1 #include <linux/mm.h> 2 #include <linux/gfp.h> 3 #include <asm/pgalloc.h> 4 #include <asm/pgtable.h> 5 #include <asm/tlb.h> 6 #include <asm/fixmap.h> 7 8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO 9 10 #ifdef CONFIG_HIGHPTE 11 #define PGALLOC_USER_GFP __GFP_HIGHMEM 12 #else 13 #define PGALLOC_USER_GFP 0 14 #endif 15 16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 17 18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 19 { 20 return (pte_t *)__get_free_page(PGALLOC_GFP); 21 } 22 23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 24 { 25 struct page *pte; 26 27 pte = alloc_pages(__userpte_alloc_gfp, 0); 28 if (pte) 29 pgtable_page_ctor(pte); 30 return pte; 31 } 32 33 static int __init setup_userpte(char *arg) 34 { 35 if (!arg) 36 return -EINVAL; 37 38 /* 39 * "userpte=nohigh" disables allocation of user pagetables in 40 * high memory. 41 */ 42 if (strcmp(arg, "nohigh") == 0) 43 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 44 else 45 return -EINVAL; 46 return 0; 47 } 48 early_param("userpte", setup_userpte); 49 50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 51 { 52 pgtable_page_dtor(pte); 53 paravirt_release_pte(page_to_pfn(pte)); 54 tlb_remove_page(tlb, pte); 55 } 56 57 #if PAGETABLE_LEVELS > 2 58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 59 { 60 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 61 /* 62 * NOTE! For PAE, any changes to the top page-directory-pointer-table 63 * entries need a full cr3 reload to flush. 64 */ 65 #ifdef CONFIG_X86_PAE 66 tlb->need_flush_all = 1; 67 #endif 68 tlb_remove_page(tlb, virt_to_page(pmd)); 69 } 70 71 #if PAGETABLE_LEVELS > 3 72 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 73 { 74 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 75 tlb_remove_page(tlb, virt_to_page(pud)); 76 } 77 #endif /* PAGETABLE_LEVELS > 3 */ 78 #endif /* PAGETABLE_LEVELS > 2 */ 79 80 static inline void pgd_list_add(pgd_t *pgd) 81 { 82 struct page *page = virt_to_page(pgd); 83 84 list_add(&page->lru, &pgd_list); 85 } 86 87 static inline void pgd_list_del(pgd_t *pgd) 88 { 89 struct page *page = virt_to_page(pgd); 90 91 list_del(&page->lru); 92 } 93 94 #define UNSHARED_PTRS_PER_PGD \ 95 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 96 97 98 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 99 { 100 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); 101 virt_to_page(pgd)->index = (pgoff_t)mm; 102 } 103 104 struct mm_struct *pgd_page_get_mm(struct page *page) 105 { 106 return (struct mm_struct *)page->index; 107 } 108 109 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 110 { 111 /* If the pgd points to a shared pagetable level (either the 112 ptes in non-PAE, or shared PMD in PAE), then just copy the 113 references from swapper_pg_dir. */ 114 if (PAGETABLE_LEVELS == 2 || 115 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 116 PAGETABLE_LEVELS == 4) { 117 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 118 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 119 KERNEL_PGD_PTRS); 120 } 121 122 /* list required to sync kernel mapping updates */ 123 if (!SHARED_KERNEL_PMD) { 124 pgd_set_mm(pgd, mm); 125 pgd_list_add(pgd); 126 } 127 } 128 129 static void pgd_dtor(pgd_t *pgd) 130 { 131 if (SHARED_KERNEL_PMD) 132 return; 133 134 spin_lock(&pgd_lock); 135 pgd_list_del(pgd); 136 spin_unlock(&pgd_lock); 137 } 138 139 /* 140 * List of all pgd's needed for non-PAE so it can invalidate entries 141 * in both cached and uncached pgd's; not needed for PAE since the 142 * kernel pmd is shared. If PAE were not to share the pmd a similar 143 * tactic would be needed. This is essentially codepath-based locking 144 * against pageattr.c; it is the unique case in which a valid change 145 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 146 * vmalloc faults work because attached pagetables are never freed. 