1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 14 #include <asm/tlbflush.h> 15 #include <asm/mmu_context.h> 16 #include <asm/nospec-branch.h> 17 #include <asm/cache.h> 18 #include <asm/cacheflush.h> 19 #include <asm/apic.h> 20 #include <asm/perf_event.h> 21 22 #include "mm_internal.h" 23 24 #ifdef CONFIG_PARAVIRT 25 # define STATIC_NOPV 26 #else 27 # define STATIC_NOPV static 28 # define __flush_tlb_local native_flush_tlb_local 29 # define __flush_tlb_global native_flush_tlb_global 30 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 31 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 32 #endif 33 34 /* 35 * TLB flushing, formerly SMP-only 36 * c/o Linus Torvalds. 37 * 38 * These mean you can really definitely utterly forget about 39 * writing to user space from interrupts. (Its not allowed anyway). 40 * 41 * Optimizations Manfred Spraul <manfred@colorfullife.com> 42 * 43 * More scalable flush, from Andi Kleen 44 * 45 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 46 */ 47 48 /* 49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 50 * stored in cpu_tlb_state.last_user_mm_spec. 51 */ 52 #define LAST_USER_MM_IBPB 0x1UL 53 #define LAST_USER_MM_L1D_FLUSH 0x2UL 54 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 55 56 /* Bits to set when tlbstate and flush is (re)initialized */ 57 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 58 59 /* 60 * The x86 feature is called PCID (Process Context IDentifier). It is similar 61 * to what is traditionally called ASID on the RISC processors. 62 * 63 * We don't use the traditional ASID implementation, where each process/mm gets 64 * its own ASID and flush/restart when we run out of ASID space. 65 * 66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 67 * that came by on this CPU, allowing cheaper switch_mm between processes on 68 * this CPU. 69 * 70 * We end up with different spaces for different things. To avoid confusion we 71 * use different names for each of them: 72 * 73 * ASID - [0, TLB_NR_DYN_ASIDS-1] 74 * the canonical identifier for an mm 75 * 76 * kPCID - [1, TLB_NR_DYN_ASIDS] 77 * the value we write into the PCID part of CR3; corresponds to the 78 * ASID+1, because PCID 0 is special. 79 * 80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 81 * for KPTI each mm has two address spaces and thus needs two 82 * PCID values, but we can still do with a single ASID denomination 83 * for each mm. Corresponds to kPCID + 2048. 84 * 85 */ 86 87 /* There are 12 bits of space for ASIDS in CR3 */ 88 #define CR3_HW_ASID_BITS 12 89 90 /* 91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 92 * user/kernel switches 93 */ 94 #ifdef CONFIG_PAGE_TABLE_ISOLATION 95 # define PTI_CONSUMED_PCID_BITS 1 96 #else 97 # define PTI_CONSUMED_PCID_BITS 0 98 #endif 99 100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 101 102 /* 103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 104 * for them being zero-based. Another -1 is because PCID 0 is reserved for 105 * use by non-PCID-aware users. 106 */ 107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 108 109 /* 110 * Given @asid, compute kPCID 111 */ 112 static inline u16 kern_pcid(u16 asid) 113 { 114 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 115 116 #ifdef CONFIG_PAGE_TABLE_ISOLATION 117 /* 118 * Make sure that the dynamic ASID space does not conflict with the 119 * bit we are using to switch between user and kernel ASIDs. 120 */ 121 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 122 123 /* 124 * The ASID being passed in here should have respected the 125 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 126 */ 127 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 128 #endif 129 /* 130 * The dynamically-assigned ASIDs that get passed in are small 131 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 132 * so do not bother to clear it. 133 * 134 * If PCID is on, ASID-aware code paths put the ASID+1 into the 135 * PCID bits. This serves two purposes. It prevents a nasty 136 * situation in which PCID-unaware code saves CR3, loads some other 137 * value (with PCID == 0), and then restores CR3, thus corrupting 138 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 139 * that any bugs involving loading a PCID-enabled CR3 with 140 * CR4.PCIDE off will trigger deterministically. 141 */ 142 return asid + 1; 143 } 144 145 /* 146 * Given @asid, compute uPCID 147 */ 148 static inline u16 user_pcid(u16 asid) 149 { 150 u16 ret = kern_pcid(asid); 151 #ifdef CONFIG_PAGE_TABLE_ISOLATION 152 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 153 #endif 154 return ret; 155 } 156 157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) 158 { 159 unsigned long cr3 = __sme_pa(pgd) | lam; 160 161 if (static_cpu_has(X86_FEATURE_PCID)) { 162 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 163 cr3 |= kern_pcid(asid); 164 } else { 165 VM_WARN_ON_ONCE(asid != 0); 166 } 167 168 return cr3; 169 } 170 171 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, 172 unsigned long lam) 173 { 174 /* 175 * Use boot_cpu_has() instead of this_cpu_has() as this function 176 * might be called during early boot. This should work even after 177 * boot because all CPU's the have same capabilities: 178 */ 179 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 180 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; 181 } 182 183 /* 184 * We get here when we do something requiring a TLB invalidation 185 * but could not go invalidate all of the contexts. We do the 186 * necessary invalidation by clearing out the 'ctx_id' which 187 * forces a TLB flush when the context is loaded. 