xref: /openbmc/linux/arch/x86/mm/pti.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  *
5  * This code is based in part on work published here:
6  *
7  *	https://github.com/IAIK/KAISER
8  *
9  * The original work was written by and and signed off by for the Linux
10  * kernel by:
11  *
12  *   Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at>
13  *   Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
14  *   Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
15  *   Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
16  *
17  * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com>
18  * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and
19  *		       Andy Lutomirsky <luto@amacapital.net>
20  */
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/bug.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/cpu.h>
31 
32 #include <asm/cpufeature.h>
33 #include <asm/hypervisor.h>
34 #include <asm/vsyscall.h>
35 #include <asm/cmdline.h>
36 #include <asm/pti.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/sections.h>
40 #include <asm/set_memory.h>
41 
42 #undef pr_fmt
43 #define pr_fmt(fmt)     "Kernel/User page tables isolation: " fmt
44 
45 /* Backporting helper */
46 #ifndef __GFP_NOTRACK
47 #define __GFP_NOTRACK	0
48 #endif
49 
50 /*
51  * Define the page-table levels we clone for user-space on 32
52  * and 64 bit.
53  */
54 #ifdef CONFIG_X86_64
55 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PMD
56 #else
57 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PTE
58 #endif
59 
60 static void __init pti_print_if_insecure(const char *reason)
61 {
62 	if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
63 		pr_info("%s\n", reason);
64 }
65 
66 static void __init pti_print_if_secure(const char *reason)
67 {
68 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
69 		pr_info("%s\n", reason);
70 }
71 
72 static enum pti_mode {
73 	PTI_AUTO = 0,
74 	PTI_FORCE_OFF,
75 	PTI_FORCE_ON
76 } pti_mode;
77 
78 void __init pti_check_boottime_disable(void)
79 {
80 	char arg[5];
81 	int ret;
82 
83 	/* Assume mode is auto unless overridden. */
84 	pti_mode = PTI_AUTO;
85 
86 	if (hypervisor_is_type(X86_HYPER_XEN_PV)) {
87 		pti_mode = PTI_FORCE_OFF;
88 		pti_print_if_insecure("disabled on XEN PV.");
89 		return;
90 	}
91 
92 	ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg));
93 	if (ret > 0)  {
94 		if (ret == 3 && !strncmp(arg, "off", 3)) {
95 			pti_mode = PTI_FORCE_OFF;
96 			pti_print_if_insecure("disabled on command line.");
97 			return;
98 		}
99 		if (ret == 2 && !strncmp(arg, "on", 2)) {
100 			pti_mode = PTI_FORCE_ON;
101 			pti_print_if_secure("force enabled on command line.");
102 			goto enable;
103 		}
104 		if (ret == 4 && !strncmp(arg, "auto", 4)) {
105 			pti_mode = PTI_AUTO;
106 			goto autosel;
107 		}
108 	}
109 
110 	if (cmdline_find_option_bool(boot_command_line, "nopti") ||
111 	    cpu_mitigations_off()) {
112 		pti_mode = PTI_FORCE_OFF;
113 		pti_print_if_insecure("disabled on command line.");
114 		return;
115 	}
116 
117 autosel:
118 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
119 		return;
120 enable:
121 	setup_force_cpu_cap(X86_FEATURE_PTI);
122 }
123 
124 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
125 {
126 	/*
127 	 * Changes to the high (kernel) portion of the kernelmode page
128 	 * tables are not automatically propagated to the usermode tables.
129 	 *
130 	 * Users should keep in mind that, unlike the kernelmode tables,
131 	 * there is no vmalloc_fault equivalent for the usermode tables.
132 	 * Top-level entries added to init_mm's usermode pgd after boot
133 	 * will not be automatically propagated to other mms.
134 	 */
135 	if (!pgdp_maps_userspace(pgdp))
136 		return pgd;
137 
138 	/*
139 	 * The user page tables get the full PGD, accessible from
140 	 * userspace:
141 	 */
142 	kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;
143 
144 	/*
145 	 * If this is normal user memory, make it NX in the kernel
146 	 * pagetables so that, if we somehow screw up and return to
147 	 * usermode with the kernel CR3 loaded, we'll get a page fault
148 	 * instead of allowing user code to execute with the wrong CR3.
