xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17 
18 #include "mm_internal.h"
19 
20 /*
21  *	TLB flushing, formerly SMP-only
22  *		c/o Linus Torvalds.
23  *
24  *	These mean you can really definitely utterly forget about
25  *	writing to user space from interrupts. (Its not allowed anyway).
26  *
27  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
28  *
29  *	More scalable flush, from Andi Kleen
30  *
31  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32  */
33 
34 /*
35  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
36  * stored in cpu_tlb_state.last_user_mm_ibpb.
37  */
38 #define LAST_USER_MM_IBPB	0x1UL
39 
40 /*
41  * We get here when we do something requiring a TLB invalidation
42  * but could not go invalidate all of the contexts.  We do the
43  * necessary invalidation by clearing out the 'ctx_id' which
44  * forces a TLB flush when the context is loaded.
45  */
46 static void clear_asid_other(void)
47 {
48 	u16 asid;
49 
50 	/*
51 	 * This is only expected to be set if we have disabled
52 	 * kernel _PAGE_GLOBAL pages.
53 	 */
54 	if (!static_cpu_has(X86_FEATURE_PTI)) {
55 		WARN_ON_ONCE(1);
56 		return;
57 	}
58 
59 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
60 		/* Do not need to flush the current asid */
61 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
62 			continue;
63 		/*
64 		 * Make sure the next time we go to switch to
65 		 * this asid, we do a flush:
66 		 */
67 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
68 	}
69 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
70 }
71 
72 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
73 
74 
75 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
76 			    u16 *new_asid, bool *need_flush)
77 {
78 	u16 asid;
79 
80 	if (!static_cpu_has(X86_FEATURE_PCID)) {
81 		*new_asid = 0;
82 		*need_flush = true;
83 		return;
84 	}
85 
86 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
87 		clear_asid_other();
88 
89 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
90 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
91 		    next->context.ctx_id)
92 			continue;
93 
94 		*new_asid = asid;
95 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
96 			       next_tlb_gen);
97 		return;
98 	}
99 
100 	/*
101 	 * We don't currently own an ASID slot on this CPU.
102 	 * Allocate a slot.
103 	 */
104 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
105 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
106 		*new_asid = 0;
107 		this_cpu_write(cpu_tlbstate.next_asid, 1);
108 	}
109 	*need_flush = true;
110 }
111 
112 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
113 {
114 	unsigned long new_mm_cr3;
115 
116 	if (need_flush) {
117 		invalidate_user_asid(new_asid);
118 		new_mm_cr3 = build_cr3(pgdir, new_asid);
119 	} else {
120 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
121 	}
122 
123 	/*
124 	 * Caution: many callers of this function expect
125 	 * that load_cr3() is serializing and orders TLB
126 	 * fills with respect to the mm_cpumask writes.
127 	 */
128 	write_cr3(new_mm_cr3);
129 }
130 
131 void leave_mm(int cpu)
132 {
133 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
134 
135 	/*
136 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
137 	 * If so, our callers still expect us to flush the TLB, but there
138 	 * aren't any user TLB entries in init_mm to worry about.
139 	 *
140 	 * This needs to happen before any other sanity checks due to
141 	 * intel_idle's shenanigans.
142 	 */
143 	if (loaded_mm == &init_mm)
144 		return;
145 
146 	/* Warn if we're not lazy. */
147 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
148 
149 	switch_mm(NULL, &init_mm, NULL);
150 }
151 EXPORT_SYMBOL_GPL(leave_mm);
152 
153 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154 	       struct task_struct *tsk)
155 {
156 	unsigned long flags;
157 
158 	local_irq_save(flags);
159 	switch_mm_irqs_off(prev, next, tsk);
160 	local_irq_restore(flags);
161 }
162 
163 static void sync_current_stack_to_mm(struct mm_struct *mm)
164 {
165 	unsigned long sp = current_stack_pointer;
166 	pgd_t *pgd = pgd_offset(mm, sp);
167 
168 	if (pgtable_l5_enabled()) {
169 		if (unlikely(pgd_none(*pgd))) {
170 			pgd_t *pgd_ref = pgd_offset_k(sp);
171 
172 			set_pgd(pgd, *pgd_ref);
173 		}
174 	} else {
175 		/*
176 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
177 		 * the p4d.  This compiles to approximately the same code as
178 		 * the 5-level case.
