xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision e8e0929d)
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 #include <asm/fixmap.h>
6 
7 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
8 
9 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
10 {
11 	return (pte_t *)__get_free_page(PGALLOC_GFP);
12 }
13 
14 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
15 {
16 	struct page *pte;
17 
18 #ifdef CONFIG_HIGHPTE
19 	pte = alloc_pages(PGALLOC_GFP | __GFP_HIGHMEM, 0);
20 #else
21 	pte = alloc_pages(PGALLOC_GFP, 0);
22 #endif
23 	if (pte)
24 		pgtable_page_ctor(pte);
25 	return pte;
26 }
27 
28 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
29 {
30 	pgtable_page_dtor(pte);
31 	paravirt_release_pte(page_to_pfn(pte));
32 	tlb_remove_page(tlb, pte);
33 }
34 
35 #if PAGETABLE_LEVELS > 2
36 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
37 {
38 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
39 	tlb_remove_page(tlb, virt_to_page(pmd));
40 }
41 
42 #if PAGETABLE_LEVELS > 3
43 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
44 {
45 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
46 	tlb_remove_page(tlb, virt_to_page(pud));
47 }
48 #endif	/* PAGETABLE_LEVELS > 3 */
49 #endif	/* PAGETABLE_LEVELS > 2 */
50 
51 static inline void pgd_list_add(pgd_t *pgd)
52 {
53 	struct page *page = virt_to_page(pgd);
54 
55 	list_add(&page->lru, &pgd_list);
56 }
57 
58 static inline void pgd_list_del(pgd_t *pgd)
59 {
60 	struct page *page = virt_to_page(pgd);
61 
62 	list_del(&page->lru);
63 }
64 
65 #define UNSHARED_PTRS_PER_PGD				\
66 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
67 
68 static void pgd_ctor(pgd_t *pgd)
69 {
70 	/* If the pgd points to a shared pagetable level (either the
71 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
72 	   references from swapper_pg_dir. */
73 	if (PAGETABLE_LEVELS == 2 ||
74 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
75 	    PAGETABLE_LEVELS == 4) {
76 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
77 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
78 				KERNEL_PGD_PTRS);
79 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
80 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
81 					 KERNEL_PGD_BOUNDARY,
82 					 KERNEL_PGD_PTRS);
83 	}
84 
85 	/* list required to sync kernel mapping updates */
86 	if (!SHARED_KERNEL_PMD)
87 		pgd_list_add(pgd);
88 }
89 
90 static void pgd_dtor(pgd_t *pgd)
91 {
92 	unsigned long flags; /* can be called from interrupt context */
93 
94 	if (SHARED_KERNEL_PMD)
95 		return;
96 
97 	spin_lock_irqsave(&pgd_lock, flags);
98 	pgd_list_del(pgd);
99 	spin_unlock_irqrestore(&pgd_lock, flags);
100 }
101 
102 /*
103  * List of all pgd's needed for non-PAE so it can invalidate entries
104  * in both cached and uncached pgd's; not needed for PAE since the
105  * kernel pmd is shared. If PAE were not to share the pmd a similar
106  * tactic would be needed. This is essentially codepath-based locking
107  * against pageattr.c; it is the unique case in which a valid change
108  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
109  * vmalloc faults work because attached pagetables are never freed.
110  * -- wli
111  */
112 
113 #ifdef CONFIG_X86_PAE
114 /*
115  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
116  * updating the top-level pagetable entries to guarantee the
117  * processor notices the update.  Since this is expensive, and
118  * all 4 top-level entries are used almost immediately in a
119  * new process's life, we just pre-populate them here.
120  *
121  * Also, if we're in a paravirt environment where the kernel pmd is
122  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
123  * and initialize the kernel pmds here.
124  */
125 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
126 
127 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
128 {
129 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
130 
131 	/* Note: almost everything apart from _PAGE_PRESENT is
132 	   reserved at the pmd (PDPT) level. */
133 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
134 
135 	/*
136 	 * According to Intel App note "TLBs, Paging-Structure Caches,
137 	 * and Their Invalidation", April 2007, document 317080-001,
138 	 * section 8.1: in PAE mode we explicitly have to flush the
139 	 * TLB via cr3 if the top-level pgd is changed...
140 	 */
141 	if (mm == current->active_mm)
142 		write_cr3(read_cr3());
143 }
144 #else  /* !CONFIG_X86_PAE */
145 
146 /* No need to prepopulate any pagetable entries in non-PAE modes. */
147 #define PREALLOCATED_PMDS	0
148 
149 #endif	/* CONFIG_X86_PAE */
150 
151 static void free_pmds(pmd_t *pmds[])
152 {
153 	int i;
154 
155 	for(i = 0; i < PREALLOCATED_PMDS; i++)
156 		if (pmds[i])
157 			free_page((unsigned long)pmds[i]);
158 }
159 
160 static int preallocate_pmds(pmd_t *pmds[])
161 {
162 	int i;
163 	bool failed = false;
164 
165 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
166 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
167 		if (pmd == NULL)
168 			failed = true;
169 		pmds[i] = pmd;
170 	}
171 
172 	if (failed) {
173 		free_pmds(pmds);
174 		return -ENOMEM;
175 	}
176 
177 	return 0;
178 }
179 
180 /*
181  * Mop up any pmd pages which may still be attached to the pgd.
