xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision ee89bd6b)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (pte)
29 		pgtable_page_ctor(pte);
30 	return pte;
31 }
32 
33 static int __init setup_userpte(char *arg)
34 {
35 	if (!arg)
36 		return -EINVAL;
37 
38 	/*
39 	 * "userpte=nohigh" disables allocation of user pagetables in
40 	 * high memory.
41 	 */
42 	if (strcmp(arg, "nohigh") == 0)
43 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 	else
45 		return -EINVAL;
46 	return 0;
47 }
48 early_param("userpte", setup_userpte);
49 
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52 	pgtable_page_dtor(pte);
53 	paravirt_release_pte(page_to_pfn(pte));
54 	tlb_remove_page(tlb, pte);
55 }
56 
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61 	/*
62 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
63 	 * entries need a full cr3 reload to flush.
64 	 */
65 #ifdef CONFIG_X86_PAE
66 	tlb->need_flush_all = 1;
67 #endif
68 	tlb_remove_page(tlb, virt_to_page(pmd));
69 }
70 
71 #if PAGETABLE_LEVELS > 3
72 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
73 {
74 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
75 	tlb_remove_page(tlb, virt_to_page(pud));
76 }
77 #endif	/* PAGETABLE_LEVELS > 3 */
78 #endif	/* PAGETABLE_LEVELS > 2 */
79 
80 static inline void pgd_list_add(pgd_t *pgd)
81 {
82 	struct page *page = virt_to_page(pgd);
83 
84 	list_add(&page->lru, &pgd_list);
85 }
86 
87 static inline void pgd_list_del(pgd_t *pgd)
88 {
89 	struct page *page = virt_to_page(pgd);
90 
91 	list_del(&page->lru);
92 }
93 
94 #define UNSHARED_PTRS_PER_PGD				\
95 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
96 
97 
98 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
99 {
100 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
101 	virt_to_page(pgd)->index = (pgoff_t)mm;
102 }
103 
104 struct mm_struct *pgd_page_get_mm(struct page *page)
105 {
106 	return (struct mm_struct *)page->index;
107 }
108 
109 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
110 {
111 	/* If the pgd points to a shared pagetable level (either the
112 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
113 	   references from swapper_pg_dir. */
114 	if (PAGETABLE_LEVELS == 2 ||
115 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
116 	    PAGETABLE_LEVELS == 4) {
117 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
118 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
119 				KERNEL_PGD_PTRS);
120 	}
121 
122 	/* list required to sync kernel mapping updates */
123 	if (!SHARED_KERNEL_PMD) {
124 		pgd_set_mm(pgd, mm);
125 		pgd_list_add(pgd);
126 	}
127 }
128 
129 static void pgd_dtor(pgd_t *pgd)
130 {
131 	if (SHARED_KERNEL_PMD)
132 		return;
133 
134 	spin_lock(&pgd_lock);
135 	pgd_list_del(pgd);
136 	spin_unlock(&pgd_lock);
137 }
138 
139 /*
140  * List of all pgd's needed for non-PAE so it can invalidate entries
141  * in both cached and uncached pgd's; not needed for PAE since the
142  * kernel pmd is shared. If PAE were not to share the pmd a similar
143  * tactic would be needed. This is essentially codepath-based locking
144  * against pageattr.c; it is the unique case in which a valid change
145  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
146  * vmalloc faults work because attached pagetables are never freed.
147  * -- nyc
148  */
149 
150 #ifdef CONFIG_X86_PAE
151 /*
152  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
153  * updating the top-level pagetable entries to guarantee the
154  * processor notices the update.  Since this is expensive, and
155  * all 4 top-level entries are used almost immediately in a
156  * new process's life, we just pre-populate them here.
157  *
158  * Also, if we're in a paravirt environment where the kernel pmd is
159  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
160  * and initialize the kernel pmds here.
161  */
162 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
163 
164 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
165 {
166 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
167 
168 	/* Note: almost everything apart from _PAGE_PRESENT is
169 	   reserved at the pmd (PDPT) level. */
170 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
171 
172 	/*
173 	 * According to Intel App note "TLBs, Paging-Structure Caches,
174 	 * and Their Invalidation", April 2007, document 317080-001,
175 	 * section 8.1: in PAE mode we explicitly have to flush the
176 	 * TLB via cr3 if the top-level pgd is changed...
