushes, so it seems unlikely that it would be a performance win 855 * to do a partial flush if that won't bring our TLB fully up to 856 * date. By doing a full flush instead, we can increase 857 * local_tlb_gen all the way to mm_tlb_gen and we can probably 858 * avoid another flush in the very near future. 859 */ 860 if (f->end != TLB_FLUSH_ALL && 861 f->new_tlb_gen == local_tlb_gen + 1 && 862 f->new_tlb_gen == mm_tlb_gen) { 863 /* Partial flush */ 864 unsigned long addr = f->start; 865 866 /* Partial flush cannot have invalid generations */ 867 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 868 869 /* Partial flush must have valid mm */ 870 VM_WARN_ON(f->mm == NULL); 871 872 nr_invalidate = (f->end - f->start) >> f->stride_shift; 873 874 while (addr < f->end) { 875 flush_tlb_one_user(addr); 876 addr += 1UL << f->stride_shift; 877 } 878 if (local) 879 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 880 } else { 881 /* Full flush. */ 882 nr_invalidate = TLB_FLUSH_ALL; 883 884 flush_tlb_local(); 885 if (local) 886 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 887 } 888 889 /* Both paths above update our state to mm_tlb_gen. */ 890 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 891 892 /* Tracing is done in a unified manner to reduce the code size */ 893 done: 894 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 895 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 896 TLB_LOCAL_MM_SHOOTDOWN, 897 nr_invalidate); 898 } 899 900 static bool tlb_is_not_lazy(int cpu, void *data) 901 { 902 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 903 } 904 905 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 906 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 907 908 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 909 const struct flush_tlb_info *info) 910 { 911 /* 912 * Do accounting and tracing. Note that there are (and have always been) 913 * cases in which a remote TLB flush will be traced, but eventually 914 * would not happen. 915 */ 916 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 917 if (info->end == TLB_FLUSH_ALL) 918 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 919 else 920 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 921 (info->end - info->start) >> PAGE_SHIFT); 922 923 /* 924 * If no page tables were freed, we can skip sending IPIs to 925 * CPUs in lazy TLB mode. They will flush the CPU themselves 926 * at the next context switch. 927 * 928 * However, if page tables are getting freed, we need to send the 929 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 930 * up on the new contents of what used to be page tables, while 931 * doing a speculative memory access. 932 */ 933 if (info->freed_tables) 934 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 935 else 936 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func, 937 (void *)info, 1, cpumask); 938 } 939 940 void flush_tlb_multi(const struct cpumask *cpumask, 941 const struct flush_tlb_info *info) 942 { 943 __flush_tlb_multi(cpumask, info); 944 } 945 946 /* 947 * See Documentation/arch/x86/tlb.rst for details. We choose 33 948 * because it is large enough to cover the vast majority (at 949 * least 95%) of allocations, and is small enough that we are 950 * confident it will not cause too much overhead. Each single 951 * flush is about 100 ns, so this caps the maximum overhead at 952 * _about_ 3,000 ns. 953 * 954 * This is in units of pages. 955 */ 956 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 957 958 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 959 960 #ifdef CONFIG_DEBUG_VM 961 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 962 #endif 963 964 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 965 unsigned long start, unsigned long end, 966 unsigned int stride_shift, bool freed_tables, 967 u64 new_tlb_gen) 968 { 969 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 970 971 #ifdef CONFIG_DEBUG_VM 972 /* 973 * Ensure that the following code is non-reentrant and flush_tlb_info 974 * is not overwritten. This means no TLB flushing is initiated by 975 * interrupt handlers and machine-check exception handlers. 976 */ 977 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 978 #endif 979 980 info->start = start; 981 info->end = end; 982 info->mm = mm; 983 info->stride_shift = stride_shift; 984 info->freed_tables = freed_tables; 985 info->new_tlb_gen = new_tlb_gen; 986 info->initiating_cpu = smp_processor_id(); 987 988 return info; 989 } 990 991 static void put_flush_tlb_info(void) 992 { 993 #ifdef CONFIG_DEBUG_VM 994 /* Complete reentrancy prevention checks */ 995 barrier(); 996 this_cpu_dec(flush_tlb_info_idx); 997 #endif 998 } 999 1000 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 1001 unsigned long end, unsigned int stride_shift, 1002 bool freed_tables) 1003 { 1004 struct flush_tlb_info *info; 1005 u64 new_tlb_gen; 1006 int cpu; 1007 1008 cpu = get_cpu(); 1009 1010 /* Should we flush just the requested range? */ 1011 if ((end == TLB_FLUSH_ALL) || 1012 