188 */ 189 static void clear_asid_other(void) 190 { 191 u16 asid; 192 193 /* 194 * This is only expected to be set if we have disabled 195 * kernel _PAGE_GLOBAL pages. 196 */ 197 if (!static_cpu_has(X86_FEATURE_PTI)) { 198 WARN_ON_ONCE(1); 199 return; 200 } 201 202 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 203 /* Do not need to flush the current asid */ 204 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 205 continue; 206 /* 207 * Make sure the next time we go to switch to 208 * this asid, we do a flush: 209 */ 210 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 211 } 212 this_cpu_write(cpu_tlbstate.invalidate_other, false); 213 } 214 215 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 216 217 218 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 219 u16 *new_asid, bool *need_flush) 220 { 221 u16 asid; 222 223 if (!static_cpu_has(X86_FEATURE_PCID)) { 224 *new_asid = 0; 225 *need_flush = true; 226 return; 227 } 228 229 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 230 clear_asid_other(); 231 232 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 233 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 234 next->context.ctx_id) 235 continue; 236 237 *new_asid = asid; 238 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 239 next_tlb_gen); 240 return; 241 } 242 243 /* 244 * We don't currently own an ASID slot on this CPU. 245 * Allocate a slot. 246 */ 247 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 248 if (*new_asid >= TLB_NR_DYN_ASIDS) { 249 *new_asid = 0; 250 this_cpu_write(cpu_tlbstate.next_asid, 1); 251 } 252 *need_flush = true; 253 } 254 255 /* 256 * Given an ASID, flush the corresponding user ASID. We can delay this 257 * until the next time we switch to it. 258 * 259 * See SWITCH_TO_USER_CR3. 260 */ 261 static inline void invalidate_user_asid(u16 asid) 262 { 263 /* There is no user ASID if address space separation is off */ 264 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 265 return; 266 267 /* 268 * We only have a single ASID if PCID is off and the CR3 269 * write will have flushed it. 270 */ 271 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 272 return; 273 274 if (!static_cpu_has(X86_FEATURE_PTI)) 275 return; 276 277 __set_bit(kern_pcid(asid), 278 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 279 } 280 281 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, 282 bool need_flush) 283 { 284 unsigned long new_mm_cr3; 285 286 if (need_flush) { 287 invalidate_user_asid(new_asid); 288 new_mm_cr3 = build_cr3(pgdir, new_asid, lam); 289 } else { 290 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); 291 } 292 293 /* 294 * Caution: many callers of this function expect 295 * that load_cr3() is serializing and orders TLB 296 * fills with respect to the mm_cpumask writes. 297 */ 298 write_cr3(new_mm_cr3); 299 } 300 301 void leave_mm(int cpu) 302 { 303 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 304 305 /* 306 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 307 * If so, our callers still expect us to flush the TLB, but there 308 * aren't any user TLB entries in init_mm to worry about. 309 * 310 * This needs to happen before any other sanity checks due to 311 * intel_idle's shenanigans. 312 */ 313 if (loaded_mm == &init_mm) 314 return; 315 316 /* Warn if we're not lazy. */ 317 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 318 319 switch_mm(NULL, &init_mm, NULL); 320 } 321 EXPORT_SYMBOL_GPL(leave_mm); 322 323 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 324 struct task_struct *tsk) 325 { 326 unsigned long flags; 327 328 local_irq_save(flags); 329 switch_mm_irqs_off(prev, next, tsk); 330 local_irq_restore(flags); 331 } 332 333 /* 334 * Invoked from return to user/guest by a task that opted-in to L1D 335 * flushing but ended up running on an SMT enabled core due to wrong 336 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 337 * contract which this task requested. 338 */ 339 static void l1d_flush_force_sigbus(struct callback_head *ch) 340 { 341 force_sig(SIGBUS); 342 } 343 344 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 345 struct task_struct *next) 346 { 347 /* Flush L1D if the outgoing task requests it */ 348 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 349 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 350 351 /* Check whether the incoming task opted in for L1D flush */ 352 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 353 return; 354 355 /* 356 * Validate that it is not running on an SMT sibling as this would 357 * make the excercise pointless because the siblings share L1D. If 358 * it runs on a SMT sibling, notify it with SIGBUS on return to 359 * user/guest 360 */ 361 if (this_cpu_read(cpu_info.smt_active)) { 362 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 363 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 364 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 365 } 366 } 367 368 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 369 { 370 unsigned long next_tif = read_task_thread_flags(next); 371 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 372 373 /* 374 * Ensure that the bit shift above works as expected and the two flags 375 * end up in bit 0 and 1. 