179 		 */
180 		p4d_t *p4d = p4d_offset(pgd, sp);
181 
182 		if (unlikely(p4d_none(*p4d))) {
183 			pgd_t *pgd_ref = pgd_offset_k(sp);
184 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
185 
186 			set_p4d(p4d, *p4d_ref);
187 		}
188 	}
189 }
190 
191 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
192 {
193 	unsigned long next_tif = task_thread_info(next)->flags;
194 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
195 
196 	return (unsigned long)next->mm | ibpb;
197 }
198 
199 static void cond_ibpb(struct task_struct *next)
200 {
201 	if (!next || !next->mm)
202 		return;
203 
204 	/*
205 	 * Both, the conditional and the always IBPB mode use the mm
206 	 * pointer to avoid the IBPB when switching between tasks of the
207 	 * same process. Using the mm pointer instead of mm->context.ctx_id
208 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
209 	 * less impossible to control by an attacker. Aside of that it
210 	 * would only affect the first schedule so the theoretically
211 	 * exposed data is not really interesting.
212 	 */
213 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
214 		unsigned long prev_mm, next_mm;
215 
216 		/*
217 		 * This is a bit more complex than the always mode because
218 		 * it has to handle two cases:
219 		 *
220 		 * 1) Switch from a user space task (potential attacker)
221 		 *    which has TIF_SPEC_IB set to a user space task
222 		 *    (potential victim) which has TIF_SPEC_IB not set.
223 		 *
224 		 * 2) Switch from a user space task (potential attacker)
225 		 *    which has TIF_SPEC_IB not set to a user space task
226 		 *    (potential victim) which has TIF_SPEC_IB set.
227 		 *
228 		 * This could be done by unconditionally issuing IBPB when
229 		 * a task which has TIF_SPEC_IB set is either scheduled in
230 		 * or out. Though that results in two flushes when:
231 		 *
232 		 * - the same user space task is scheduled out and later
233 		 *   scheduled in again and only a kernel thread ran in
234 		 *   between.
235 		 *
236 		 * - a user space task belonging to the same process is
237 		 *   scheduled in after a kernel thread ran in between
238 		 *
239 		 * - a user space task belonging to the same process is
240 		 *   scheduled in immediately.
241 		 *
242 		 * Optimize this with reasonably small overhead for the
243 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
244 		 * pointer of the incoming task which is stored in
245 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
246 		 */
247 		next_mm = mm_mangle_tif_spec_ib(next);
248 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
249 
250 		/*
251 		 * Issue IBPB only if the mm's are different and one or
252 		 * both have the IBPB bit set.
253 		 */
254 		if (next_mm != prev_mm &&
255 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
256 			indirect_branch_prediction_barrier();
257 
258 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
259 	}
260 
261 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
262 		/*
263 		 * Only flush when switching to a user space task with a
264 		 * different context than the user space task which ran
265 		 * last on this CPU.
266 		 */
267 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
268 			indirect_branch_prediction_barrier();
269 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
270 		}
271 	}
272 }
273 
274 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
275 			struct task_struct *tsk)
276 {
277 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
278 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
279 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
280 	unsigned cpu = smp_processor_id();
281 	u64 next_tlb_gen;
282 	bool need_flush;
283 	u16 new_asid;
284 
285 	/*
286 	 * NB: The scheduler will call us with prev == next when switching
287 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
288 	 * When this happens, we don't assume that CR3 (and hence
289 	 * cpu_tlbstate.loaded_mm) matches next.
290 	 *
291 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
292 	 */
293 
294 	/* We don't want flush_tlb_func_* to run concurrently with us. */
295 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
296 		WARN_ON_ONCE(!irqs_disabled());
297 
298 	/*
299 	 * Verify that CR3 is what we think it is.  This will catch
300 	 * hypothetical buggy code that directly switches to swapper_pg_dir
301 	 * without going through leave_mm() / switch_mm_irqs_off() or that
302 	 * does something like write_cr3(read_cr3_pa()).
303 	 *
304 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
305 	 * isn't free.
306 	 */
307 #ifdef CONFIG_DEBUG_VM
308 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
309 		/*
310 		 * If we were to BUG here, we'd be very likely to kill
311 		 * the system so hard that we don't see the call trace.