177 	 */
178 	flush_tlb_mm(mm);
179 }
180 #else  /* !CONFIG_X86_PAE */
181 
182 /* No need to prepopulate any pagetable entries in non-PAE modes. */
183 #define PREALLOCATED_PMDS	0
184 
185 #endif	/* CONFIG_X86_PAE */
186 
187 static void free_pmds(pmd_t *pmds[])
188 {
189 	int i;
190 
191 	for(i = 0; i < PREALLOCATED_PMDS; i++)
192 		if (pmds[i])
193 			free_page((unsigned long)pmds[i]);
194 }
195 
196 static int preallocate_pmds(pmd_t *pmds[])
197 {
198 	int i;
199 	bool failed = false;
200 
201 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
202 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
203 		if (pmd == NULL)
204 			failed = true;
205 		pmds[i] = pmd;
206 	}
207 
208 	if (failed) {
209 		free_pmds(pmds);
210 		return -ENOMEM;
211 	}
212 
213 	return 0;
214 }
215 
216 /*
217  * Mop up any pmd pages which may still be attached to the pgd.
218  * Normally they will be freed by munmap/exit_mmap, but any pmd we
219  * preallocate which never got a corresponding vma will need to be
220  * freed manually.
221  */
222 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
223 {
224 	int i;
225 
226 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
227 		pgd_t pgd = pgdp[i];
228 
229 		if (pgd_val(pgd) != 0) {
230 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
231 
232 			pgdp[i] = native_make_pgd(0);
233 
234 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
235 			pmd_free(mm, pmd);
236 		}
237 	}
238 }
239 
240 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
241 {
242 	pud_t *pud;
243 	unsigned long addr;
244 	int i;
245 
246 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
247 		return;
248 
249 	pud = pud_offset(pgd, 0);
250 
251  	for (addr = i = 0; i < PREALLOCATED_PMDS;
252 	     i++, pud++, addr += PUD_SIZE) {
253 		pmd_t *pmd = pmds[i];
254 
255 		if (i >= KERNEL_PGD_BOUNDARY)
256 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
257 			       sizeof(pmd_t) * PTRS_PER_PMD);
258 
259 		pud_populate(mm, pud, pmd);
260 	}
261 }
262 
263 pgd_t *pgd_alloc(struct mm_struct *mm)
264 {
265 	pgd_t *pgd;
266 	pmd_t *pmds[PREALLOCATED_PMDS];
267 
268 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
269 
270 	if (pgd == NULL)
271 		goto out;
272 
273 	mm->pgd = pgd;
274 
275 	if (preallocate_pmds(pmds) != 0)
276 		goto out_free_pgd;
277 
278 	if (paravirt_pgd_alloc(mm) != 0)
279 		goto out_free_pmds;
280 
281 	/*
282 	 * Make sure that pre-populating the pmds is atomic with
283 	 * respect to anything walking the pgd_list, so that they
284 	 * never see a partially populated pgd.
285 	 */
286 	spin_lock(&pgd_lock);
287 
288 	pgd_ctor(mm, pgd);
289 	pgd_prepopulate_pmd(mm, pgd, pmds);
290 
291 	spin_unlock(&pgd_lock);
292 
293 	return pgd;
294 
295 out_free_pmds:
296 	free_pmds(pmds);
297 out_free_pgd:
298 	free_page((unsigned long)pgd);
299 out:
300 	return NULL;
301 }
302 
303 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
304 {
305 	pgd_mop_up_pmds(mm, pgd);
306 	pgd_dtor(pgd);
307 	paravirt_pgd_free(mm, pgd);
308 	free_page((unsigned long)pgd);
309 }
310 
311 /*
312  * Used to set accessed or dirty bits in the page table entries
313  * on other architectures. On x86, the accessed and dirty bits
314  * are tracked by hardware. However, do_wp_page calls this function
315  * to also make the pte writeable at the same time the dirty bit is
316  * set. In that case we do actually need to write the PTE.