376 */ 377 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 378 379 return (unsigned long)next->mm | spec_bits; 380 } 381 382 static void cond_mitigation(struct task_struct *next) 383 { 384 unsigned long prev_mm, next_mm; 385 386 if (!next || !next->mm) 387 return; 388 389 next_mm = mm_mangle_tif_spec_bits(next); 390 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 391 392 /* 393 * Avoid user/user BTB poisoning by flushing the branch predictor 394 * when switching between processes. This stops one process from 395 * doing Spectre-v2 attacks on another. 396 * 397 * Both, the conditional and the always IBPB mode use the mm 398 * pointer to avoid the IBPB when switching between tasks of the 399 * same process. Using the mm pointer instead of mm->context.ctx_id 400 * opens a hypothetical hole vs. mm_struct reuse, which is more or 401 * less impossible to control by an attacker. Aside of that it 402 * would only affect the first schedule so the theoretically 403 * exposed data is not really interesting. 404 */ 405 if (static_branch_likely(&switch_mm_cond_ibpb)) { 406 /* 407 * This is a bit more complex than the always mode because 408 * it has to handle two cases: 409 * 410 * 1) Switch from a user space task (potential attacker) 411 * which has TIF_SPEC_IB set to a user space task 412 * (potential victim) which has TIF_SPEC_IB not set. 413 * 414 * 2) Switch from a user space task (potential attacker) 415 * which has TIF_SPEC_IB not set to a user space task 416 * (potential victim) which has TIF_SPEC_IB set. 417 * 418 * This could be done by unconditionally issuing IBPB when 419 * a task which has TIF_SPEC_IB set is either scheduled in 420 * or out. Though that results in two flushes when: 421 * 422 * - the same user space task is scheduled out and later 423 * scheduled in again and only a kernel thread ran in 424 * between. 425 * 426 * - a user space task belonging to the same process is 427 * scheduled in after a kernel thread ran in between 428 * 429 * - a user space task belonging to the same process is 430 * scheduled in immediately. 431 * 432 * Optimize this with reasonably small overhead for the 433 * above cases. Mangle the TIF_SPEC_IB bit into the mm 434 * pointer of the incoming task which is stored in 435 * cpu_tlbstate.last_user_mm_spec for comparison. 436 * 437 * Issue IBPB only if the mm's are different and one or 438 * both have the IBPB bit set. 439 */ 440 if (next_mm != prev_mm && 441 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 442 indirect_branch_prediction_barrier(); 443 } 444 445 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 446 /* 447 * Only flush when switching to a user space task with a 448 * different context than the user space task which ran 449 * last on this CPU. 450 */ 451 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != 452 (unsigned long)next->mm) 453 indirect_branch_prediction_barrier(); 454 } 455 456 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 457 /* 458 * Flush L1D when the outgoing task requested it and/or 459 * check whether the incoming task requested L1D flushing 460 * and ended up on an SMT sibling. 461 */ 462 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 463 l1d_flush_evaluate(prev_mm, next_mm, next); 464 } 465 466 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 467 } 468 469 #ifdef CONFIG_PERF_EVENTS 470 static inline void cr4_update_pce_mm(struct mm_struct *mm) 471 { 472 if (static_branch_unlikely(&rdpmc_always_available_key) || 473 (!static_branch_unlikely(&rdpmc_never_available_key) && 474 atomic_read(&mm->context.perf_rdpmc_allowed))) { 475 /* 476 * Clear the existing dirty counters to 477 * prevent the leak for an RDPMC task. 478 */ 479 perf_clear_dirty_counters(); 480 cr4_set_bits_irqsoff(X86_CR4_PCE); 481 } else 482 cr4_clear_bits_irqsoff(X86_CR4_PCE); 483 } 484 485 void cr4_update_pce(void *ignored) 486 { 487 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 488 } 489 490 #else 491 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 492 #endif 493 494 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 495 struct task_struct *tsk) 496 { 497 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 498 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 499 unsigned long new_lam = mm_lam_cr3_mask(next); 500 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 501 unsigned cpu = smp_processor_id(); 502 u64 next_tlb_gen; 503 bool need_flush; 504 u16 new_asid; 505 506 /* 507 * NB: The scheduler will call us with prev == next when switching 508 * from lazy TLB mode to normal mode if active_mm isn't changing. 509 * When this happens, we don't assume that CR3 (and hence 510 * cpu_tlbstate.loaded_mm) matches next. 511 * 512 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 513 */ 514 515 /* We don't want flush_tlb_func() to run concurrently with us. */ 516 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 517 WARN_ON_ONCE(!irqs_disabled()); 518 519 /* 520 * Verify that CR3 is what we think it is. This will catch 521 * hypothetical buggy code that directly switches to swapper_pg_dir 522 * without going through leave_mm() / switch_mm_irqs_off() or that 523 * does something like write_cr3(read_cr3_pa()). 