xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 #include <asm/fixmap.h>
6 
7 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
8 {
9 	return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
10 }
11 
12 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
13 {
14 	struct page *pte;
15 
16 #ifdef CONFIG_HIGHPTE
17 	pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
18 #else
19 	pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
20 #endif
21 	if (pte)
22 		pgtable_page_ctor(pte);
23 	return pte;
24 }
25 
26 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
27 {
28 	pgtable_page_dtor(pte);
29 	paravirt_release_pte(page_to_pfn(pte));
30 	tlb_remove_page(tlb, pte);
31 }
32 
33 #if PAGETABLE_LEVELS > 2
34 void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
35 {
36 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
37 	tlb_remove_page(tlb, virt_to_page(pmd));
38 }
39 
40 #if PAGETABLE_LEVELS > 3
41 void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
42 {
43 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
44 	tlb_remove_page(tlb, virt_to_page(pud));
45 }
46 #endif	/* PAGETABLE_LEVELS > 3 */
47 #endif	/* PAGETABLE_LEVELS > 2 */
48 
49 static inline void pgd_list_add(pgd_t *pgd)
50 {
51 	struct page *page = virt_to_page(pgd);
52 
53 	list_add(&page->lru, &pgd_list);
54 }
55 
56 static inline void pgd_list_del(pgd_t *pgd)
57 {
58 	struct page *page = virt_to_page(pgd);
59 
60 	list_del(&page->lru);
61 }
62 
63 #define UNSHARED_PTRS_PER_PGD				\
64 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
65 
66 static void pgd_ctor(void *p)
67 {
68 	pgd_t *pgd = p;
69 
70 	/* If the pgd points to a shared pagetable level (either the
71 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
72 	   references from swapper_pg_dir. */
73 	if (PAGETABLE_LEVELS == 2 ||
74 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
75 	    PAGETABLE_LEVELS == 4) {
76 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
77 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
78 				KERNEL_PGD_PTRS);
79 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
80 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
81 					 KERNEL_PGD_BOUNDARY,
82 					 KERNEL_PGD_PTRS);
83 	}
84 
85 	/* list required to sync kernel mapping updates */
86 	if (!SHARED_KERNEL_PMD)
87 		pgd_list_add(pgd);
88 }
89 
90 static void pgd_dtor(void *pgd)
91 {
92 	unsigned long flags; /* can be called from interrupt context */
93 
94 	if (SHARED_KERNEL_PMD)
95 		return;
96 
97 	spin_lock_irqsave(&pgd_lock, flags);
98 	pgd_list_del(pgd);
99 	spin_unlock_irqrestore(&pgd_lock, flags);
100 }
101 
102 /*
103  * List of all pgd's needed for non-PAE so it can invalidate entries
104  * in both cached and uncached pgd's; not needed for PAE since the
105  * kernel pmd is shared. If PAE were not to share the pmd a similar
106  * tactic would be needed. This is essentially codepath-based locking
107  * against pageattr.c; it is the unique case in which a valid change
108  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
109  * vmalloc faults work because attached pagetables are never freed.
110  * -- wli
111  */
112 
113 #ifdef CONFIG_X86_PAE
114 /*
115  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
116  * updating the top-level pagetable entries to guarantee the
117  * processor notices the update.  Since this is expensive, and
118  * all 4 top-level entries are used almost immediately in a
119  * new process's life, we just pre-populate them here.
120  *
121  * Also, if we're in a paravirt environment where the kernel pmd is
122  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
123  * and initialize the kernel pmds here.
124  */
125 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
126 
127 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
128 {
129 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
130 
131 	/* Note: almost everything apart from _PAGE_PRESENT is
132 	   reserved at the pmd (PDPT) level. */
133 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
134 
135 	/*
136 	 * According to Intel App note "TLBs, Paging-Structure Caches,
137 	 * and Their Invalidation", April 2007, document 317080-001,
138 	 * section 8.1: in PAE mode we explicitly have to flush the
139 	 * TLB via cr3 if the top-level pgd is changed...
140 	 */
141 	if (mm == current->active_mm)
142 		write_cr3(read_cr3());
143 }
144 #else  /* !CONFIG_X86_PAE */
145 
146 /* No need to prepopulate any pagetable entries in non-PAE modes. */
147 #define PREALLOCATED_PMDS	0
148 
149 #endif	/* CONFIG_X86_PAE */
150 
151 static void free_pmds(pmd_t *pmds[])
152 {
153 	int i;
154 
155 	for(i = 0; i < PREALLOCATED_PMDS; i++)
156 		if (pmds[i])
157 			free_page((unsigned long)pmds[i]);
158 }
159 
160 static int preallocate_pmds(pmd_t *pmds[])
161 {
162 	int i;
163 	bool failed = false;
164 
165 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
166 		pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
167 		if (pmd == NULL)
168 			failed = true;
169 		pmds[i] = pmd;
170 	}
171 
172 	if (failed) {
173 		free_pmds(pmds);
174 		return -ENOMEM;
175 	}
176 
177 	return 0;
178 }
179 
180 /*
181  * Mop up any pmd pages which may still be attached to the pgd.
