1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 * 5 * This code is based in part on work published here: 6 * 7 * https://github.com/IAIK/KAISER 8 * 9 * The original work was written by and and signed off by for the Linux 10 * kernel by: 11 * 12 * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> 13 * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> 14 * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> 15 * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> 16 * 17 * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com> 18 * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and 19 * Andy Lutomirsky <luto@amacapital.net> 20 */ 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <linux/bug.h> 26 #include <linux/init.h> 27 #include <linux/spinlock.h> 28 #include <linux/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/cpu.h> 31 32 #include <asm/cpufeature.h> 33 #include <asm/hypervisor.h> 34 #include <asm/vsyscall.h> 35 #include <asm/cmdline.h> 36 #include <asm/pti.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/tlbflush.h> 40 #include <asm/desc.h> 41 #include <asm/sections.h> 42 43 #undef pr_fmt 44 #define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt 45 46 /* Backporting helper */ 47 #ifndef __GFP_NOTRACK 48 #define __GFP_NOTRACK 0 49 #endif 50 51 /* 52 * Define the page-table levels we clone for user-space on 32 53 * and 64 bit. 54 */ 55 #ifdef CONFIG_X86_64 56 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD 57 #else 58 #define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE 59 #endif 60 61 static void __init pti_print_if_insecure(const char *reason) 62 { 63 if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 64 pr_info("%s\n", reason); 65 } 66 67 static void __init pti_print_if_secure(const char *reason) 68 { 69 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 70 pr_info("%s\n", reason); 71 } 72 73 static enum pti_mode { 74 PTI_AUTO = 0, 75 PTI_FORCE_OFF, 76 PTI_FORCE_ON 77 } pti_mode; 78 79 void __init pti_check_boottime_disable(void) 80 { 81 char arg[5]; 82 int ret; 83 84 /* Assume mode is auto unless overridden. */ 85 pti_mode = PTI_AUTO; 86 87 if (hypervisor_is_type(X86_HYPER_XEN_PV)) { 88 pti_mode = PTI_FORCE_OFF; 89 pti_print_if_insecure("disabled on XEN PV."); 90 return; 91 } 92 93 ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg)); 94 if (ret > 0) { 95 if (ret == 3 && !strncmp(arg, "off", 3)) { 96 pti_mode = PTI_FORCE_OFF; 97 pti_print_if_insecure("disabled on command line."); 98 return; 99 } 100 if (ret == 2 && !strncmp(arg, "on", 2)) { 101 pti_mode = PTI_FORCE_ON; 102 pti_print_if_secure("force enabled on command line."); 103 goto enable; 104 } 105 if (ret == 4 && !strncmp(arg, "auto", 4)) { 106 pti_mode = PTI_AUTO; 107 goto autosel; 108 } 109 } 110 111 if (cmdline_find_option_bool(boot_command_line, "nopti") || 112 cpu_mitigations_off()) { 113 pti_mode = PTI_FORCE_OFF; 114 pti_print_if_insecure("disabled on command line."); 115 return; 116 } 117 118 autosel: 119 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 120 return; 121 enable: 122 setup_force_cpu_cap(X86_FEATURE_PTI); 123 } 124 125 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 126 { 127 /* 128 * Changes to the high (kernel) portion of the kernelmode page 129 * tables are not automatically propagated to the usermode tables. 130 * 131 * Users should keep in mind that, unlike the kernelmode tables, 132 * there is no vmalloc_fault equivalent for the usermode tables. 133 * Top-level entries added to init_mm's usermode pgd after boot 134 * will not be automatically propagated to other mms. 135 */ 136 if (!pgdp_maps_userspace(pgdp)) 137 return pgd; 138 139 /* 140 * The user page tables get the full PGD, accessible from 141 * userspace: 142 */ 143 kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd; 144 145 /* 146 * If this is normal user memory, make it NX in the kernel 147 * pagetables so that, if we somehow screw up and return to 148 * usermode with the kernel CR3 loaded, we'll get a page fault 149 * instead of allowing user code to execute with the wrong CR3. 