524 * 525 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 526 * isn't free. 527 */ 528 #ifdef CONFIG_DEBUG_VM 529 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid, 530 tlbstate_lam_cr3_mask()))) { 531 /* 532 * If we were to BUG here, we'd be very likely to kill 533 * the system so hard that we don't see the call trace. 534 * Try to recover instead by ignoring the error and doing 535 * a global flush to minimize the chance of corruption. 536 * 537 * (This is far from being a fully correct recovery. 538 * Architecturally, the CPU could prefetch something 539 * back into an incorrect ASID slot and leave it there 540 * to cause trouble down the road. It's better than 541 * nothing, though.) 542 */ 543 __flush_tlb_all(); 544 } 545 #endif 546 if (was_lazy) 547 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 548 549 /* 550 * The membarrier system call requires a full memory barrier and 551 * core serialization before returning to user-space, after 552 * storing to rq->curr, when changing mm. This is because 553 * membarrier() sends IPIs to all CPUs that are in the target mm 554 * to make them issue memory barriers. However, if another CPU 555 * switches to/from the target mm concurrently with 556 * membarrier(), it can cause that CPU not to receive an IPI 557 * when it really should issue a memory barrier. Writing to CR3 558 * provides that full memory barrier and core serializing 559 * instruction. 560 */ 561 if (real_prev == next) { 562 /* Not actually switching mm's */ 563 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 564 next->context.ctx_id); 565 566 /* 567 * If this races with another thread that enables lam, 'new_lam' 568 * might not match tlbstate_lam_cr3_mask(). 569 */ 570 571 /* 572 * Even in lazy TLB mode, the CPU should stay set in the 573 * mm_cpumask. The TLB shootdown code can figure out from 574 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 575 */ 576 if (WARN_ON_ONCE(real_prev != &init_mm && 577 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 578 cpumask_set_cpu(cpu, mm_cpumask(next)); 579 580 /* 581 * If the CPU is not in lazy TLB mode, we are just switching 582 * from one thread in a process to another thread in the same 583 * process. No TLB flush required. 584 */ 585 if (!was_lazy) 586 return; 587 588 /* 589 * Read the tlb_gen to check whether a flush is needed. 590 * If the TLB is up to date, just use it. 591 * The barrier synchronizes with the tlb_gen increment in 592 * the TLB shootdown code. 593 */ 594 smp_mb(); 595 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 596 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 597 next_tlb_gen) 598 return; 599 600 /* 601 * TLB contents went out of date while we were in lazy 602 * mode. Fall through to the TLB switching code below. 603 */ 604 new_asid = prev_asid; 605 need_flush = true; 606 } else { 607 /* 608 * Apply process to process speculation vulnerability 609 * mitigations if applicable. 610 */ 611 cond_mitigation(tsk); 612 613 /* 614 * Stop remote flushes for the previous mm. 615 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 616 * but the bitmap manipulation can cause cache line contention. 617 */ 618 if (real_prev != &init_mm) { 619 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 620 mm_cpumask(real_prev))); 621 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 622 } 623 624 /* 625 * Start remote flushes and then read tlb_gen. 626 */ 627 if (next != &init_mm) 628 cpumask_set_cpu(cpu, mm_cpumask(next)); 629 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 630 631 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 632 633 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 634 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 635 barrier(); 636 } 637 638 set_tlbstate_lam_mode(next); 639 if (need_flush) { 640 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 641 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 642 load_new_mm_cr3(next->pgd, new_asid, new_lam, true); 643 644 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 645 } else { 646 /* The new ASID is already up to date. */ 647 load_new_mm_cr3(next->pgd, new_asid, new_lam, false); 648 649 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 650 } 651 652 /* Make sure we write CR3 before loaded_mm. */ 653 barrier(); 654 655 this_cpu_write(cpu_tlbstate.loaded_mm, next); 656 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 657 658 if (next != real_prev) { 659 cr4_update_pce_mm(next); 660 switch_ldt(real_prev, next); 661 } 662 } 663 664 /* 665 * Please ignore the name of this function. It should be called 666 * switch_to_kernel_thread(). 667 * 668 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 669 * kernel thread or other context without an mm. Acceptable implementations 670 * include doing nothing whatsoever, switching to init_mm, or various clever 671 * lazy tricks to try to minimize TLB flushes. 672 * 673 * The scheduler reserves the right to call enter_lazy_tlb() several times 674 * in a row. It will notify us that we're going back to a real mm by 675 * calling switch_mm_irqs_off(). 