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 1013 start = 0; 1014 end = TLB_FLUSH_ALL; 1015 } 1016 1017 /* This is also a barrier that synchronizes with switch_mm(). */ 1018 new_tlb_gen = inc_mm_tlb_gen(mm); 1019 1020 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1021 new_tlb_gen); 1022 1023 /* 1024 * flush_tlb_multi() is not optimized for the common case in which only 1025 * a local TLB flush is needed. Optimize this use-case by calling 1026 * flush_tlb_func_local() directly in this case. 1027 */ 1028 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1029 flush_tlb_multi(mm_cpumask(mm), info); 1030 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1031 lockdep_assert_irqs_enabled(); 1032 local_irq_disable(); 1033 flush_tlb_func(info); 1034 local_irq_enable(); 1035 } 1036 1037 put_flush_tlb_info(); 1038 put_cpu(); 1039 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); 1040 } 1041 1042 1043 static void do_flush_tlb_all(void *info) 1044 { 1045 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1046 __flush_tlb_all(); 1047 } 1048 1049 void flush_tlb_all(void) 1050 { 1051 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1052 on_each_cpu(do_flush_tlb_all, NULL, 1); 1053 } 1054 1055 static void do_kernel_range_flush(void *info) 1056 { 1057 struct flush_tlb_info *f = info; 1058 unsigned long addr; 1059 1060 /* flush range by one by one 'invlpg' */ 1061 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1062 flush_tlb_one_kernel(addr); 1063 } 1064 1065 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1066 { 1067 /* Balance as user space task's flush, a bit conservative */ 1068 if (end == TLB_FLUSH_ALL || 1069 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 1070 on_each_cpu(do_flush_tlb_all, NULL, 1); 1071 } else { 1072 struct flush_tlb_info *info; 1073 1074 preempt_disable(); 1075 info = get_flush_tlb_info(NULL, start, end, 0, false, 1076 TLB_GENERATION_INVALID); 1077 1078 on_each_cpu(do_kernel_range_flush, info, 1); 1079 1080 put_flush_tlb_info(); 1081 preempt_enable(); 1082 } 1083 } 1084 1085 /* 1086 * This can be used from process context to figure out what the value of 1087 * CR3 is without needing to do a (slow) __read_cr3(). 1088 * 1089 * It's intended to be used for code like KVM that sneakily changes CR3 1090 * and needs to restore it. It needs to be used very carefully. 1091 */ 1092 unsigned long __get_current_cr3_fast(void) 1093 { 1094 unsigned long cr3 = 1095 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1096 this_cpu_read(cpu_tlbstate.loaded_mm_asid), 1097 tlbstate_lam_cr3_mask()); 1098 1099 /* For now, be very restrictive about when this can be called. */ 1100 VM_WARN_ON(in_nmi() || preemptible()); 1101 1102 VM_BUG_ON(cr3 != __read_cr3()); 1103 return cr3; 1104 } 1105 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1106 1107 /* 1108 * Flush one page in the kernel mapping 1109 */ 1110 void flush_tlb_one_kernel(unsigned long addr) 1111 { 1112 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1113 1114 /* 1115 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1116 * paravirt equivalent. Even with PCID, this is sufficient: we only 1117 * use PCID if we also use global PTEs for the kernel mapping, and 1118 * INVLPG flushes global translations across all address spaces. 1119 * 1120 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1121 * __flush_tlb_one_user() will flush the given address for the current 1122 * kernel address space and for its usermode counterpart, but it does 1123 * not flush it for other address spaces. 1124 */ 1125 flush_tlb_one_user(addr); 1126 1127 if (!static_cpu_has(X86_FEATURE_PTI)) 1128 return; 1129 1130 /* 1131 * See above. We need to propagate the flush to all other address 1132 * spaces. In principle, we only need to propagate it to kernelmode 1133 * address spaces, but the extra bookkeeping we would need is not 1134 * worth it. 1135 */ 1136 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1137 } 1138 1139 /* 1140 * Flush one page in the user mapping 1141 */ 1142 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1143 { 1144 u32 loaded_mm_asid; 1145 bool cpu_pcide; 1146 1147 /* Flush 'addr' from the kernel PCID: */ 1148 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1149 1150 /* If PTI is off there is no user PCID and nothing to flush. */ 1151 if (!static_cpu_has(X86_FEATURE_PTI)) 1152 return; 1153 1154 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1155 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; 1156 1157 /* 1158 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check 1159 * 'cpu_pcide' to ensure that *this* CPU will not trigger those 1160 * #GP's even if called before CR4.PCIDE has been initialized. 1161 */ 1162 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) 1163 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1164 else 1165 invalidate_user_asid(loaded_mm_asid); 1166 } 1167 1168 void flush_tlb_one_user(unsigned long addr) 1169 { 1170 __flush_tlb_one_user(addr); 1171 } 1172 1173 /* 1174 * Flush everything 1175 */ 1176 STATIC_NOPV void native_flush_tlb_global(void) 1177 { 1178 unsigned long flags; 1179 1180 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1181 /* 1182 * Using INVPCID is considerably faster than a pair of writes 1183 * to CR4 sandwiched inside an IRQ flag save/restore. 