149 	 *
150 	 * As exceptions, we don't set NX if:
151 	 *  - _PAGE_USER is not set.  This could be an executable
152 	 *     EFI runtime mapping or something similar, and the kernel
153 	 *     may execute from it
154 	 *  - we don't have NX support
155 	 *  - we're clearing the PGD (i.e. the new pgd is not present).
156 	 */
157 	if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
158 	    (__supported_pte_mask & _PAGE_NX))
159 		pgd.pgd |= _PAGE_NX;
160 
161 	/* return the copy of the PGD we want the kernel to use: */
162 	return pgd;
163 }
164 
165 /*
166  * Walk the user copy of the page tables (optionally) trying to allocate
167  * page table pages on the way down.
168  *
169  * Returns a pointer to a P4D on success, or NULL on failure.
170  */
171 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
172 {
173 	pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address));
174 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
175 
176 	if (address < PAGE_OFFSET) {
177 		WARN_ONCE(1, "attempt to walk user address\n");
178 		return NULL;
179 	}
180 
181 	if (pgd_none(*pgd)) {
182 		unsigned long new_p4d_page = __get_free_page(gfp);
183 		if (WARN_ON_ONCE(!new_p4d_page))
184 			return NULL;
185 
186 		set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
187 	}
188 	BUILD_BUG_ON(pgd_large(*pgd) != 0);
189 
190 	return p4d_offset(pgd, address);
191 }
192 
193 /*
194  * Walk the user copy of the page tables (optionally) trying to allocate
195  * page table pages on the way down.
196  *
197  * Returns a pointer to a PMD on success, or NULL on failure.
198  */
199 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
200 {
201 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
202 	p4d_t *p4d;
203 	pud_t *pud;
204 
205 	p4d = pti_user_pagetable_walk_p4d(address);
206 	if (!p4d)
207 		return NULL;
208 
209 	BUILD_BUG_ON(p4d_large(*p4d) != 0);
210 	if (p4d_none(*p4d)) {
211 		unsigned long new_pud_page = __get_free_page(gfp);
212 		if (WARN_ON_ONCE(!new_pud_page))
213 			return NULL;
214 
215 		set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page)));
216 	}
217 
218 	pud = pud_offset(p4d, address);
219 	/* The user page tables do not use large mappings: */
220 	if (pud_leaf(*pud)) {
221 		WARN_ON(1);
222 		return NULL;
223 	}
224 	if (pud_none(*pud)) {
225 		unsigned long new_pmd_page = __get_free_page(gfp);
226 		if (WARN_ON_ONCE(!new_pmd_page))
227 			return NULL;
228 
229 		set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
230 	}
231 
232 	return pmd_offset(pud, address);
233 }
234 
235 /*
236  * Walk the shadow copy of the page tables (optionally) trying to allocate
237  * page table pages on the way down.  Does not support large pages.
238  *
239  * Note: this is only used when mapping *new* kernel data into the
240  * user/shadow page tables.  It is never used for userspace data.
241  *
242  * Returns a pointer to a PTE on success, or NULL on failure.
243  */
244 static pte_t *pti_user_pagetable_walk_pte(unsigned long address)
245 {
246 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
247 	pmd_t *pmd;
248 	pte_t *pte;
249 
250 	pmd = pti_user_pagetable_walk_pmd(address);
251 	if (!pmd)
252 		return NULL;
253 
254 	/* We can't do anything sensible if we hit a large mapping. */
255 	if (pmd_large(*pmd)) {
256 		WARN_ON(1);
257 		return NULL;
258 	}
259 
260 	if (pmd_none(*pmd)) {
261 		unsigned long new_pte_page = __get_free_page(gfp);
262 		if (!new_pte_page)
263 			return NULL;
264 
265 		set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
266 	}
267 
268 	pte = pte_offset_kernel(pmd, address);
269 	if (pte_flags(*pte) & _PAGE_USER) {
270 		WARN_ONCE(1, "attempt to walk to user pte\n");
271 		return NULL;
272 	}
273 	return pte;
274 }
275 
276 #ifdef CONFIG_X86_VSYSCALL_EMULATION
277 static void __init pti_setup_vsyscall(void)
278 {
279 	pte_t *pte, *target_pte;
280 	unsigned int level;
281 
282 	pte = lookup_address(VSYSCALL_ADDR, &level);
283 	if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte))
284 		return;
285 
286 	target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR);
287 	if (WARN_ON(!target_pte))
288 		return;
289 
290 	*target_pte = *pte;
291 	set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir));
292 }
293 #else
294 static void __init pti_setup_vsyscall(void) { }
295 #endif
296 
297 enum pti_clone_level {
298 	PTI_CLONE_PMD,
299 	PTI_CLONE_PTE,
300 };
301 
302 static void
303 pti_clone_pgtable(unsigned long start, unsigned long end,
304 		  enum pti_clone_level level)
305 {
306 	unsigned long addr;
307 
308 	/*
309 	 * Clone the populated PMDs which cover start to end. These PMD areas
310 	 * can have holes.