317  */
318 int ptep_set_access_flags(struct vm_area_struct *vma,
319 			  unsigned long address, pte_t *ptep,
320 			  pte_t entry, int dirty)
321 {
322 	int changed = !pte_same(*ptep, entry);
323 
324 	if (changed && dirty) {
325 		*ptep = entry;
326 		pte_update_defer(vma->vm_mm, address, ptep);
327 	}
328 
329 	return changed;
330 }
331 
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 int pmdp_set_access_flags(struct vm_area_struct *vma,
334 			  unsigned long address, pmd_t *pmdp,
335 			  pmd_t entry, int dirty)
336 {
337 	int changed = !pmd_same(*pmdp, entry);
338 
339 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
340 
341 	if (changed && dirty) {
342 		*pmdp = entry;
343 		pmd_update_defer(vma->vm_mm, address, pmdp);
344 		/*
345 		 * We had a write-protection fault here and changed the pmd
346 		 * to to more permissive. No need to flush the TLB for that,
347 		 * #PF is architecturally guaranteed to do that and in the
348 		 * worst-case we'll generate a spurious fault.
349 		 */
350 	}
351 
352 	return changed;
353 }
354 #endif
355 
356 int ptep_test_and_clear_young(struct vm_area_struct *vma,
357 			      unsigned long addr, pte_t *ptep)
358 {
359 	int ret = 0;
360 
361 	if (pte_young(*ptep))
362 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
363 					 (unsigned long *) &ptep->pte);
364 
365 	if (ret)
366 		pte_update(vma->vm_mm, addr, ptep);
367 
368 	return ret;
369 }
370 
371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
372 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
373 			      unsigned long addr, pmd_t *pmdp)
374 {
375 	int ret = 0;
376 
377 	if (pmd_young(*pmdp))
378 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
379 					 (unsigned long *)pmdp);
380 
381 	if (ret)
382 		pmd_update(vma->vm_mm, addr, pmdp);
383 
384 	return ret;
385 }
386 #endif
387 
388 int ptep_clear_flush_young(struct vm_area_struct *vma,
389 			   unsigned long address, pte_t *ptep)
390 {
391 	int young;
392 
393 	young = ptep_test_and_clear_young(vma, address, ptep);
394 	if (young)
395 		flush_tlb_page(vma, address);
396 
397 	return young;
398 }
399 
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 int pmdp_clear_flush_young(struct vm_area_struct *vma,
402 			   unsigned long address, pmd_t *pmdp)
403 {
404 	int young;
405 
406 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
407 
408 	young = pmdp_test_and_clear_young(vma, address, pmdp);
409 	if (young)
410 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
411 
412 	return young;
413 }
414 
415 void pmdp_splitting_flush(struct vm_area_struct *vma,
416 			  unsigned long address, pmd_t *pmdp)
417 {
418 	int set;
419 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
420 	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
421 				(unsigned long *)pmdp);
422 	if (set) {
423 		pmd_update(vma->vm_mm, address, pmdp);
424 		/* need tlb flush only to serialize against gup-fast */
425 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
426 	}
427 }
428 #endif
429 
430 /**
431  * reserve_top_address - reserves a hole in the top of kernel address space
432  * @reserve - size of hole to reserve
433  *
434  * Can be used to relocate the fixmap area and poke a hole in the top
435  * of kernel address space to make room for a hypervisor.
436  */
437 void __init reserve_top_address(unsigned long reserve)
438 {
439 #ifdef CONFIG_X86_32
440 	BUG_ON(fixmaps_set > 0);
441 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
442 	       (int)-reserve);
443 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
444 #endif
445 }
446 
447 int fixmaps_set;
448 
449 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
450 {
451 	unsigned long address = __fix_to_virt(idx);
452 
453 	if (idx >= __end_of_fixed_addresses) {
454 		BUG();
455 		return;
456 	}
457 	set_pte_vaddr(address, pte);
458 	fixmaps_set++;
459 }
460 
461 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
462 		       pgprot_t flags)
463 {
464 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
465 }
466