676 */ 677 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 678 { 679 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 680 return; 681 682 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 683 } 684 685 /* 686 * Call this when reinitializing a CPU. It fixes the following potential 687 * problems: 688 * 689 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 690 * because the CPU was taken down and came back up with CR3's PCID 691 * bits clear. CPU hotplug can do this. 692 * 693 * - The TLB contains junk in slots corresponding to inactive ASIDs. 694 * 695 * - The CPU went so far out to lunch that it may have missed a TLB 696 * flush. 697 */ 698 void initialize_tlbstate_and_flush(void) 699 { 700 int i; 701 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 702 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 703 unsigned long cr3 = __read_cr3(); 704 705 /* Assert that CR3 already references the right mm. */ 706 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 707 708 /* LAM expected to be disabled */ 709 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); 710 WARN_ON(mm_lam_cr3_mask(mm)); 711 712 /* 713 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 714 * doesn't work like other CR4 bits because it can only be set from 715 * long mode.) 716 */ 717 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 718 !(cr4_read_shadow() & X86_CR4_PCIDE)); 719 720 /* Disable LAM, force ASID 0 and force a TLB flush. */ 721 write_cr3(build_cr3(mm->pgd, 0, 0)); 722 723 /* Reinitialize tlbstate. */ 724 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 725 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 726 this_cpu_write(cpu_tlbstate.next_asid, 1); 727 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 728 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 729 set_tlbstate_lam_mode(mm); 730 731 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 732 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 733 } 734 735 /* 736 * flush_tlb_func()'s memory ordering requirement is that any 737 * TLB fills that happen after we flush the TLB are ordered after we 738 * read active_mm's tlb_gen. We don't need any explicit barriers 739 * because all x86 flush operations are serializing and the 740 * atomic64_read operation won't be reordered by the compiler. 741 */ 742 static void flush_tlb_func(void *info) 743 { 744 /* 745 * We have three different tlb_gen values in here. They are: 746 * 747 * - mm_tlb_gen: the latest generation. 748 * - local_tlb_gen: the generation that this CPU has already caught 749 * up to. 750 * - f->new_tlb_gen: the generation that the requester of the flush 751 * wants us to catch up to. 752 */ 753 const struct flush_tlb_info *f = info; 754 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 755 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 756 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 757 bool local = smp_processor_id() == f->initiating_cpu; 758 unsigned long nr_invalidate = 0; 759 u64 mm_tlb_gen; 760 761 /* This code cannot presently handle being reentered. */ 762 VM_WARN_ON(!irqs_disabled()); 763 764 if (!local) { 765 inc_irq_stat(irq_tlb_count); 766 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 767 768 /* Can only happen on remote CPUs */ 769 if (f->mm && f->mm != loaded_mm) 770 return; 771 } 772 773 if (unlikely(loaded_mm == &init_mm)) 774 return; 775 776 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 777 loaded_mm->context.ctx_id); 778 779 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 780 /* 781 * We're in lazy mode. We need to at least flush our 782 * paging-structure cache to avoid speculatively reading 783 * garbage into our TLB. Since switching to init_mm is barely 784 * slower than a minimal flush, just switch to init_mm. 785 * 786 * This should be rare, with native_flush_tlb_multi() skipping 787 * IPIs to lazy TLB mode CPUs. 788 */ 789 switch_mm_irqs_off(NULL, &init_mm, NULL); 790 return; 791 } 792 793 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 794 f->new_tlb_gen <= local_tlb_gen)) { 795 /* 796 * The TLB is already up to date in respect to f->new_tlb_gen. 797 * While the core might be still behind mm_tlb_gen, checking 798 * mm_tlb_gen unnecessarily would have negative caching effects 799 * so avoid it. 800 */ 801 return; 802 } 803 804 /* 805 * Defer mm_tlb_gen reading as long as possible to avoid cache 806 * contention. 807 */ 808 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 809 810 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 811 /* 812 * There's nothing to do: we're already up to date. This can 813 * happen if two concurrent flushes happen -- the first flush to 814 * be handled can catch us all the way up, leaving no work for 815 * the second flush. 816 */ 817 goto done; 818 } 819 820 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 821 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 822 823 /* 824 * If we get to this point, we know that our TLB is out of date. 825 * This does not strictly imply that we need to flush (it's 826 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 827 * going to need to flush in the very near future, so we might 828 * as well get it over with. 829 * 830 * The only question is whether to do a full or partial flush. 