311 	 */
312 	for (addr = start; addr < end;) {
313 		pte_t *pte, *target_pte;
314 		pmd_t *pmd, *target_pmd;
315 		pgd_t *pgd;
316 		p4d_t *p4d;
317 		pud_t *pud;
318 
319 		/* Overflow check */
320 		if (addr < start)
321 			break;
322 
323 		pgd = pgd_offset_k(addr);
324 		if (WARN_ON(pgd_none(*pgd)))
325 			return;
326 		p4d = p4d_offset(pgd, addr);
327 		if (WARN_ON(p4d_none(*p4d)))
328 			return;
329 
330 		pud = pud_offset(p4d, addr);
331 		if (pud_none(*pud)) {
332 			WARN_ON_ONCE(addr & ~PUD_MASK);
333 			addr = round_up(addr + 1, PUD_SIZE);
334 			continue;
335 		}
336 
337 		pmd = pmd_offset(pud, addr);
338 		if (pmd_none(*pmd)) {
339 			WARN_ON_ONCE(addr & ~PMD_MASK);
340 			addr = round_up(addr + 1, PMD_SIZE);
341 			continue;
342 		}
343 
344 		if (pmd_large(*pmd) || level == PTI_CLONE_PMD) {
345 			target_pmd = pti_user_pagetable_walk_pmd(addr);
346 			if (WARN_ON(!target_pmd))
347 				return;
348 
349 			/*
350 			 * Only clone present PMDs.  This ensures only setting
351 			 * _PAGE_GLOBAL on present PMDs.  This should only be
352 			 * called on well-known addresses anyway, so a non-
353 			 * present PMD would be a surprise.
354 			 */
355 			if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)))
356 				return;
357 
358 			/*
359 			 * Setting 'target_pmd' below creates a mapping in both
360 			 * the user and kernel page tables.  It is effectively
361 			 * global, so set it as global in both copies.  Note:
362 			 * the X86_FEATURE_PGE check is not _required_ because
363 			 * the CPU ignores _PAGE_GLOBAL when PGE is not
364 			 * supported.  The check keeps consistency with
365 			 * code that only set this bit when supported.
366 			 */
367 			if (boot_cpu_has(X86_FEATURE_PGE))
368 				*pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL);
369 
370 			/*
371 			 * Copy the PMD.  That is, the kernelmode and usermode
372 			 * tables will share the last-level page tables of this
373 			 * address range
374 			 */
375 			*target_pmd = *pmd;
376 
377 			addr += PMD_SIZE;
378 
379 		} else if (level == PTI_CLONE_PTE) {
380 
381 			/* Walk the page-table down to the pte level */
382 			pte = pte_offset_kernel(pmd, addr);
383 			if (pte_none(*pte)) {
384 				addr += PAGE_SIZE;
385 				continue;
386 			}
387 
388 			/* Only clone present PTEs */
389 			if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT)))
390 				return;
391 
392 			/* Allocate PTE in the user page-table */
393 			target_pte = pti_user_pagetable_walk_pte(addr);
394 			if (WARN_ON(!target_pte))
395 				return;
396 
397 			/* Set GLOBAL bit in both PTEs */
398 			if (boot_cpu_has(X86_FEATURE_PGE))
399 				*pte = pte_set_flags(*pte, _PAGE_GLOBAL);
400 
401 			/* Clone the PTE */
402 			*target_pte = *pte;
403 
404 			addr += PAGE_SIZE;
405 
406 		} else {
407 			BUG();
408 		}
409 	}
410 }
411 
412 #ifdef CONFIG_X86_64
413 /*
414  * Clone a single p4d (i.e. a top-level entry on 4-level systems and a
415  * next-level entry on 5-level systems.