182  * Normally they will be freed by munmap/exit_mmap, but any pmd we
183  * preallocate which never got a corresponding vma will need to be
184  * freed manually.
185  */
186 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
187 {
188 	int i;
189 
190 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
191 		pgd_t pgd = pgdp[i];
192 
193 		if (pgd_val(pgd) != 0) {
194 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
195 
196 			pgdp[i] = native_make_pgd(0);
197 
198 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
199 			pmd_free(mm, pmd);
200 		}
201 	}
202 }
203 
204 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
205 {
206 	pud_t *pud;
207 	unsigned long addr;
208 	int i;
209 
210 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
211 		return;
212 
213 	pud = pud_offset(pgd, 0);
214 
215  	for (addr = i = 0; i < PREALLOCATED_PMDS;
216 	     i++, pud++, addr += PUD_SIZE) {
217 		pmd_t *pmd = pmds[i];
218 
219 		if (i >= KERNEL_PGD_BOUNDARY)
220 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
221 			       sizeof(pmd_t) * PTRS_PER_PMD);
222 
223 		pud_populate(mm, pud, pmd);
224 	}
225 }
226 
227 pgd_t *pgd_alloc(struct mm_struct *mm)
228 {
229 	pgd_t *pgd;
230 	pmd_t *pmds[PREALLOCATED_PMDS];
231 	unsigned long flags;
232 
233 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
234 
235 	if (pgd == NULL)
236 		goto out;
237 
238 	mm->pgd = pgd;
239 
240 	if (preallocate_pmds(pmds) != 0)
241 		goto out_free_pgd;
242 
243 	if (paravirt_pgd_alloc(mm) != 0)
244 		goto out_free_pmds;
245 
246 	/*
247 	 * Make sure that pre-populating the pmds is atomic with
248 	 * respect to anything walking the pgd_list, so that they
249 	 * never see a partially populated pgd.
250 	 */
251 	spin_lock_irqsave(&pgd_lock, flags);
252 
253 	pgd_ctor(pgd);
254 	pgd_prepopulate_pmd(mm, pgd, pmds);
255 
256 	spin_unlock_irqrestore(&pgd_lock, flags);
257 
258 	return pgd;
259 
260 out_free_pmds:
261 	free_pmds(pmds);
262 out_free_pgd:
263 	free_page((unsigned long)pgd);
264 out:
265 	return NULL;
266 }
267 
268 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
269 {
270 	pgd_mop_up_pmds(mm, pgd);
271 	pgd_dtor(pgd);
272 	paravirt_pgd_free(mm, pgd);
273 	free_page((unsigned long)pgd);
274 }
275 
276 int ptep_set_access_flags(struct vm_area_struct *vma,
277 			  unsigned long address, pte_t *ptep,
278 			  pte_t entry, int dirty)
279 {
280 	int changed = !pte_same(*ptep, entry);
281 
282 	if (changed && dirty) {
283 		*ptep = entry;
284 		pte_update_defer(vma->vm_mm, address, ptep);
285 		flush_tlb_page(vma, address);
286 	}
287 
288 	return changed;
289 }
290 
291 int ptep_test_and_clear_young(struct vm_area_struct *vma,
292 			      unsigned long addr, pte_t *ptep)
293 {
294 	int ret = 0;
295 
296 	if (pte_young(*ptep))
297 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
298 					 (unsigned long *) &ptep->pte);
299 
300 	if (ret)
301 		pte_update(vma->vm_mm, addr, ptep);
302 
303 	return ret;
304 }
305 
306 int ptep_clear_flush_young(struct vm_area_struct *vma,
307 			   unsigned long address, pte_t *ptep)
308 {
309 	int young;
310 
311 	young = ptep_test_and_clear_young(vma, address, ptep);
312 	if (young)
313 		flush_tlb_page(vma, address);
314 
315 	return young;
316 }
317 
318 /**
319  * reserve_top_address - reserves a hole in the top of kernel address space
320  * @reserve - size of hole to reserve
321  *
322  * Can be used to relocate the fixmap area and poke a hole in the top
323  * of kernel address space to make room for a hypervisor.
324  */
325 void __init reserve_top_address(unsigned long reserve)
326 {
327 #ifdef CONFIG_X86_32
328 	BUG_ON(fixmaps_set > 0);
329 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
330 	       (int)-reserve);
331 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
332 #endif
333 }
334 
335 int fixmaps_set;
336 
337 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
338 {
339 	unsigned long address = __fix_to_virt(idx);
340 
341 	if (idx >= __end_of_fixed_addresses) {
342 		BUG();
343 		return;
344 	}
345 	set_pte_vaddr(address, pte);
346 	fixmaps_set++;
347 }
348 
349 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
350 		       pgprot_t flags)
351 {
352 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
353 }
354