312 		 * Try to recover instead by ignoring the error and doing
313 		 * a global flush to minimize the chance of corruption.
314 		 *
315 		 * (This is far from being a fully correct recovery.
316 		 *  Architecturally, the CPU could prefetch something
317 		 *  back into an incorrect ASID slot and leave it there
318 		 *  to cause trouble down the road.  It's better than
319 		 *  nothing, though.)
320 		 */
321 		__flush_tlb_all();
322 	}
323 #endif
324 	this_cpu_write(cpu_tlbstate.is_lazy, false);
325 
326 	/*
327 	 * The membarrier system call requires a full memory barrier and
328 	 * core serialization before returning to user-space, after
329 	 * storing to rq->curr. Writing to CR3 provides that full
330 	 * memory barrier and core serializing instruction.
331 	 */
332 	if (real_prev == next) {
333 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
334 			   next->context.ctx_id);
335 
336 		/*
337 		 * Even in lazy TLB mode, the CPU should stay set in the
338 		 * mm_cpumask. The TLB shootdown code can figure out from
339 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
340 		 */
341 		if (WARN_ON_ONCE(real_prev != &init_mm &&
342 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
343 			cpumask_set_cpu(cpu, mm_cpumask(next));
344 
345 		/*
346 		 * If the CPU is not in lazy TLB mode, we are just switching
347 		 * from one thread in a process to another thread in the same
348 		 * process. No TLB flush required.
349 		 */
350 		if (!was_lazy)
351 			return;
352 
353 		/*
354 		 * Read the tlb_gen to check whether a flush is needed.
355 		 * If the TLB is up to date, just use it.
356 		 * The barrier synchronizes with the tlb_gen increment in
357 		 * the TLB shootdown code.
358 		 */
359 		smp_mb();
360 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
361 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
362 				next_tlb_gen)
363 			return;
364 
365 		/*
366 		 * TLB contents went out of date while we were in lazy
367 		 * mode. Fall through to the TLB switching code below.
368 		 */
369 		new_asid = prev_asid;
370 		need_flush = true;
371 	} else {
372 		/*
373 		 * Avoid user/user BTB poisoning by flushing the branch
374 		 * predictor when switching between processes. This stops
375 		 * one process from doing Spectre-v2 attacks on another.
376 		 */
377 		cond_ibpb(tsk);
378 
379 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
380 			/*
381 			 * If our current stack is in vmalloc space and isn't
382 			 * mapped in the new pgd, we'll double-fault.  Forcibly
383 			 * map it.
384 			 */
385 			sync_current_stack_to_mm(next);
386 		}
387 
388 		/*
389 		 * Stop remote flushes for the previous mm.
390 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
391 		 * but the bitmap manipulation can cause cache line contention.
392 		 */
393 		if (real_prev != &init_mm) {
394 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
395 						mm_cpumask(real_prev)));
396 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
397 		}
398 
399 		/*
400 		 * Start remote flushes and then read tlb_gen.
401 		 */
402 		if (next != &init_mm)
403 			cpumask_set_cpu(cpu, mm_cpumask(next));
404 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
405 
406 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
407 
408 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
409 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
410 		barrier();
411 	}
412 
413 	if (need_flush) {
414 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
415 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
416 		load_new_mm_cr3(next->pgd, new_asid, true);
417 
418 		/*
419 		 * NB: This gets called via leave_mm() in the idle path
420 		 * where RCU functions differently.  Tracing normally
421 		 * uses RCU, so we need to use the _rcuidle variant.
422 		 *
423 		 * (There is no good reason for this.  The idle code should
424 		 *  be rearranged to call this before rcu_idle_enter().)
425 		 */
426 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
427 	} else {
428 		/* The new ASID is already up to date. */
429 		load_new_mm_cr3(next->pgd, new_asid, false);
430 
431 		/* See above wrt _rcuidle. */
432 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
433 	}
434 
435 	/* Make sure we write CR3 before loaded_mm. */
436 	barrier();
437 
438 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
439 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
440 
441 	if (next != real_prev) {
442 		load_mm_cr4(next);
443 		switch_ldt(real_prev, next);
444 	}
445 }
446 
447 /*
448  * Please ignore the name of this function.  It should be called
449  * switch_to_kernel_thread().