182  * Normally they will be freed by munmap/exit_mmap, but any pmd we
183  * preallocate which never got a corresponding vma will need to be
184  * freed manually.
185  */
186 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
187 {
188 	int i;
189 
190 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
191 		pgd_t pgd = pgdp[i];
192 
193 		if (pgd_val(pgd) != 0) {
194 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
195 
196 			pgdp[i] = native_make_pgd(0);
197 
198 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
199 			pmd_free(mm, pmd);
200 		}
201 	}
202 }
203 
204 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
205 {
206 	pud_t *pud;
207 	unsigned long addr;
208 	int i;
209 
210 	pud = pud_offset(pgd, 0);
211 
212  	for (addr = i = 0; i < PREALLOCATED_PMDS;
213 	     i++, pud++, addr += PUD_SIZE) {
214 		pmd_t *pmd = pmds[i];
215 
216 		if (i >= KERNEL_PGD_BOUNDARY)
217 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
218 			       sizeof(pmd_t) * PTRS_PER_PMD);
219 
220 		pud_populate(mm, pud, pmd);
221 	}
222 }
223 
224 pgd_t *pgd_alloc(struct mm_struct *mm)
225 {
226 	pgd_t *pgd;
227 	pmd_t *pmds[PREALLOCATED_PMDS];
228 	unsigned long flags;
229 
230 	pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
231 
232 	if (pgd == NULL)
233 		goto out;
234 
235 	mm->pgd = pgd;
236 
237 	if (preallocate_pmds(pmds) != 0)
238 		goto out_free_pgd;
239 
240 	if (paravirt_pgd_alloc(mm) != 0)
241 		goto out_free_pmds;
242 
243 	/*
244 	 * Make sure that pre-populating the pmds is atomic with
245 	 * respect to anything walking the pgd_list, so that they
246 	 * never see a partially populated pgd.
247 	 */
248 	spin_lock_irqsave(&pgd_lock, flags);
249 
250 	pgd_ctor(pgd);
251 	pgd_prepopulate_pmd(mm, pgd, pmds);
252 
253 	spin_unlock_irqrestore(&pgd_lock, flags);
254 
255 	return pgd;
256 
257 out_free_pmds:
258 	free_pmds(pmds);
259 out_free_pgd:
260 	free_page((unsigned long)pgd);
261 out:
262 	return NULL;
263 }
264 
265 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
266 {
267 	pgd_mop_up_pmds(mm, pgd);
268 	pgd_dtor(pgd);
269 	paravirt_pgd_free(mm, pgd);
270 	free_page((unsigned long)pgd);
271 }
272 
273 int ptep_set_access_flags(struct vm_area_struct *vma,
274 			  unsigned long address, pte_t *ptep,
275 			  pte_t entry, int dirty)
276 {
277 	int changed = !pte_same(*ptep, entry);
278 
279 	if (changed && dirty) {
280 		*ptep = entry;
281 		pte_update_defer(vma->vm_mm, address, ptep);
282 		flush_tlb_page(vma, address);
283 	}
284 
285 	return changed;
286 }
287 
288 int ptep_test_and_clear_young(struct vm_area_struct *vma,
289 			      unsigned long addr, pte_t *ptep)
290 {
291 	int ret = 0;
292 
293 	if (pte_young(*ptep))
294 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
295 					 (unsigned long *) &ptep->pte);
296 
297 	if (ret)
298 		pte_update(vma->vm_mm, addr, ptep);
299 
300 	return ret;
301 }
302 
303 int ptep_clear_flush_young(struct vm_area_struct *vma,
304 			   unsigned long address, pte_t *ptep)
305 {
306 	int young;
307 
308 	young = ptep_test_and_clear_young(vma, address, ptep);
309 	if (young)
310 		flush_tlb_page(vma, address);
311 
312 	return young;
313 }
314 
315 int fixmaps_set;
316 
317 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
318 {
319 	unsigned long address = __fix_to_virt(idx);
320 
321 	if (idx >= __end_of_fixed_addresses) {
322 		BUG();
323 		return;
324 	}
325 	set_pte_vaddr(address, pte);
326 	fixmaps_set++;
327 }
328 
329 void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
330 {
331 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
332 }
333