1 /* 2 * Copyright(c) 2017 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * This code is based in part on work published here: 14 * 15 * https://github.com/IAIK/KAISER 16 * 17 * The original work was written by and and signed off by for the Linux 18 * kernel by: 19 * 20 * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> 21 * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> 22 * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> 23 * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> 24 * 25 * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com> 26 * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and 27 * Andy Lutomirsky <luto@amacapital.net> 28 */ 29 #include <linux/kernel.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/types.h> 33 #include <linux/bug.h> 34 #include <linux/init.h> 35 #include <linux/spinlock.h> 36 #include <linux/mm.h> 37 #include <linux/uaccess.h> 38 39 #include <asm/cpufeature.h> 40 #include <asm/hypervisor.h> 41 #include <asm/vsyscall.h> 42 #include <asm/cmdline.h> 43 #include <asm/pti.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include <asm/desc.h> 48 #include <asm/sections.h> 49 50 #undef pr_fmt 51 #define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt 52 53 /* Backporting helper */ 54 #ifndef __GFP_NOTRACK 55 #define __GFP_NOTRACK 0 56 #endif 57 58 /* 59 * Define the page-table levels we clone for user-space on 32 60 * and 64 bit. 61 */ 62 #ifdef CONFIG_X86_64 63 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD 64 #else 65 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE 66 #endif 67 68 static void __init pti_print_if_insecure(const char *reason) 69 { 70 if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 71 pr_info("%s\n", reason); 72 } 73 74 static void __init pti_print_if_secure(const char *reason) 75 { 76 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 77 pr_info("%s\n", reason); 78 } 79 80 static enum pti_mode { 81 PTI_AUTO = 0, 82 PTI_FORCE_OFF, 83 PTI_FORCE_ON 84 } pti_mode; 85 86 void __init pti_check_boottime_disable(void) 87 { 88 char arg[5]; 89 int ret; 90 91 /* Assume mode is auto unless overridden. */ 92 pti_mode = PTI_AUTO; 93 94 if (hypervisor_is_type(X86_HYPER_XEN_PV)) { 95 pti_mode = PTI_FORCE_OFF; 96 pti_print_if_insecure("disabled on XEN PV."); 97 return; 98 } 99 100 ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg)); 101 if (ret > 0) { 102 if (ret == 3 && !strncmp(arg, "off", 3)) { 103 pti_mode = PTI_FORCE_OFF; 104 pti_print_if_insecure("disabled on command line."); 105 return; 106 } 107 if (ret == 2 && !strncmp(arg, "on", 2)) { 108 pti_mode = PTI_FORCE_ON; 109 pti_print_if_secure("force enabled on command line."); 110 goto enable; 111 } 112 if (ret == 4 && !strncmp(arg, "auto", 4)) { 113 pti_mode = PTI_AUTO; 114 goto autosel; 115 } 116 } 117 118 if (cmdline_find_option_bool(boot_command_line, "nopti")) { 119 pti_mode = PTI_FORCE_OFF; 120 pti_print_if_insecure("disabled on command line."); 121 return; 122 } 123 124 autosel: 125 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 126 return; 127 enable: 128 setup_force_cpu_cap(X86_FEATURE_PTI); 129 } 130 131 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 132 { 133 /* 134 * Changes to the high (kernel) portion of the kernelmode page 135 * tables are not automatically propagated to the usermode tables. 136 * 137 * Users should keep in mind that, unlike the kernelmode tables, 138 * there is no vmalloc_fault equivalent for the usermode tables. 139 * Top-level entries added to init_mm's usermode pgd after boot 140 * will not be automatically propagated to other mms. 141 */ 142 if (!pgdp_maps_userspace(pgdp)) 143 return pgd; 144 145 /* 146 * The user page tables get the full PGD, accessible from 147 * userspace: 148 */ 149 kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd; 150 151 /* 152 * If this is normal user memory, make it NX in the kernel 153 * pagetables so that, if we somehow screw up and return to 154 * usermode with the kernel CR3 loaded, we'll get a page fault 155 * instead of allowing user code to execute with the wrong CR3. 