450  *
451  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
452  * kernel thread or other context without an mm.  Acceptable implementations
453  * include doing nothing whatsoever, switching to init_mm, or various clever
454  * lazy tricks to try to minimize TLB flushes.
455  *
456  * The scheduler reserves the right to call enter_lazy_tlb() several times
457  * in a row.  It will notify us that we're going back to a real mm by
458  * calling switch_mm_irqs_off().
459  */
460 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
461 {
462 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
463 		return;
464 
465 	this_cpu_write(cpu_tlbstate.is_lazy, true);
466 }
467 
468 /*
469  * Call this when reinitializing a CPU.  It fixes the following potential
470  * problems:
471  *
472  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
473  *   because the CPU was taken down and came back up with CR3's PCID
474  *   bits clear.  CPU hotplug can do this.
475  *
476  * - The TLB contains junk in slots corresponding to inactive ASIDs.
477  *
478  * - The CPU went so far out to lunch that it may have missed a TLB
479  *   flush.
480  */
481 void initialize_tlbstate_and_flush(void)
482 {
483 	int i;
484 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
485 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
486 	unsigned long cr3 = __read_cr3();
487 
488 	/* Assert that CR3 already references the right mm. */
489 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
490 
491 	/*
492 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
493 	 * doesn't work like other CR4 bits because it can only be set from
494 	 * long mode.)
495 	 */
496 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
497 		!(cr4_read_shadow() & X86_CR4_PCIDE));
498 
499 	/* Force ASID 0 and force a TLB flush. */
500 	write_cr3(build_cr3(mm->pgd, 0));
501 
502 	/* Reinitialize tlbstate. */
503 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
504 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
505 	this_cpu_write(cpu_tlbstate.next_asid, 1);
506 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
507 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
508 
509 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
510 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
511 }
512 
513 /*
514  * flush_tlb_func_common()'s memory ordering requirement is that any
515  * TLB fills that happen after we flush the TLB are ordered after we
516  * read active_mm's tlb_gen.  We don't need any explicit barriers
517  * because all x86 flush operations are serializing and the
518  * atomic64_read operation won't be reordered by the compiler.
519  */
520 static void flush_tlb_func_common(const struct flush_tlb_info *f,
521 				  bool local, enum tlb_flush_reason reason)
522 {
523 	/*
524 	 * We have three different tlb_gen values in here.  They are:
525 	 *
526 	 * - mm_tlb_gen:     the latest generation.
527 	 * - local_tlb_gen:  the generation that this CPU has already caught
528 	 *                   up to.
529 	 * - f->new_tlb_gen: the generation that the requester of the flush
530 	 *                   wants us to catch up to.
531 	 */
532 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
533 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
534 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
535 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
536 
537 	/* This code cannot presently handle being reentered. */
538 	VM_WARN_ON(!irqs_disabled());
539 
540 	if (unlikely(loaded_mm == &init_mm))
541 		return;
542 
543 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
544 		   loaded_mm->context.ctx_id);
545 
546 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
547 		/*
548 		 * We're in lazy mode.  We need to at least flush our
549 		 * paging-structure cache to avoid speculatively reading
550 		 * garbage into our TLB.  Since switching to init_mm is barely
551 		 * slower than a minimal flush, just switch to init_mm.
552 		 *
553 		 * This should be rare, with native_flush_tlb_others skipping
554 		 * IPIs to lazy TLB mode CPUs.
555 		 */
556 		switch_mm_irqs_off(NULL, &init_mm, NULL);
557 		return;
558 	}
559 
560 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
561 		/*
562 		 * There's nothing to do: we're already up to date.  This can
563 		 * happen if two concurrent flushes happen -- the first flush to
564 		 * be handled can catch us all the way up, leaving no work for
565 		 * the second flush.
566 		 */
567 		trace_tlb_flush(reason, 0);
568 		return;
569 	}
570 
571 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
572 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
573 
574 	/*
575 	 * If we get to this point, we know that our TLB is out of date.
576 	 * This does not strictly imply that we need to flush (it's
577 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
578 	 * going to need to flush in the very near future, so we might
579 	 * as well get it over with.
580 	 *
581 	 * The only question is whether to do a full or partial flush.