150 * 151 * As exceptions, we don't set NX if: 152 * - _PAGE_USER is not set. This could be an executable 153 * EFI runtime mapping or something similar, and the kernel 154 * may execute from it 155 * - we don't have NX support 156 * - we're clearing the PGD (i.e. the new pgd is not present). 157 */ 158 if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) && 159 (__supported_pte_mask & _PAGE_NX)) 160 pgd.pgd |= _PAGE_NX; 161 162 /* return the copy of the PGD we want the kernel to use: */ 163 return pgd; 164 } 165 166 /* 167 * Walk the user copy of the page tables (optionally) trying to allocate 168 * page table pages on the way down. 169 * 170 * Returns a pointer to a P4D on success, or NULL on failure. 171 */ 172 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address) 173 { 174 pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address)); 175 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 176 177 if (address < PAGE_OFFSET) { 178 WARN_ONCE(1, "attempt to walk user address\n"); 179 return NULL; 180 } 181 182 if (pgd_none(*pgd)) { 183 unsigned long new_p4d_page = __get_free_page(gfp); 184 if (WARN_ON_ONCE(!new_p4d_page)) 185 return NULL; 186 187 set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page))); 188 } 189 BUILD_BUG_ON(pgd_large(*pgd) != 0); 190 191 return p4d_offset(pgd, address); 192 } 193 194 /* 195 * Walk the user copy of the page tables (optionally) trying to allocate 196 * page table pages on the way down. 197 * 198 * Returns a pointer to a PMD on success, or NULL on failure. 199 */ 200 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address) 201 { 202 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 203 p4d_t *p4d; 204 pud_t *pud; 205 206 p4d = pti_user_pagetable_walk_p4d(address); 207 if (!p4d) 208 return NULL; 209 210 BUILD_BUG_ON(p4d_large(*p4d) != 0); 211 if (p4d_none(*p4d)) { 212 unsigned long new_pud_page = __get_free_page(gfp); 213 if (WARN_ON_ONCE(!new_pud_page)) 214 return NULL; 215 216 set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page))); 217 } 218 219 pud = pud_offset(p4d, address); 220 /* The user page tables do not use large mappings: */ 221 if (pud_large(*pud)) { 222 WARN_ON(1); 223 return NULL; 224 } 225 if (pud_none(*pud)) { 226 unsigned long new_pmd_page = __get_free_page(gfp); 227 if (WARN_ON_ONCE(!new_pmd_page)) 228 return NULL; 229 230 set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); 231 } 232 233 return pmd_offset(pud, address); 234 } 235 236 /* 237 * Walk the shadow copy of the page tables (optionally) trying to allocate 238 * page table pages on the way down. Does not support large pages. 239 * 240 * Note: this is only used when mapping *new* kernel data into the 241 * user/shadow page tables. It is never used for userspace data. 242 * 243 * Returns a pointer to a PTE on success, or NULL on failure. 244 */ 245 static pte_t *pti_user_pagetable_walk_pte(unsigned long address) 246 { 247 gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 248 pmd_t *pmd; 249 pte_t *pte; 250 251 pmd = pti_user_pagetable_walk_pmd(address); 252 if (!pmd) 253 return NULL; 254 255 /* We can't do anything sensible if we hit a large mapping. */ 256 if (pmd_large(*pmd)) { 257 WARN_ON(1); 258 return NULL; 259 } 260 261 if (pmd_none(*pmd)) { 262 unsigned long new_pte_page = __get_free_page(gfp); 263 if (!new_pte_page) 264 return NULL; 265 266 set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); 267 } 268 269 pte = pte_offset_kernel(pmd, address); 270 if (pte_flags(*pte) & _PAGE_USER) { 271 WARN_ONCE(1, "attempt to walk to user pte\n"); 272 return NULL; 273 } 274 return pte; 275 } 276 277 #ifdef CONFIG_X86_VSYSCALL_EMULATION 278 static void __init pti_setup_vsyscall(void) 279 { 280 pte_t *pte, *target_pte; 281 unsigned int level; 282 283 pte = lookup_address(VSYSCALL_ADDR, &level); 284 if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte)) 285 return; 286 287 target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR); 288 if (WARN_ON(!target_pte)) 289 return; 290 291 *target_pte = *pte; 292 set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir)); 293 } 294 #else 295 static void __init pti_setup_vsyscall(void) { } 296 #endif 297 298 enum pti_clone_level { 299 PTI_CLONE_PMD, 300 PTI_CLONE_PTE, 301 }; 302 303 static void 304 pti_clone_pgtable(unsigned long start, unsigned long end, 305 enum pti_clone_level level) 306 { 307 unsigned long addr; 308 309 /* 310 * Clone the populated PMDs which cover start to end. These PMD areas 311 * can have holes. 312 */ 313 for (addr = start; addr < end;) { 314 pte_t *pte, *target_pte; 315 pmd_t *pmd, *target_pmd; 316 pgd_t *pgd; 317 p4d_t *p4d; 318 pud_t *pud; 319 320 /* Overflow check */ 321 if (addr < start) 322 break; 323 324 pgd = pgd_offset_k(addr); 325 if (WARN_ON(pgd_none(*pgd))) 326 return; 327 p4d = p4d_offset(pgd, addr); 328 if (WARN_ON(p4d_none(*p4d))) 329 return; 330 331 pud = pud_offset(p4d, addr); 332 if (pud_none(*pud)) { 333 addr += PUD_SIZE; 334 continue; 335 } 336 337 pmd = pmd_offset(pud, addr); 338 if (pmd_none(*pmd)) { 339 addr += PMD_SIZE; 340 continue; 341 } 342 343 if (pmd_large(*pmd) || level == PTI_CLONE_PMD) { 344 target_pmd = pti_user_pagetable_walk_pmd(addr); 345 if (WARN_ON(!target_pmd)) 346 return; 347 348 /* 349 * Only clone present PMDs. This ensures only setting 350 * _PAGE_GLOBAL on present PMDs. This should only be 351 * called on well-known addresses anyway, so a non- 352 * present PMD would be a surprise. 353 */ 354 if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT))) 355 return; 356 357 /* 358 * Setting 'target_pmd' below creates a mapping in both 359 * the user and kernel page tables. It is effectively 360 * global, so set it as global in both copies. Note: 361 * the X86_FEATURE_PGE check is not _required_ because 362 * the CPU ignores _PAGE_GLOBAL when PGE is not 363 * supported. The check keeps consistentency with 364 * code that only set this bit when supported. 365 */ 366 if (boot_cpu_has(X86_FEATURE_PGE)) 367 *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL); 368 369 /* 370 * Copy the PMD. That is, the kernelmode and usermode 371 * tables will share the last-level page tables of this 372 * address range 373 */ 374 *target_pmd = *pmd; 375 376 addr += PMD_SIZE; 377 378 } else if (level == PTI_CLONE_PTE) { 379 380 /* Walk the page-table down to the pte level */ 381 pte = pte_offset_kernel(pmd, addr); 382 if (pte_none(*pte)) { 383 addr += PAGE_SIZE; 384 continue; 385 } 386 387 /* Only clone present PTEs */ 388 if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT))) 389 return; 390 391 /* Allocate PTE in the user page-table */ 392 target_pte = pti_user_pagetable_walk_pte(addr); 393 if (WARN_ON(!target_pte)) 394 return; 395 396 /* Set GLOBAL bit in both PTEs */ 397 if (boot_cpu_has(X86_FEATURE_PGE)) 398 *pte = pte_set_flags(*pte, _PAGE_GLOBAL); 399 400 /* Clone the PTE */ 401 *target_pte = *pte; 402 403 addr += PAGE_SIZE; 404 405 } else { 406 BUG(); 407 } 408 } 409 } 410 411 #ifdef CONFIG_X86_64 412 /* 413 * Clone a single p4d (i.e. a top-level entry on 4-level systems and a 414 * next-level entry on 5-level systems. 415 */ 416 static void __init pti_clone_p4d(unsigned long addr) 417 { 418 p4d_t *kernel_p4d, *user_p4d; 419 pgd_t *kernel_pgd; 420 421 user_p4d = pti_user_pagetable_walk_p4d(addr); 422 if (!user_p4d) 423 return; 424 425 kernel_pgd = pgd_offset_k(addr); 426 kernel_p4d = p4d_offset(kernel_pgd, addr); 427 *user_p4d = *kernel_p4d; 428 } 429 430 /* 431 * Clone the CPU_ENTRY_AREA and associated data into the user space visible 432 * page table. 