147 * -- nyc 148 */ 149 150 #ifdef CONFIG_X86_PAE 151 /* 152 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 153 * updating the top-level pagetable entries to guarantee the 154 * processor notices the update. Since this is expensive, and 155 * all 4 top-level entries are used almost immediately in a 156 * new process's life, we just pre-populate them here. 157 * 158 * Also, if we're in a paravirt environment where the kernel pmd is 159 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 160 * and initialize the kernel pmds here. 161 */ 162 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 163 164 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 165 { 166 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 167 168 /* Note: almost everything apart from _PAGE_PRESENT is 169 reserved at the pmd (PDPT) level. */ 170 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 171 172 /* 173 * According to Intel App note "TLBs, Paging-Structure Caches, 174 * and Their Invalidation", April 2007, document 317080-001, 175 * section 8.1: in PAE mode we explicitly have to flush the 176 * TLB via cr3 if the top-level pgd is changed... 177 */ 178 flush_tlb_mm(mm); 179 } 180 #else /* !CONFIG_X86_PAE */ 181 182 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 183 #define PREALLOCATED_PMDS 0 184 185 #endif /* CONFIG_X86_PAE */ 186 187 static void free_pmds(pmd_t *pmds[]) 188 { 189 int i; 190 191 for(i = 0; i < PREALLOCATED_PMDS; i++) 192 if (pmds[i]) 193 free_page((unsigned long)pmds[i]); 194 } 195 196 static int preallocate_pmds(pmd_t *pmds[]) 197 { 198 int i; 199 bool failed = false; 200 201 for(i = 0; i < PREALLOCATED_PMDS; i++) { 202 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP); 203 if (pmd == NULL) 204 failed = true; 205 pmds[i] = pmd; 206 } 207 208 if (failed) { 209 free_pmds(pmds); 210 return -ENOMEM; 211 } 212 213 return 0; 214 } 215 216 /* 217 * Mop up any pmd pages which may still be attached to the pgd. 218 * Normally they will be freed by munmap/exit_mmap, but any pmd we 219 * preallocate which never got a corresponding vma will need to be 220 * freed manually. 221 */ 222 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 223 { 224 int i; 225 226 for(i = 0; i < PREALLOCATED_PMDS; i++) { 227 pgd_t pgd = pgdp[i]; 228 229 if (pgd_val(pgd) != 0) { 230 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 231 232 pgdp[i] = native_make_pgd(0); 233 234 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 235 pmd_free(mm, pmd); 236 } 237 } 238 } 239 240 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 241 { 242 pud_t *pud; 243 unsigned long addr; 244 int i; 245 246 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 247 return; 248 249 pud = pud_offset(pgd, 0); 250 251 for (addr = i = 0; i < PREALLOCATED_PMDS; 252 i++, pud++, addr += PUD_SIZE) { 253 pmd_t *pmd = pmds[i]; 254 255 if (i >= KERNEL_PGD_BOUNDARY) 256 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 257 sizeof(pmd_t) * PTRS_PER_PMD); 258 259 pud_populate(mm, pud, pmd); 260 } 261 } 262 263 pgd_t *pgd_alloc(struct mm_struct *mm) 264 { 265 pgd_t *pgd; 266 pmd_t *pmds[PREALLOCATED_PMDS]; 267 268 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP); 269 270 if (pgd == NULL) 271 goto out; 272 273 mm->pgd = pgd; 274 275 if (preallocate_pmds(pmds) != 0) 276 goto out_free_pgd; 277 278 if (paravirt_pgd_alloc(mm) != 0) 279 goto out_free_pmds; 280 281 /* 282 * Make sure that pre-populating the pmds is atomic with 283 * respect to anything walking the pgd_list, so that they 284 * never see a partially populated pgd. 285 */ 286 spin_lock(&pgd_lock); 287 288 pgd_ctor(mm, pgd); 289 pgd_prepopulate_pmd(mm, pgd, pmds); 290 291 spin_unlock(&pgd_lock); 292 293 return pgd; 294 295 out_free_pmds: 296 free_pmds(pmds); 297 out_free_pgd: 298 free_page((unsigned long)pgd); 299 out: 300 return NULL; 301 } 302 303 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 304 { 305 pgd_mop_up_pmds(mm, pgd); 306 pgd_dtor(pgd); 307 paravirt_pgd_free(mm, pgd); 308 free_page((unsigned long)pgd); 309 } 310 311 /* 312 * Used to set accessed or dirty bits in the page table entries 313 * on other architectures. On x86, the accessed and dirty bits 314 * are tracked by hardware. However, do_wp_page calls this function 315 * to also make the pte writeable at the same time the dirty bit is 316 * set. In that case we do actually need to write the PTE. 317 */ 318 int ptep_set_access_flags(struct vm_area_struct *vma, 319 unsigned long address, pte_t *ptep, 320 pte_t entry, int dirty) 321 { 322 int changed = !pte_same(*ptep, entry); 323 324 if (changed && dirty) { 325 *ptep = entry; 326 pte_update_defer(vma->vm_mm, address, ptep); 327 } 328 329 return changed; 330 } 331 332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 int pmdp_set_access_flags(struct vm_area_struct *vma, 334 unsigned long address, pmd_t *pmdp, 335 pmd_t entry, int dirty) 336 { 337 int changed = !pmd_same(*pmdp, entry); 338 339 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 340 341 if (changed && dirty) { 342 *pmdp = entry; 343 pmd_update_defer(vma->vm_mm, address, pmdp); 344 /* 345 * We had a write-protection fault here and changed the pmd 346 * to to more permissive. No need to flush the TLB for that, 347 * #PF is architecturally guaranteed to do that and in the 348 * worst-case we'll generate a spurious fault. 349 */ 350 } 351 352 return changed; 353 } 354 #endif 355 356 int ptep_test_and_clear_young(struct vm_area_struct *vma, 357 unsigned long addr, pte_t *ptep) 358 { 359 int ret = 0; 360 361 if (pte_young(*ptep)) 362 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 363 (unsigned long *) &ptep->pte); 364 365 if (ret) 366 pte_update(vma->vm_mm, addr, ptep); 367 368 return ret; 369 } 370 371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 372 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 373 unsigned long addr, pmd_t *pmdp) 374 { 375 int ret = 0; 376 377 if (pmd_young(*pmdp)) 378 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 379 (unsigned long *)pmdp); 380 381 if (ret) 382 pmd_update(vma->vm_mm, addr, pmdp); 383 384 return ret; 385 } 386 #endif 387 388 int ptep_clear_flush_young(struct vm_area_struct *vma, 389 unsigned long address, pte_t *ptep) 390 { 391 int young; 392 393 young = ptep_test_and_clear_young(vma, address, ptep); 394 if (young) 395 flush_tlb_page(vma, address); 396 397 return young; 398 } 399 400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 401 int pmdp_clear_flush_young(struct vm_area_struct *vma, 402 unsigned long address, pmd_t *pmdp) 403 { 404 int young; 405 406 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 407 408 young = pmdp_test_and_clear_young(vma, address, pmdp); 409 if (young) 410 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 411 412 return young; 413 } 414 415 void pmdp_splitting_flush(struct vm_area_struct *vma, 416 unsigned long address, pmd_t *pmdp) 417 { 418 int set; 419 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 420 set = !test_and_set_bit(_PAGE_BIT_SPLITTING, 421 (unsigned long *)pmdp); 422 if (set) { 423 pmd_update(vma->vm_mm, address, pmdp); 424 /* need tlb flush only to serialize against gup-fast */ 425 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 426 } 427 } 428 #endif 429 430 /** 431 * reserve_top_address - reserves a hole in the top of kernel address space 432 * @reserve - size of hole to reserve 433 * 434 * Can be used to relocate the fixmap area and poke a hole in the top 435 * of kernel address space to make room for a hypervisor. 436 */ 437 void __init reserve_top_address(unsigned long reserve) 438 { 439 #ifdef CONFIG_X86_32 440 BUG_ON(fixmaps_set > 0); 441 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", 442 (int)-reserve); 443 __FIXADDR_TOP = -reserve - PAGE_SIZE; 444 #endif 445 } 446 447 int fixmaps_set; 448 449 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 450 { 451 unsigned long address = __fix_to_virt(idx); 452 453 if (idx >= __end_of_fixed_addresses) { 454 BUG(); 455 return; 456 } 457 set_pte_vaddr(address, pte); 458 fixmaps_set++; 459 } 460 461 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 462 pgprot_t flags) 463 { 464 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 465 } 466