582 	 *
583 	 * We do a partial flush if requested and two extra conditions
584 	 * are met:
585 	 *
586 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
587 	 *    we've always done all needed flushes to catch up to
588 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
589 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
590 	 *    us up to date for tlb_gen 3 is the partial flush we're
591 	 *    processing.
592 	 *
593 	 *    As an example of why this check is needed, suppose that there
594 	 *    are two concurrent flushes.  The first is a full flush that
595 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
596 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
597 	 *    processed on this CPU in reverse order, we'll see
598 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
599 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
600 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
601 	 *    1 without the full flush that's needed for tlb_gen 2.
602 	 *
603 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
604 	 *    Partial TLB flushes are not all that much cheaper than full TLB
605 	 *    flushes, so it seems unlikely that it would be a performance win
606 	 *    to do a partial flush if that won't bring our TLB fully up to
607 	 *    date.  By doing a full flush instead, we can increase
608 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
609 	 *    avoid another flush in the very near future.
610 	 */
611 	if (f->end != TLB_FLUSH_ALL &&
612 	    f->new_tlb_gen == local_tlb_gen + 1 &&
613 	    f->new_tlb_gen == mm_tlb_gen) {
614 		/* Partial flush */
615 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
616 		unsigned long addr = f->start;
617 
618 		while (addr < f->end) {
619 			__flush_tlb_one_user(addr);
620 			addr += 1UL << f->stride_shift;
621 		}
622 		if (local)
623 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
624 		trace_tlb_flush(reason, nr_invalidate);
625 	} else {
626 		/* Full flush. */
627 		local_flush_tlb();
628 		if (local)
629 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
630 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
631 	}
632 
633 	/* Both paths above update our state to mm_tlb_gen. */
634 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
635 }
636 
637 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
638 {
639 	const struct flush_tlb_info *f = info;
640 
641 	flush_tlb_func_common(f, true, reason);
642 }
643 
644 static void flush_tlb_func_remote(void *info)
645 {
646 	const struct flush_tlb_info *f = info;
647 
648 	inc_irq_stat(irq_tlb_count);
649 
650 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
651 		return;
652 
653 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
654 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
655 }
656 
657 static bool tlb_is_not_lazy(int cpu, void *data)
658 {
659 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
660 }
661 
662 void native_flush_tlb_others(const struct cpumask *cpumask,
663 			     const struct flush_tlb_info *info)
664 {
665 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
666 	if (info->end == TLB_FLUSH_ALL)
667 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
668 	else
669 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
670 				(info->end - info->start) >> PAGE_SHIFT);
671 
672 	if (is_uv_system()) {
673 		/*
674 		 * This whole special case is confused.  UV has a "Broadcast
675 		 * Assist Unit", which seems to be a fancy way to send IPIs.
676 		 * Back when x86 used an explicit TLB flush IPI, UV was
677 		 * optimized to use its own mechanism.  These days, x86 uses
678 		 * smp_call_function_many(), but UV still uses a manual IPI,
679 		 * and that IPI's action is out of date -- it does a manual
680 		 * flush instead of calling flush_tlb_func_remote().  This
681 		 * means that the percpu tlb_gen variables won't be updated
682 		 * and we'll do pointless flushes on future context switches.
683 		 *
684 		 * Rather than hooking native_flush_tlb_others() here, I think
685 		 * that UV should be updated so that smp_call_function_many(),
686 		 * etc, are optimal on UV.
687 		 */
688 		cpumask = uv_flush_tlb_others(cpumask, info);
689 		if (cpumask)
690 			smp_call_function_many(cpumask, flush_tlb_func_remote,
691 					       (void *)info, 1);
692 		return;
693 	}
694 
695 	/*
696 	 * If no page tables were freed, we can skip sending IPIs to
697 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
698 	 * at the next context switch.
699 	 *
700 	 * However, if page tables are getting freed, we need to send the
701 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
702 	 * up on the new contents of what used to be page tables, while
703 	 * doing a speculative memory access.
704 	 */
705 	if (info->freed_tables)
706 		smp_call_function_many(cpumask, flush_tlb_func_remote,
707 			       (void *)info, 1);
708 	else
709 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
710 				(void *)info, 1, GFP_ATOMIC, cpumask);
711 }
712 
713 /*
714  * See Documentation/x86/tlb.txt for details.  We choose 33
715  * because it is large enough to cover the vast majority (at
716  * least 95%) of allocations, and is small enough that we are
717  * confident it will not cause too much overhead.  Each single
718  * flush is about 100 ns, so this caps the maximum overhead at
719  * _about_ 3,000 ns.