433 */ 434 static void __init pti_clone_user_shared(void) 435 { 436 unsigned int cpu; 437 438 pti_clone_p4d(CPU_ENTRY_AREA_BASE); 439 440 for_each_possible_cpu(cpu) { 441 /* 442 * The SYSCALL64 entry code needs to be able to find the 443 * thread stack and needs one word of scratch space in which 444 * to spill a register. All of this lives in the TSS, in 445 * the sp1 and sp2 slots. 446 * 447 * This is done for all possible CPUs during boot to ensure 448 * that it's propagated to all mms. If we were to add one of 449 * these mappings during CPU hotplug, we would need to take 450 * some measure to make sure that every mm that subsequently 451 * ran on that CPU would have the relevant PGD entry in its 452 * pagetables. The usual vmalloc_fault() mechanism would not 453 * work for page faults taken in entry_SYSCALL_64 before RSP 454 * is set up. 455 */ 456 457 unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu); 458 phys_addr_t pa = per_cpu_ptr_to_phys((void *)va); 459 pte_t *target_pte; 460 461 target_pte = pti_user_pagetable_walk_pte(va); 462 if (WARN_ON(!target_pte)) 463 return; 464 465 *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL); 466 } 467 } 468 469 #else /* CONFIG_X86_64 */ 470 471 /* 472 * On 32 bit PAE systems with 1GB of Kernel address space there is only 473 * one pgd/p4d for the whole kernel. Cloning that would map the whole 474 * address space into the user page-tables, making PTI useless. So clone 475 * the page-table on the PMD level to prevent that. 476 */ 477 static void __init pti_clone_user_shared(void) 478 { 479 unsigned long start, end; 480 481 start = CPU_ENTRY_AREA_BASE; 482 end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES); 483 484 pti_clone_pgtable(start, end, PTI_CLONE_PMD); 485 } 486 #endif /* CONFIG_X86_64 */ 487 488 /* 489 * Clone the ESPFIX P4D into the user space visible page table 490 */ 491 static void __init pti_setup_espfix64(void) 492 { 493 #ifdef CONFIG_X86_ESPFIX64 494 pti_clone_p4d(ESPFIX_BASE_ADDR); 495 #endif 496 } 497 498 /* 499 * Clone the populated PMDs of the entry and irqentry text and force it RO. 500 */ 501 static void pti_clone_entry_text(void) 502 { 503 pti_clone_pgtable((unsigned long) __entry_text_start, 504 (unsigned long) __irqentry_text_end, 505 PTI_CLONE_PMD); 506 } 507 508 /* 509 * Global pages and PCIDs are both ways to make kernel TLB entries 510 * live longer, reduce TLB misses and improve kernel performance. 511 * But, leaving all kernel text Global makes it potentially accessible 512 * to Meltdown-style attacks which make it trivial to find gadgets or 513 * defeat KASLR. 514 * 515 * Only use global pages when it is really worth it. 516 */ 517 static inline bool pti_kernel_image_global_ok(void) 518 { 519 /* 520 * Systems with PCIDs get litlle benefit from global 521 * kernel text and are not worth the downsides. 522 */ 523 if (cpu_feature_enabled(X86_FEATURE_PCID)) 524 return false; 525 526 /* 527 * Only do global kernel image for pti=auto. Do the most 528 * secure thing (not global) if pti=on specified. 529 */ 530 if (pti_mode != PTI_AUTO) 531 return false; 532 533 /* 534 * K8 may not tolerate the cleared _PAGE_RW on the userspace 535 * global kernel image pages. Do the safe thing (disable 536 * global kernel image). This is unlikely to ever be 537 * noticed because PTI is disabled by default on AMD CPUs. 538 */ 539 if (boot_cpu_has(X86_FEATURE_K8)) 540 return false; 541 542 /* 543 * RANDSTRUCT derives its hardening benefits from the 544 * attacker's lack of knowledge about the layout of kernel 545 * data structures. Keep the kernel image non-global in 546 * cases where RANDSTRUCT is in use to help keep the layout a 547 * secret. 548 */ 549 if (IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT)) 550 return false; 551 552 return true; 553 } 554 555 /* 556 * This is the only user for these and it is not arch-generic 557 * like the other set_memory.h functions. Just extern them. 558 */ 559 extern int set_memory_nonglobal(unsigned long addr, int numpages); 560 extern int set_memory_global(unsigned long addr, int numpages); 561 562 /* 563 * For some configurations, map all of kernel text into the user page 564 * tables. This reduces TLB misses, especially on non-PCID systems. 