156 * 157 * As exceptions, we don't set NX if: 158 * - _PAGE_USER is not set. This could be an executable 159 * EFI runtime mapping or something similar, and the kernel 160 * may execute from it 161 * - we don't have NX support 162 * - we're clearing the PGD (i.e. the new pgd is not present). 163 */ 164 if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) && 165 (__supported_pte_mask & _PAGE_NX)) 166 pgd.pgd |= _PAGE_NX; 167 168 /* return the copy of the PGD we want the kernel to use: */ 169 return pgd; 170 } 171 172 /* 173 * Walk the user copy of the page tables (optionally) trying to allocate 174 * page table pages on the way down. 175 * 176 * Returns a pointer to a P4D on success, or NULL on failure. 177 */ 178 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address) 179 { 180 pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address)); 181 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 182 183 if (address < PAGE_OFFSET) { 184 WARN_ONCE(1, "attempt to walk user address\n"); 185 return NULL; 186 } 187 188 if (pgd_none(*pgd)) { 189 unsigned long new_p4d_page = __get_free_page(gfp); 190 if (WARN_ON_ONCE(!new_p4d_page)) 191 return NULL; 192 193 set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page))); 194 } 195 BUILD_BUG_ON(pgd_large(*pgd) != 0); 196 197 return p4d_offset(pgd, address); 198 } 199 200 /* 201 * Walk the user copy of the page tables (optionally) trying to allocate 202 * page table pages on the way down. 203 * 204 * Returns a pointer to a PMD on success, or NULL on failure. 205 */ 206 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address) 207 { 208 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 209 p4d_t *p4d; 210 pud_t *pud; 211 212 p4d = pti_user_pagetable_walk_p4d(address); 213 if (!p4d) 214 return NULL; 215 216 BUILD_BUG_ON(p4d_large(*p4d) != 0); 217 if (p4d_none(*p4d)) { 218 unsigned long new_pud_page = __get_free_page(gfp); 219 if (WARN_ON_ONCE(!new_pud_page)) 220 return NULL; 221 222 set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page))); 223 } 224 225 pud = pud_offset(p4d, address); 226 /* The user page tables do not use large mappings: */ 227 if (pud_large(*pud)) { 228 WARN_ON(1); 229 return NULL; 230 } 231 if (pud_none(*pud)) { 232 unsigned long new_pmd_page = __get_free_page(gfp); 233 if (WARN_ON_ONCE(!new_pmd_page)) 234 return NULL; 235 236 set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); 237 } 238 239 return pmd_offset(pud, address); 240 } 241 242 /* 243 * Walk the shadow copy of the page tables (optionally) trying to allocate 244 * page table pages on the way down. Does not support large pages. 245 * 246 * Note: this is only used when mapping *new* kernel data into the 247 * user/shadow page tables. It is never used for userspace data. 248 * 249 * Returns a pointer to a PTE on success, or NULL on failure. 250 */ 251 static pte_t *pti_user_pagetable_walk_pte(unsigned long address) 252 { 253 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 254 pmd_t *pmd; 255 pte_t *pte; 256 257 pmd = pti_user_pagetable_walk_pmd(address); 258 if (!pmd) 259 return NULL; 260 261 /* We can't do anything sensible if we hit a large mapping. */ 262 if (pmd_large(*pmd)) { 263 WARN_ON(1); 264 return NULL; 265 } 266 267 if (pmd_none(*pmd)) { 268 unsigned long new_pte_page = __get_free_page(gfp); 269 if (!new_pte_page) 270 return NULL; 271 272 set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); 273 } 274 275 pte = pte_offset_kernel(pmd, address); 276 if (pte_flags(*pte) & _PAGE_USER) { 277 WARN_ONCE(1, "attempt to walk to user pte\n"); 278 return NULL; 279 } 280 return pte; 281 } 282 283 #ifdef CONFIG_X86_VSYSCALL_EMULATION 284 static void __init pti_setup_vsyscall(void) 285 { 286 pte_t *pte, *target_pte; 287 unsigned int level; 288 289 pte = lookup_address(VSYSCALL_ADDR, &level); 290 if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte)) 291 return; 292 293 target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR); 294 if (WARN_ON(!target_pte)) 295 return; 296 297 *target_pte = *pte; 298 set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir)); 299 } 300 #else 301 static void __init pti_setup_vsyscall(void) { } 302 #endif 303 304 enum pti_clone_level { 305 PTI_CLONE_PMD, 306 PTI_CLONE_PTE, 307 }; 308 309 static void 310 pti_clone_pgtable(unsigned long start, unsigned long end, 311 enum pti_clone_level level) 312 { 313 unsigned long addr; 314 315 /* 316 * Clone the populated PMDs which cover start to end. These PMD areas 317 * can have holes. 318 */ 319 for (addr = start; addr < end;) { 320 pte_t *pte, *target_pte; 321 pmd_t *pmd, *target_pmd; 322 pgd_t *pgd; 323 p4d_t *p4d; 324 pud_t *pud; 325 326 /* Overflow check */ 327 if (addr < start) 328 break; 329 330 pgd = pgd_offset_k(addr); 331 if (WARN_ON(pgd_none(*pgd))) 332 return; 333 p4d = p4d_offset(pgd, addr); 334 if (WARN_ON(p4d_none(*p4d))) 335 return; 336 337 pud = pud_offset(p4d, addr); 338 if (pud_none(*pud)) { 339 addr += PUD_SIZE; 340 continue; 341 } 342 343 pmd = pmd_offset(pud, addr); 344 if (pmd_none(*pmd)) { 345 addr += PMD_SIZE; 346 continue; 347 } 348 349 if (pmd_large(*pmd) || level == PTI_CLONE_PMD) { 350 target_pmd = pti_user_pagetable_walk_pmd(addr); 351 if (WARN_ON(!target_pmd)) 352 return; 353 354 /* 355 * Only clone present PMDs. This ensures only setting 356 * _PAGE_GLOBAL on present PMDs. This should only be 357 * called on well-known addresses anyway, so a non- 358 * present PMD would be a surprise. 359 */ 360 if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT))) 361 return; 362 363 /* 364 * Setting 'target_pmd' below creates a mapping in both 365 * the user and kernel page tables. It is effectively 366 * global, so set it as global in both copies. Note: 367 * the X86_FEATURE_PGE check is not _required_ because 368 * the CPU ignores _PAGE_GLOBAL when PGE is not 369 * supported. The check keeps consistentency with 370 * code that only set this bit when supported. 371 */ 372 if (boot_cpu_has(X86_FEATURE_PGE)) 373 *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL); 374 375 /* 376 * Copy the PMD. That is, the kernelmode and usermode 377 * tables will share the last-level page tables of this 378 * address range 379 */ 380 *target_pmd = *pmd; 381 382 addr += PMD_SIZE; 383 384 } else if (level == PTI_CLONE_PTE) { 385 386 /* Walk the page-table down to the pte level */ 387 pte = pte_offset_kernel(pmd, addr); 388 if (pte_none(*pte)) { 389 addr += PAGE_SIZE; 390 continue; 391 } 392 393 /* Only clone present PTEs */ 394 if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT))) 395 return; 396 397 /* Allocate PTE in the user page-table */ 398 target_pte = pti_user_pagetable_walk_pte(addr); 399 if (WARN_ON(!target_pte)) 400 return; 401 402 /* Set GLOBAL bit in both PTEs */ 403 if (boot_cpu_has(X86_FEATURE_PGE)) 404 *pte = pte_set_flags(*pte, _PAGE_GLOBAL); 405 406 /* Clone the PTE */ 407 *target_pte = *pte; 408 409 addr += PAGE_SIZE; 410 411 } else { 412 BUG(); 413 } 414 } 415 } 416 417 #ifdef CONFIG_X86_64 418 /* 419 * Clone a single p4d (i.e. a top-level entry on 4-level systems and a 420 * next-level entry on 5-level systems. 421 */ 422 static void __init pti_clone_p4d(unsigned long addr) 423 { 424 p4d_t *kernel_p4d, *user_p4d; 425 pgd_t *kernel_pgd; 426 427 user_p4d = pti_user_pagetable_walk_p4d(addr); 428 if (!user_p4d) 429 return; 430 431 kernel_pgd = pgd_offset_k(addr); 432 kernel_p4d = p4d_offset(kernel_pgd, addr); 433 *user_p4d = *kernel_p4d; 434 } 435 436 /* 437 * Clone the CPU_ENTRY_AREA and associated data into the user space visible 438 * page table. 