831 * 832 * We do a partial flush if requested and two extra conditions 833 * are met: 834 * 835 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 836 * we've always done all needed flushes to catch up to 837 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 838 * f->new_tlb_gen == 3, then we know that the flush needed to bring 839 * us up to date for tlb_gen 3 is the partial flush we're 840 * processing. 841 * 842 * As an example of why this check is needed, suppose that there 843 * are two concurrent flushes. The first is a full flush that 844 * changes context.tlb_gen from 1 to 2. The second is a partial 845 * flush that changes context.tlb_gen from 2 to 3. If they get 846 * processed on this CPU in reverse order, we'll see 847 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 848 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 849 * 3, we'd be break the invariant: we'd update local_tlb_gen above 850 * 1 without the full flush that's needed for tlb_gen 2. 851 * 852 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 853 * Partial TLB flushes are not all that much cheaper than full TLB 854 * flushes, so it seems unlikely that it would be a performance win 855 * to do a partial flush if that won't bring our TLB fully up to 856 * date. By doing a full flush instead, we can increase 857 * local_tlb_gen all the way to mm_tlb_gen and we can probably 858 * avoid another flush in the very near future. 859 */ 860 if (f->end != TLB_FLUSH_ALL && 861 f->new_tlb_gen == local_tlb_gen + 1 && 862 f->new_tlb_gen == mm_tlb_gen) { 863 /* Partial flush */ 864 unsigned long addr = f->start; 865 866 /* Partial flush cannot have invalid generations */ 867 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 868 869 /* Partial flush must have valid mm */ 870 VM_WARN_ON(f->mm == NULL); 871 872 nr_invalidate = (f->end - f->start) >> f->stride_shift; 873 874 while (addr < f->end) { 875 flush_tlb_one_user(addr); 876 addr += 1UL << f->stride_shift; 877 } 878 if (local) 879 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 880 } else { 881 /* Full flush. */ 882 nr_invalidate = TLB_FLUSH_ALL; 883 884 flush_tlb_local(); 885 if (local) 886 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 887 } 888 889 /* Both paths above update our state to mm_tlb_gen. */ 890 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 891 892 /* Tracing is done in a unified manner to reduce the code size */ 893 done: 894 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 895 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 896 TLB_LOCAL_MM_SHOOTDOWN, 897 nr_invalidate); 898 } 899 900 static bool tlb_is_not_lazy(int cpu, void *data) 901 { 902 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); 903 } 904 905 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 906 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 907 908 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 909 const struct flush_tlb_info *info) 910 { 911 /* 912 * Do accounting and tracing. Note that there are (and have always been) 913 * cases in which a remote TLB flush will be traced, but eventually 914 * would not happen. 915 */ 916 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 917 if (info->end == TLB_FLUSH_ALL) 918 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 919 else 920 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 921 (info->end - info->start) >> PAGE_SHIFT); 922 923 /* 924 * If no page tables were freed, we can skip sending IPIs to 925 * CPUs in lazy TLB mode. They will flush the CPU themselves 926 * at the next context switch. 927 * 928 * However, if page tables are getting freed, we need to send the 929 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 930 * up on the new contents of what used to be page tables, while 931 * doing a speculative memory access. 932 */ 933 if (info->freed_tables) 934 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 935 else 936 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func, 937 (void *)info, 1, cpumask); 938 } 939 940 void flush_tlb_multi(const struct cpumask *cpumask, 941 const struct flush_tlb_info *info) 942 { 943 __flush_tlb_multi(cpumask, info); 944 } 945 946 /* 947 * See Documentation/arch/x86/tlb.rst for details. We choose 33 948 * because it is large enough to cover the vast majority (at 949 * least 95%) of allocations, and is small enough that we are 950 * confident it will not cause too much overhead. Each single 951 * flush is about 100 ns, so this caps the maximum overhead at 952 * _about_ 3,000 ns. 953 * 954 * This is in units of pages. 955 */ 956 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 957 958 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 959 960 #ifdef CONFIG_DEBUG_VM 961 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 962 #endif 963 964 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 965 unsigned long start, unsigned long end, 966 unsigned int stride_shift, bool freed_tables, 967 u64 new_tlb_gen) 968 { 969 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 970 971 #ifdef CONFIG_DEBUG_VM 972 /* 973 * Ensure that the following code is non-reentrant and flush_tlb_info 974 * is not overwritten. This means no TLB flushing is initiated by 975 * interrupt handlers and machine-check exception handlers. 