416  */
417 static void __init pti_clone_p4d(unsigned long addr)
418 {
419 	p4d_t *kernel_p4d, *user_p4d;
420 	pgd_t *kernel_pgd;
421 
422 	user_p4d = pti_user_pagetable_walk_p4d(addr);
423 	if (!user_p4d)
424 		return;
425 
426 	kernel_pgd = pgd_offset_k(addr);
427 	kernel_p4d = p4d_offset(kernel_pgd, addr);
428 	*user_p4d = *kernel_p4d;
429 }
430 
431 /*
432  * Clone the CPU_ENTRY_AREA and associated data into the user space visible
433  * page table.
434  */
435 static void __init pti_clone_user_shared(void)
436 {
437 	unsigned int cpu;
438 
439 	pti_clone_p4d(CPU_ENTRY_AREA_BASE);
440 
441 	for_each_possible_cpu(cpu) {
442 		/*
443 		 * The SYSCALL64 entry code needs one word of scratch space
444 		 * in which to spill a register.  It lives in the sp2 slot
445 		 * of the CPU's TSS.
446 		 *
447 		 * This is done for all possible CPUs during boot to ensure
448 		 * that it's propagated to all mms.
449 		 */
450 
451 		unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
452 		phys_addr_t pa = per_cpu_ptr_to_phys((void *)va);
453 		pte_t *target_pte;
454 
455 		target_pte = pti_user_pagetable_walk_pte(va);
456 		if (WARN_ON(!target_pte))
457 			return;
458 
459 		*target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL);
460 	}
461 }
462 
463 #else /* CONFIG_X86_64 */
464 
465 /*
466  * On 32 bit PAE systems with 1GB of Kernel address space there is only
467  * one pgd/p4d for the whole kernel. Cloning that would map the whole
468  * address space into the user page-tables, making PTI useless. So clone
469  * the page-table on the PMD level to prevent that.
470  */
471 static void __init pti_clone_user_shared(void)
472 {
473 	unsigned long start, end;
474 
475 	start = CPU_ENTRY_AREA_BASE;
476 	end   = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES);
477 
478 	pti_clone_pgtable(start, end, PTI_CLONE_PMD);
479 }
480 #endif /* CONFIG_X86_64 */
481 
482 /*
483  * Clone the ESPFIX P4D into the user space visible page table
484  */
485 static void __init pti_setup_espfix64(void)
486 {
487 #ifdef CONFIG_X86_ESPFIX64
488 	pti_clone_p4d(ESPFIX_BASE_ADDR);
489 #endif
490 }
491 
492 /*
493  * Clone the populated PMDs of the entry text and force it RO.
494  */
495 static void pti_clone_entry_text(void)
496 {
497 	pti_clone_pgtable((unsigned long) __entry_text_start,
498 			  (unsigned long) __entry_text_end,
499 			  PTI_CLONE_PMD);
500 }
501 
502 /*
503  * Global pages and PCIDs are both ways to make kernel TLB entries
504  * live longer, reduce TLB misses and improve kernel performance.
505  * But, leaving all kernel text Global makes it potentially accessible
506  * to Meltdown-style attacks which make it trivial to find gadgets or
507  * defeat KASLR.
508  *
509  * Only use global pages when it is really worth it.
510  */
511 static inline bool pti_kernel_image_global_ok(void)
512 {
513 	/*
514 	 * Systems with PCIDs get little benefit from global
515 	 * kernel text and are not worth the downsides.
516 	 */
517 	if (cpu_feature_enabled(X86_FEATURE_PCID))
518 		return false;
519 
520 	/*
521 	 * Only do global kernel image for pti=auto.  Do the most
522 	 * secure thing (not global) if pti=on specified.
523 	 */
524 	if (pti_mode != PTI_AUTO)
525 		return false;
526 
527 	/*
528 	 * K8 may not tolerate the cleared _PAGE_RW on the userspace
529 	 * global kernel image pages.  Do the safe thing (disable
530 	 * global kernel image).  This is unlikely to ever be
531 	 * noticed because PTI is disabled by default on AMD CPUs.
532 	 */
533 	if (boot_cpu_has(X86_FEATURE_K8))
534 		return false;
535 
536 	/*
537 	 * RANDSTRUCT derives its hardening benefits from the
538 	 * attacker's lack of knowledge about the layout of kernel
539 	 * data structures.  Keep the kernel image non-global in
540 	 * cases where RANDSTRUCT is in use to help keep the layout a
541 	 * secret.