439 */ 440 static void __init pti_clone_user_shared(void) 441 { 442 unsigned int cpu; 443 444 pti_clone_p4d(CPU_ENTRY_AREA_BASE); 445 446 for_each_possible_cpu(cpu) { 447 /* 448 * The SYSCALL64 entry code needs to be able to find the 449 * thread stack and needs one word of scratch space in which 450 * to spill a register. All of this lives in the TSS, in 451 * the sp1 and sp2 slots. 452 * 453 * This is done for all possible CPUs during boot to ensure 454 * that it's propagated to all mms. If we were to add one of 455 * these mappings during CPU hotplug, we would need to take 456 * some measure to make sure that every mm that subsequently 457 * ran on that CPU would have the relevant PGD entry in its 458 * pagetables. The usual vmalloc_fault() mechanism would not 459 * work for page faults taken in entry_SYSCALL_64 before RSP 460 * is set up. 461 */ 462 463 unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu); 464 phys_addr_t pa = per_cpu_ptr_to_phys((void *)va); 465 pte_t *target_pte; 466 467 target_pte = pti_user_pagetable_walk_pte(va); 468 if (WARN_ON(!target_pte)) 469 return; 470 471 *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL); 472 } 473 } 474 475 #else /* CONFIG_X86_64 */ 476 477 /* 478 * On 32 bit PAE systems with 1GB of Kernel address space there is only 479 * one pgd/p4d for the whole kernel. Cloning that would map the whole 480 * address space into the user page-tables, making PTI useless. So clone 481 * the page-table on the PMD level to prevent that. 482 */ 483 static void __init pti_clone_user_shared(void) 484 { 485 unsigned long start, end; 486 487 start = CPU_ENTRY_AREA_BASE; 488 end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES); 489 490 pti_clone_pgtable(start, end, PTI_CLONE_PMD); 491 } 492 #endif /* CONFIG_X86_64 */ 493 494 /* 495 * Clone the ESPFIX P4D into the user space visible page table 496 */ 497 static void __init pti_setup_espfix64(void) 498 { 499 #ifdef CONFIG_X86_ESPFIX64 500 pti_clone_p4d(ESPFIX_BASE_ADDR); 501 #endif 502 } 503 504 /* 505 * Clone the populated PMDs of the entry and irqentry text and force it RO. 506 */ 507 static void pti_clone_entry_text(void) 508 { 509 pti_clone_pgtable((unsigned long) __entry_text_start, 510 (unsigned long) __irqentry_text_end, 511 PTI_CLONE_PMD); 512 } 513 514 /* 515 * Global pages and PCIDs are both ways to make kernel TLB entries 516 * live longer, reduce TLB misses and improve kernel performance. 517 * But, leaving all kernel text Global makes it potentially accessible 518 * to Meltdown-style attacks which make it trivial to find gadgets or 519 * defeat KASLR. 520 * 521 * Only use global pages when it is really worth it. 522 */ 523 static inline bool pti_kernel_image_global_ok(void) 524 { 525 /* 526 * Systems with PCIDs get litlle benefit from global 527 * kernel text and are not worth the downsides. 528 */ 529 if (cpu_feature_enabled(X86_FEATURE_PCID)) 530 return false; 531 532 /* 533 * Only do global kernel image for pti=auto. Do the most 534 * secure thing (not global) if pti=on specified. 535 */ 536 if (pti_mode != PTI_AUTO) 537 return false; 538 539 /* 540 * K8 may not tolerate the cleared _PAGE_RW on the userspace 541 * global kernel image pages. Do the safe thing (disable 542 * global kernel image). This is unlikely to ever be 543 * noticed because PTI is disabled by default on AMD CPUs. 544 */ 545 if (boot_cpu_has(X86_FEATURE_K8)) 546 return false; 547 548 /* 549 * RANDSTRUCT derives its hardening benefits from the 550 * attacker's lack of knowledge about the layout of kernel 551 * data structures. Keep the kernel image non-global in 552 * cases where RANDSTRUCT is in use to help keep the layout a 553 * secret. 554 */ 555 if (IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT)) 556 return false; 557 558 return true; 559 } 560 561 /* 562 * This is the only user for these and it is not arch-generic 563 * like the other set_memory.h functions. Just extern them. 564 */ 565 extern int set_memory_nonglobal(unsigned long addr, int numpages); 566 extern int set_memory_global(unsigned long addr, int numpages); 567 568 /* 569 * For some configurations, map all of kernel text into the user page 570 * tables. This reduces TLB misses, especially on non-PCID systems. 