976 */ 977 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 978 #endif 979 980 info->start = start; 981 info->end = end; 982 info->mm = mm; 983 info->stride_shift = stride_shift; 984 info->freed_tables = freed_tables; 985 info->new_tlb_gen = new_tlb_gen; 986 info->initiating_cpu = smp_processor_id(); 987 988 return info; 989 } 990 991 static void put_flush_tlb_info(void) 992 { 993 #ifdef CONFIG_DEBUG_VM 994 /* Complete reentrancy prevention checks */ 995 barrier(); 996 this_cpu_dec(flush_tlb_info_idx); 997 #endif 998 } 999 1000 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 1001 unsigned long end, unsigned int stride_shift, 1002 bool freed_tables) 1003 { 1004 struct flush_tlb_info *info; 1005 u64 new_tlb_gen; 1006 int cpu; 1007 1008 cpu = get_cpu(); 1009 1010 /* Should we flush just the requested range? */ 1011 if ((end == TLB_FLUSH_ALL) || 1012 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 1013 start = 0; 1014 end = TLB_FLUSH_ALL; 1015 } 1016 1017 /* This is also a barrier that synchronizes with switch_mm(). */ 1018 new_tlb_gen = inc_mm_tlb_gen(mm); 1019 1020 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1021 new_tlb_gen); 1022 1023 /* 1024 * flush_tlb_multi() is not optimized for the common case in which only 1025 * a local TLB flush is needed. Optimize this use-case by calling 1026 * flush_tlb_func_local() directly in this case. 1027 */ 1028 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1029 flush_tlb_multi(mm_cpumask(mm), info); 1030 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1031 lockdep_assert_irqs_enabled(); 1032 local_irq_disable(); 1033 flush_tlb_func(info); 1034 local_irq_enable(); 1035 } 1036 1037 put_flush_tlb_info(); 1038 put_cpu(); 1039 } 1040 1041 1042 static void do_flush_tlb_all(void *info) 1043 { 1044 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1045 __flush_tlb_all(); 1046 } 1047 1048 void flush_tlb_all(void) 1049 { 1050 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1051 on_each_cpu(do_flush_tlb_all, NULL, 1); 1052 } 1053 1054 static void do_kernel_range_flush(void *info) 1055 { 1056 struct flush_tlb_info *f = info; 1057 unsigned long addr; 1058 1059 /* flush range by one by one 'invlpg' */ 1060 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1061 flush_tlb_one_kernel(addr); 1062 } 1063 1064 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1065 { 1066 /* Balance as user space task's flush, a bit conservative */ 1067 if (end == TLB_FLUSH_ALL || 1068 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 1069 on_each_cpu(do_flush_tlb_all, NULL, 1); 1070 } else { 1071 struct flush_tlb_info *info; 1072 1073 preempt_disable(); 1074 info = get_flush_tlb_info(NULL, start, end, 0, false, 1075 TLB_GENERATION_INVALID); 1076 1077 on_each_cpu(do_kernel_range_flush, info, 1); 1078 1079 put_flush_tlb_info(); 1080 preempt_enable(); 1081 } 1082 } 1083 1084 /* 1085 * This can be used from process context to figure out what the value of 1086 * CR3 is without needing to do a (slow) __read_cr3(). 1087 * 1088 * It's intended to be used for code like KVM that sneakily changes CR3 1089 * and needs to restore it. It needs to be used very carefully. 1090 */ 1091 unsigned long __get_current_cr3_fast(void) 1092 { 1093 unsigned long cr3 = 1094 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1095 this_cpu_read(cpu_tlbstate.loaded_mm_asid), 1096 tlbstate_lam_cr3_mask()); 1097 1098 /* For now, be very restrictive about when this can be called. */ 1099 VM_WARN_ON(in_nmi() || preemptible()); 1100 1101 VM_BUG_ON(cr3 != __read_cr3()); 1102 return cr3; 1103 } 1104 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1105 1106 /* 1107 * Flush one page in the kernel mapping 1108 */ 1109 void flush_tlb_one_kernel(unsigned long addr) 1110 { 1111 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1112 1113 /* 1114 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1115 * paravirt equivalent. Even with PCID, this is sufficient: we only 1116 * use PCID if we also use global PTEs for the kernel mapping, and 1117 * INVLPG flushes global translations across all address spaces. 1118 * 1119 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1120 * __flush_tlb_one_user() will flush the given address for the current 1121 * kernel address space and for its usermode counterpart, but it does 1122 * not flush it for other address spaces. 1123 */ 1124 flush_tlb_one_user(addr); 1125 1126 if (!static_cpu_has(X86_FEATURE_PTI)) 1127 return; 1128 1129 /* 1130 * See above. We need to propagate the flush to all other address 1131 * spaces. In principle, we only need to propagate it to kernelmode 1132 * address spaces, but the extra bookkeeping we would need is not 1133 * worth it. 1134 */ 1135 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1136 } 1137 1138 /* 1139 * Flush one page in the user mapping 1140 */ 1141 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1142 { 1143 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1144 1145 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1146 1147 if (!static_cpu_has(X86_FEATURE_PTI)) 1148 return; 1149 1150 /* 1151 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1152 * Just use invalidate_user_asid() in case we are called early. 