1184 * 1185 * Note, this works with CR4.PCIDE=0 or 1. 1186 */ 1187 invpcid_flush_all(); 1188 return; 1189 } 1190 1191 /* 1192 * Read-modify-write to CR4 - protect it from preemption and 1193 * from interrupts. (Use the raw variant because this code can 1194 * be called from deep inside debugging code.) 1195 */ 1196 raw_local_irq_save(flags); 1197 1198 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1199 1200 raw_local_irq_restore(flags); 1201 } 1202 1203 /* 1204 * Flush the entire current user mapping 1205 */ 1206 STATIC_NOPV void native_flush_tlb_local(void) 1207 { 1208 /* 1209 * Preemption or interrupts must be disabled to protect the access 1210 * to the per CPU variable and to prevent being preempted between 1211 * read_cr3() and write_cr3(). 1212 */ 1213 WARN_ON_ONCE(preemptible()); 1214 1215 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1216 1217 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1218 native_write_cr3(__native_read_cr3()); 1219 } 1220 1221 void flush_tlb_local(void) 1222 { 1223 __flush_tlb_local(); 1224 } 1225 1226 /* 1227 * Flush everything 1228 */ 1229 void __flush_tlb_all(void) 1230 { 1231 /* 1232 * This is to catch users with enabled preemption and the PGE feature 1233 * and don't trigger the warning in __native_flush_tlb(). 1234 */ 1235 VM_WARN_ON_ONCE(preemptible()); 1236 1237 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1238 __flush_tlb_global(); 1239 } else { 1240 /* 1241 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1242 */ 1243 flush_tlb_local(); 1244 } 1245 } 1246 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1247 1248 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1249 { 1250 struct flush_tlb_info *info; 1251 1252 int cpu = get_cpu(); 1253 1254 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1255 TLB_GENERATION_INVALID); 1256 /* 1257 * flush_tlb_multi() is not optimized for the common case in which only 1258 * a local TLB flush is needed. Optimize this use-case by calling 1259 * flush_tlb_func_local() directly in this case. 1260 */ 1261 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1262 flush_tlb_multi(&batch->cpumask, info); 1263 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1264 lockdep_assert_irqs_enabled(); 1265 local_irq_disable(); 1266 flush_tlb_func(info); 1267 local_irq_enable(); 1268 } 1269 1270 cpumask_clear(&batch->cpumask); 1271 1272 put_flush_tlb_info(); 1273 put_cpu(); 1274 } 1275 1276 /* 1277 * Blindly accessing user memory from NMI context can be dangerous 1278 * if we're in the middle of switching the current user task or 1279 * switching the loaded mm. It can also be dangerous if we 1280 * interrupted some kernel code that was temporarily using a 1281 * different mm. 1282 */ 1283 bool nmi_uaccess_okay(void) 1284 { 1285 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1286 struct mm_struct *current_mm = current->mm; 1287 1288 VM_WARN_ON_ONCE(!loaded_mm); 1289 1290 /* 1291 * The condition we want to check is 1292 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1293 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1294 * is supposed to be reasonably fast. 1295 * 1296 * Instead, we check the almost equivalent but somewhat conservative 1297 * condition below, and we rely on the fact that switch_mm_irqs_off() 1298 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1299 */ 1300 if (loaded_mm != current_mm) 1301 return false; 1302 1303 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1304 1305 return true; 1306 } 1307 1308 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1309 size_t count, loff_t *ppos) 1310 { 1311 char buf[32]; 1312 unsigned int len; 1313 1314 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1315 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1316 } 1317 1318 static ssize_t tlbflush_write_file(struct file *file, 1319 const char __user *user_buf, size_t count, loff_t *ppos) 1320 { 1321 char buf[32]; 1322 ssize_t len; 1323 int ceiling; 1324 1325 len = min(count, sizeof(buf) - 1); 1326 if (copy_from_user(buf, user_buf, len)) 1327 return -EFAULT; 1328 1329 buf[len] = '\0'; 1330 if (kstrtoint(buf, 0, &ceiling)) 1331 return -EINVAL; 1332 1333 if (ceiling < 0) 1334 return -EINVAL; 1335 1336 tlb_single_page_flush_ceiling = ceiling; 1337 return count; 1338 } 1339 1340 static const struct file_operations fops_tlbflush = { 1341 .read = tlbflush_read_file, 1342 .write = tlbflush_write_file, 1343 .llseek = default_llseek, 1344 }; 1345 1346 static int __init create_tlb_single_page_flush_ceiling(void) 1347 { 1348 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1349 arch_debugfs_dir, NULL, &fops_tlbflush); 1350 return 0; 1351 } 1352 late_initcall(create_tlb_single_page_flush_ceiling); 1353