565 */ 566 static void pti_clone_kernel_text(void) 567 { 568 /* 569 * rodata is part of the kernel image and is normally 570 * readable on the filesystem or on the web. But, do not 571 * clone the areas past rodata, they might contain secrets. 572 */ 573 unsigned long start = PFN_ALIGN(_text); 574 unsigned long end_clone = (unsigned long)__end_rodata_aligned; 575 unsigned long end_global = PFN_ALIGN((unsigned long)__stop___ex_table); 576 577 if (!pti_kernel_image_global_ok()) 578 return; 579 580 pr_debug("mapping partial kernel image into user address space\n"); 581 582 /* 583 * Note that this will undo _some_ of the work that 584 * pti_set_kernel_image_nonglobal() did to clear the 585 * global bit. 586 */ 587 pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE); 588 589 /* 590 * pti_clone_pgtable() will set the global bit in any PMDs 591 * that it clones, but we also need to get any PTEs in 592 * the last level for areas that are not huge-page-aligned. 593 */ 594 595 /* Set the global bit for normal non-__init kernel text: */ 596 set_memory_global(start, (end_global - start) >> PAGE_SHIFT); 597 } 598 599 static void pti_set_kernel_image_nonglobal(void) 600 { 601 /* 602 * The identity map is created with PMDs, regardless of the 603 * actual length of the kernel. We need to clear 604 * _PAGE_GLOBAL up to a PMD boundary, not just to the end 605 * of the image. 606 */ 607 unsigned long start = PFN_ALIGN(_text); 608 unsigned long end = ALIGN((unsigned long)_end, PMD_PAGE_SIZE); 609 610 /* 611 * This clears _PAGE_GLOBAL from the entire kernel image. 612 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for 613 * areas that are mapped to userspace. 614 */ 615 set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT); 616 } 617 618 /* 619 * Initialize kernel page table isolation 620 */ 621 void __init pti_init(void) 622 { 623 if (!boot_cpu_has(X86_FEATURE_PTI)) 624 return; 625 626 pr_info("enabled\n"); 627 628 #ifdef CONFIG_X86_32 629 /* 630 * We check for X86_FEATURE_PCID here. But the init-code will 631 * clear the feature flag on 32 bit because the feature is not 632 * supported on 32 bit anyway. To print the warning we need to 633 * check with cpuid directly again. 634 */ 635 if (cpuid_ecx(0x1) & BIT(17)) { 636 /* Use printk to work around pr_fmt() */ 637 printk(KERN_WARNING "\n"); 638 printk(KERN_WARNING "************************************************************\n"); 639 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 640 printk(KERN_WARNING "** **\n"); 641 printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n"); 642 printk(KERN_WARNING "** Your performance will increase dramatically if you **\n"); 643 printk(KERN_WARNING "** switch to a 64-bit kernel! **\n"); 644 printk(KERN_WARNING "** **\n"); 645 printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); 646 printk(KERN_WARNING "************************************************************\n"); 647 } 648 #endif 649 650 pti_clone_user_shared(); 651 652 /* Undo all global bits from the init pagetables in head_64.S: */ 653 pti_set_kernel_image_nonglobal(); 654 /* Replace some of the global bits just for shared entry text: */ 655 pti_clone_entry_text(); 656 pti_setup_espfix64(); 657 pti_setup_vsyscall(); 658 } 659 660 /* 661 * Finalize the kernel mappings in the userspace page-table. Some of the 662 * mappings for the kernel image might have changed since pti_init() 663 * cloned them. This is because parts of the kernel image have been 664 * mapped RO and/or NX. These changes need to be cloned again to the 665 * userspace page-table. 666 */ 667 void pti_finalize(void) 668 { 669 /* 670 * We need to clone everything (again) that maps parts of the 671 * kernel image. 672 */ 673 pti_clone_entry_text(); 674 pti_clone_kernel_text(); 675 676 debug_checkwx_user(); 677 } 678