1153 */ 1154 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1155 invalidate_user_asid(loaded_mm_asid); 1156 else 1157 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1158 } 1159 1160 void flush_tlb_one_user(unsigned long addr) 1161 { 1162 __flush_tlb_one_user(addr); 1163 } 1164 1165 /* 1166 * Flush everything 1167 */ 1168 STATIC_NOPV void native_flush_tlb_global(void) 1169 { 1170 unsigned long flags; 1171 1172 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1173 /* 1174 * Using INVPCID is considerably faster than a pair of writes 1175 * to CR4 sandwiched inside an IRQ flag save/restore. 1176 * 1177 * Note, this works with CR4.PCIDE=0 or 1. 1178 */ 1179 invpcid_flush_all(); 1180 return; 1181 } 1182 1183 /* 1184 * Read-modify-write to CR4 - protect it from preemption and 1185 * from interrupts. (Use the raw variant because this code can 1186 * be called from deep inside debugging code.) 1187 */ 1188 raw_local_irq_save(flags); 1189 1190 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1191 1192 raw_local_irq_restore(flags); 1193 } 1194 1195 /* 1196 * Flush the entire current user mapping 1197 */ 1198 STATIC_NOPV void native_flush_tlb_local(void) 1199 { 1200 /* 1201 * Preemption or interrupts must be disabled to protect the access 1202 * to the per CPU variable and to prevent being preempted between 1203 * read_cr3() and write_cr3(). 1204 */ 1205 WARN_ON_ONCE(preemptible()); 1206 1207 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1208 1209 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1210 native_write_cr3(__native_read_cr3()); 1211 } 1212 1213 void flush_tlb_local(void) 1214 { 1215 __flush_tlb_local(); 1216 } 1217 1218 /* 1219 * Flush everything 1220 */ 1221 void __flush_tlb_all(void) 1222 { 1223 /* 1224 * This is to catch users with enabled preemption and the PGE feature 1225 * and don't trigger the warning in __native_flush_tlb(). 1226 */ 1227 VM_WARN_ON_ONCE(preemptible()); 1228 1229 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1230 __flush_tlb_global(); 1231 } else { 1232 /* 1233 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1234 */ 1235 flush_tlb_local(); 1236 } 1237 } 1238 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1239 1240 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1241 { 1242 struct flush_tlb_info *info; 1243 1244 int cpu = get_cpu(); 1245 1246 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1247 TLB_GENERATION_INVALID); 1248 /* 1249 * flush_tlb_multi() is not optimized for the common case in which only 1250 * a local TLB flush is needed. Optimize this use-case by calling 1251 * flush_tlb_func_local() directly in this case. 1252 */ 1253 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1254 flush_tlb_multi(&batch->cpumask, info); 1255 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1256 lockdep_assert_irqs_enabled(); 1257 local_irq_disable(); 1258 flush_tlb_func(info); 1259 local_irq_enable(); 1260 } 1261 1262 cpumask_clear(&batch->cpumask); 1263 1264 put_flush_tlb_info(); 1265 put_cpu(); 1266 } 1267 1268 /* 1269 * Blindly accessing user memory from NMI context can be dangerous 1270 * if we're in the middle of switching the current user task or 1271 * switching the loaded mm. It can also be dangerous if we 1272 * interrupted some kernel code that was temporarily using a 1273 * different mm. 1274 */ 1275 bool nmi_uaccess_okay(void) 1276 { 1277 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1278 struct mm_struct *current_mm = current->mm; 1279 1280 VM_WARN_ON_ONCE(!loaded_mm); 1281 1282 /* 1283 * The condition we want to check is 1284 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1285 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1286 * is supposed to be reasonably fast. 1287 * 1288 * Instead, we check the almost equivalent but somewhat conservative 1289 * condition below, and we rely on the fact that switch_mm_irqs_off() 1290 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1291 */ 1292 if (loaded_mm != current_mm) 1293 return false; 1294 1295 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1296 1297 return true; 1298 } 1299 1300 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1301 size_t count, loff_t *ppos) 1302 { 1303 char buf[32]; 1304 unsigned int len; 1305 1306 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1307 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1308 } 1309 1310 static ssize_t tlbflush_write_file(struct file *file, 1311 const char __user *user_buf, size_t count, loff_t *ppos) 1312 { 1313 char buf[32]; 1314 ssize_t len; 1315 int ceiling; 1316 1317 len = min(count, sizeof(buf) - 1); 1318 if (copy_from_user(buf, user_buf, len)) 1319 return -EFAULT; 1320 1321 buf[len] = '\0'; 1322 if (kstrtoint(buf, 0, &ceiling)) 1323 return -EINVAL; 1324 1325 if (ceiling < 0) 1326 return -EINVAL; 1327 1328 tlb_single_page_flush_ceiling = ceiling; 1329 return count; 1330 } 1331 1332 static const struct file_operations fops_tlbflush = { 1333 .read = tlbflush_read_file, 1334 .write = tlbflush_write_file, 1335 .llseek = default_llseek, 1336 }; 1337 1338 static int __init create_tlb_single_page_flush_ceiling(void) 1339 { 1340 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1341 arch_debugfs_dir, NULL, &fops_tlbflush); 1342 return 0; 1343 } 1344 late_initcall(create_tlb_single_page_flush_ceiling); 1345