542 	 */
543 	if (IS_ENABLED(CONFIG_RANDSTRUCT))
544 		return false;
545 
546 	return true;
547 }
548 
549 /*
550  * For some configurations, map all of kernel text into the user page
551  * tables.  This reduces TLB misses, especially on non-PCID systems.
552  */
553 static void pti_clone_kernel_text(void)
554 {
555 	/*
556 	 * rodata is part of the kernel image and is normally
557 	 * readable on the filesystem or on the web.  But, do not
558 	 * clone the areas past rodata, they might contain secrets.
559 	 */
560 	unsigned long start = PFN_ALIGN(_text);
561 	unsigned long end_clone  = (unsigned long)__end_rodata_aligned;
562 	unsigned long end_global = PFN_ALIGN((unsigned long)_etext);
563 
564 	if (!pti_kernel_image_global_ok())
565 		return;
566 
567 	pr_debug("mapping partial kernel image into user address space\n");
568 
569 	/*
570 	 * Note that this will undo _some_ of the work that
571 	 * pti_set_kernel_image_nonglobal() did to clear the
572 	 * global bit.
573 	 */
574 	pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE);
575 
576 	/*
577 	 * pti_clone_pgtable() will set the global bit in any PMDs
578 	 * that it clones, but we also need to get any PTEs in
579 	 * the last level for areas that are not huge-page-aligned.
580 	 */
581 
582 	/* Set the global bit for normal non-__init kernel text: */
583 	set_memory_global(start, (end_global - start) >> PAGE_SHIFT);
584 }
585 
586 static void pti_set_kernel_image_nonglobal(void)
587 {
588 	/*
589 	 * The identity map is created with PMDs, regardless of the
590 	 * actual length of the kernel.  We need to clear
591 	 * _PAGE_GLOBAL up to a PMD boundary, not just to the end
592 	 * of the image.
593 	 */
594 	unsigned long start = PFN_ALIGN(_text);
595 	unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE);
596 
597 	/*
598 	 * This clears _PAGE_GLOBAL from the entire kernel image.
599 	 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for
600 	 * areas that are mapped to userspace.
601 	 */
602 	set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT);
603 }
604 
605 /*
606  * Initialize kernel page table isolation
607  */
608 void __init pti_init(void)
609 {
610 	if (!boot_cpu_has(X86_FEATURE_PTI))
611 		return;
612 
613 	pr_info("enabled\n");
614 
615 #ifdef CONFIG_X86_32
616 	/*
617 	 * We check for X86_FEATURE_PCID here. But the init-code will
618 	 * clear the feature flag on 32 bit because the feature is not
619 	 * supported on 32 bit anyway. To print the warning we need to
620 	 * check with cpuid directly again.
621 	 */
622 	if (cpuid_ecx(0x1) & BIT(17)) {
623 		/* Use printk to work around pr_fmt() */
624 		printk(KERN_WARNING "\n");
625 		printk(KERN_WARNING "************************************************************\n");
626 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
627 		printk(KERN_WARNING "**                                                        **\n");
628 		printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n");
629 		printk(KERN_WARNING "** Your performance will increase dramatically if you     **\n");
630 		printk(KERN_WARNING "** switch to a 64-bit kernel!                             **\n");
631 		printk(KERN_WARNING "**                                                        **\n");
632 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
633 		printk(KERN_WARNING "************************************************************\n");
634 	}
635 #endif
636 
637 	pti_clone_user_shared();
638 
639 	/* Undo all global bits from the init pagetables in head_64.S: */
640 	pti_set_kernel_image_nonglobal();
641 	/* Replace some of the global bits just for shared entry text: */
642 	pti_clone_entry_text();
643 	pti_setup_espfix64();
644 	pti_setup_vsyscall();
645 }
646 
647 /*
648  * Finalize the kernel mappings in the userspace page-table. Some of the
649  * mappings for the kernel image might have changed since pti_init()
650  * cloned them. This is because parts of the kernel image have been
651  * mapped RO and/or NX.  These changes need to be cloned again to the
652  * userspace page-table.
653  */
654 void pti_finalize(void)
655 {
656 	if (!boot_cpu_has(X86_FEATURE_PTI))
657 		return;
658 	/*
659 	 * We need to clone everything (again) that maps parts of the
660 	 * kernel image.
661 	 */
662 	pti_clone_entry_text();
663 	pti_clone_kernel_text();
664 
665 	debug_checkwx_user();
666 }
667