720  *
721  * This is in units of pages.
722  */
723 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
724 
725 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
726 				unsigned long end, unsigned int stride_shift,
727 				bool freed_tables)
728 {
729 	int cpu;
730 
731 	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
732 		.mm = mm,
733 		.stride_shift = stride_shift,
734 		.freed_tables = freed_tables,
735 	};
736 
737 	cpu = get_cpu();
738 
739 	/* This is also a barrier that synchronizes with switch_mm(). */
740 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
741 
742 	/* Should we flush just the requested range? */
743 	if ((end != TLB_FLUSH_ALL) &&
744 	    ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
745 		info.start = start;
746 		info.end = end;
747 	} else {
748 		info.start = 0UL;
749 		info.end = TLB_FLUSH_ALL;
750 	}
751 
752 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
753 		VM_WARN_ON(irqs_disabled());
754 		local_irq_disable();
755 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
756 		local_irq_enable();
757 	}
758 
759 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
760 		flush_tlb_others(mm_cpumask(mm), &info);
761 
762 	put_cpu();
763 }
764 
765 
766 static void do_flush_tlb_all(void *info)
767 {
768 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
769 	__flush_tlb_all();
770 }
771 
772 void flush_tlb_all(void)
773 {
774 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
775 	on_each_cpu(do_flush_tlb_all, NULL, 1);
776 }
777 
778 static void do_kernel_range_flush(void *info)
779 {
780 	struct flush_tlb_info *f = info;
781 	unsigned long addr;
782 
783 	/* flush range by one by one 'invlpg' */
784 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
785 		__flush_tlb_one_kernel(addr);
786 }
787 
788 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
789 {
790 
791 	/* Balance as user space task's flush, a bit conservative */
792 	if (end == TLB_FLUSH_ALL ||
793 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
794 		on_each_cpu(do_flush_tlb_all, NULL, 1);
795 	} else {
796 		struct flush_tlb_info info;
797 		info.start = start;
798 		info.end = end;
799 		on_each_cpu(do_kernel_range_flush, &info, 1);
800 	}
801 }
802 
803 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
804 {
805 	struct flush_tlb_info info = {
806 		.mm = NULL,
807 		.start = 0UL,
808 		.end = TLB_FLUSH_ALL,
809 	};
810 
811 	int cpu = get_cpu();
812 
813 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
814 		VM_WARN_ON(irqs_disabled());
815 		local_irq_disable();
816 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
817 		local_irq_enable();
818 	}
819 
820 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
821 		flush_tlb_others(&batch->cpumask, &info);
822 
823 	cpumask_clear(&batch->cpumask);
824 
825 	put_cpu();
826 }
827 
828 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
829 			     size_t count, loff_t *ppos)
830 {
831 	char buf[32];
832 	unsigned int len;
833 
834 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
835 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
836 }
837 
838 static ssize_t tlbflush_write_file(struct file *file,
839 		 const char __user *user_buf, size_t count, loff_t *ppos)
840 {
841 	char buf[32];
842 	ssize_t len;
843 	int ceiling;
844 
845 	len = min(count, sizeof(buf) - 1);
846 	if (copy_from_user(buf, user_buf, len))
847 		return -EFAULT;
848 
849 	buf[len] = '\0';
850 	if (kstrtoint(buf, 0, &ceiling))
851 		return -EINVAL;
852 
853 	if (ceiling < 0)
854 		return -EINVAL;
855 
856 	tlb_single_page_flush_ceiling = ceiling;
857 	return count;
858 }
859 
860 static const struct file_operations fops_tlbflush = {
861 	.read = tlbflush_read_file,
862 	.write = tlbflush_write_file,
863 	.llseek = default_llseek,
864 };
865 
866 static int __init create_tlb_single_page_flush_ceiling(void)
867 {
868 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
869 			    arch_debugfs_dir, NULL, &fops_tlbflush);
870 	return 0;
871 }
872 late_initcall(create_tlb_single_page_flush_ceiling);
873