571 */ 572 static void pti_clone_kernel_text(void) 573 { 574 /* 575 * rodata is part of the kernel image and is normally 576 * readable on the filesystem or on the web. But, do not 577 * clone the areas past rodata, they might contain secrets. 578 */ 579 unsigned long start = PFN_ALIGN(_text); 580 unsigned long end_clone = (unsigned long)__end_rodata_aligned; 581 unsigned long end_global = PFN_ALIGN((unsigned long)__stop___ex_table); 582 583 if (!pti_kernel_image_global_ok()) 584 return; 585 586 pr_debug("mapping partial kernel image into user address space\n"); 587 588 /* 589 * Note that this will undo _some_ of the work that 590 * pti_set_kernel_image_nonglobal() did to clear the 591 * global bit. 592 */ 593 pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE); 594 595 /* 596 * pti_clone_pgtable() will set the global bit in any PMDs 597 * that it clones, but we also need to get any PTEs in 598 * the last level for areas that are not huge-page-aligned. 599 */ 600 601 /* Set the global bit for normal non-__init kernel text: */ 602 set_memory_global(start, (end_global - start) >> PAGE_SHIFT); 603 } 604 605 static void pti_set_kernel_image_nonglobal(void) 606 { 607 /* 608 * The identity map is created with PMDs, regardless of the 609 * actual length of the kernel. We need to clear 610 * _PAGE_GLOBAL up to a PMD boundary, not just to the end 611 * of the image. 612 */ 613 unsigned long start = PFN_ALIGN(_text); 614 unsigned long end = ALIGN((unsigned long)_end, PMD_PAGE_SIZE); 615 616 /* 617 * This clears _PAGE_GLOBAL from the entire kernel image. 618 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for 619 * areas that are mapped to userspace. 620 */ 621 set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT); 622 } 623 624 /* 625 * Initialize kernel page table isolation 626 */ 627 void __init pti_init(void) 628 { 629 if (!static_cpu_has(X86_FEATURE_PTI)) 630 return; 631 632 pr_info("enabled\n"); 633 634 #ifdef CONFIG_X86_32 635 /* 636 * We check for X86_FEATURE_PCID here. But the init-code will 637 * clear the feature flag on 32 bit because the feature is not 638 * supported on 32 bit anyway. To print the warning we need to 639 * check with cpuid directly again. 640 */ 641 if (cpuid_ecx(0x1) & BIT(17)) { 642 /* Use printk to work around pr_fmt() */ 643 printk(KERN_WARNING "\n"); 644 printk(KERN_WARNING "************************************************************\n"); 645 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 646 printk(KERN_WARNING "** **\n"); 647 printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n"); 648 printk(KERN_WARNING "** Your performance will increase dramatically if you **\n"); 649 printk(KERN_WARNING "** switch to a 64-bit kernel! **\n"); 650 printk(KERN_WARNING "** **\n"); 651 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 652 printk(KERN_WARNING "************************************************************\n"); 653 } 654 #endif 655 656 pti_clone_user_shared(); 657 658 /* Undo all global bits from the init pagetables in head_64.S: */ 659 pti_set_kernel_image_nonglobal(); 660 /* Replace some of the global bits just for shared entry text: */ 661 pti_clone_entry_text(); 662 pti_setup_espfix64(); 663 pti_setup_vsyscall(); 664 } 665 666 /* 667 * Finalize the kernel mappings in the userspace page-table. Some of the 668 * mappings for the kernel image might have changed since pti_init() 669 * cloned them. This is because parts of the kernel image have been 670 * mapped RO and/or NX. These changes need to be cloned again to the 671 * userspace page-table. 672 */ 673 void pti_finalize(void) 674 { 675 /* 676 * We need to clone everything (again) that maps parts of the 677 * kernel image. 678 */ 679 pti_clone_entry_text(); 680 pti_clone_kernel_text(); 681 682 debug_checkwx_user(); 683 } 684