1 #include <linux/mm.h> 2 #include <asm/pgalloc.h> 3 #include <asm/pgtable.h> 4 #include <asm/tlb.h> 5 #include <asm/fixmap.h> 6 7 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO 8 9 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 10 { 11 return (pte_t *)__get_free_page(PGALLOC_GFP); 12 } 13 14 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 15 { 16 struct page *pte; 17 18 #ifdef CONFIG_HIGHPTE 19 pte = alloc_pages(PGALLOC_GFP | __GFP_HIGHMEM, 0); 20 #else 21 pte = alloc_pages(PGALLOC_GFP, 0); 22 #endif 23 if (pte) 24 pgtable_page_ctor(pte); 25 return pte; 26 } 27 28 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 29 { 30 pgtable_page_dtor(pte); 31 paravirt_release_pte(page_to_pfn(pte)); 32 tlb_remove_page(tlb, pte); 33 } 34 35 #if PAGETABLE_LEVELS > 2 36 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 37 { 38 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 39 tlb_remove_page(tlb, virt_to_page(pmd)); 40 } 41 42 #if PAGETABLE_LEVELS > 3 43 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 44 { 45 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 46 tlb_remove_page(tlb, virt_to_page(pud)); 47 } 48 #endif /* PAGETABLE_LEVELS > 3 */ 49 #endif /* PAGETABLE_LEVELS > 2 */ 50 51 static inline void pgd_list_add(pgd_t *pgd) 52 { 53 struct page *page = virt_to_page(pgd); 54 55 list_add(&page->lru, &pgd_list); 56 } 57 58 static inline void pgd_list_del(pgd_t *pgd) 59 { 60 struct page *page = virt_to_page(pgd); 61 62 list_del(&page->lru); 63 } 64 65 #define UNSHARED_PTRS_PER_PGD \ 66 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 67 68 static void pgd_ctor(pgd_t *pgd) 69 { 70 /* If the pgd points to a shared pagetable level (either the 71 ptes in non-PAE, or shared PMD in PAE), then just copy the 72 references from swapper_pg_dir. */ 73 if (PAGETABLE_LEVELS == 2 || 74 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 75 PAGETABLE_LEVELS == 4) { 76 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 77 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 78 KERNEL_PGD_PTRS); 79 paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT, 80 __pa(swapper_pg_dir) >> PAGE_SHIFT, 81 KERNEL_PGD_BOUNDARY, 82 KERNEL_PGD_PTRS); 83 } 84 85 /* list required to sync kernel mapping updates */ 86 if (!SHARED_KERNEL_PMD) 87 pgd_list_add(pgd); 88 } 89 90 static void pgd_dtor(pgd_t *pgd) 91 { 92 unsigned long flags; /* can be called from interrupt context */ 93 94 if (SHARED_KERNEL_PMD) 95 return; 96 97 spin_lock_irqsave(&pgd_lock, flags); 98 pgd_list_del(pgd); 99 spin_unlock_irqrestore(&pgd_lock, flags); 100 } 101 102 /* 103 * List of all pgd's needed for non-PAE so it can invalidate entries 104 * in both cached and uncached pgd's; not needed for PAE since the 105 * kernel pmd is shared. If PAE were not to share the pmd a similar 106 * tactic would be needed. This is essentially codepath-based locking 107 * against pageattr.c; it is the unique case in which a valid change 108 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 109 * vmalloc faults work because attached pagetables are never freed. 110 * -- wli 111 */ 112 113 #ifdef CONFIG_X86_PAE 114 /* 115 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 116 * updating the top-level pagetable entries to guarantee the 117 * processor notices the update. Since this is expensive, and 118 * all 4 top-level entries are used almost immediately in a 119 * new process's life, we just pre-populate them here. 120 * 121 * Also, if we're in a paravirt environment where the kernel pmd is 122 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 123 * and initialize the kernel pmds here. 124 */ 125 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 126 127 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 128 { 129 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 130 131 /* Note: almost everything apart from _PAGE_PRESENT is 132 reserved at the pmd (PDPT) level. */ 133 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 134 135 /* 136 * According to Intel App note "TLBs, Paging-Structure Caches, 137 * and Their Invalidation", April 2007, document 317080-001, 138 * section 8.1: in PAE mode we explicitly have to flush the 139 * TLB via cr3 if the top-level pgd is changed... 140 */ 141 if (mm == current->active_mm) 142 write_cr3(read_cr3()); 143 } 144 #else /* !CONFIG_X86_PAE */ 145 146 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 147 #define PREALLOCATED_PMDS 0 148 149 #endif /* CONFIG_X86_PAE */ 150 151 static void free_pmds(pmd_t *pmds[]) 152 { 153 int i; 154 155 for(i = 0; i < PREALLOCATED_PMDS; i++) 156 if (pmds[i]) 157 free_page((unsigned long)pmds[i]); 158 } 159 160 static int preallocate_pmds(pmd_t *pmds[]) 161 { 162 int i; 163 bool failed = false; 164 165 for(i = 0; i < PREALLOCATED_PMDS; i++) { 166 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP); 167 if (pmd == NULL) 168 failed = true; 169 pmds[i] = pmd; 170 } 171 172 if (failed) { 173 free_pmds(pmds); 174 return -ENOMEM; 175 } 176 177 return 0; 178 } 179 180 /* 181 * Mop up any pmd pages which may still be attached to the pgd. 182 * Normally they will be freed by munmap/exit_mmap, but any pmd we 183 * preallocate which never got a corresponding vma will need to be 184 * freed manually. 185 */ 186 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 187 { 188 int i; 189 190 for(i = 0; i < PREALLOCATED_PMDS; i++) { 191 pgd_t pgd = pgdp[i]; 192 193 if (pgd_val(pgd) != 0) { 194 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 195 196 pgdp[i] = native_make_pgd(0); 197 198 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 199 pmd_free(mm, pmd); 200 } 201 } 202 } 203 204 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 205 { 206 pud_t *pud; 207 unsigned long addr; 208 int i; 209 210 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 211 return; 212 213 pud = pud_offset(pgd, 0); 214 215 for (addr = i = 0; i < PREALLOCATED_PMDS; 216 i++, pud++, addr += PUD_SIZE) { 217 pmd_t *pmd = pmds[i]; 218 219 if (i >= KERNEL_PGD_BOUNDARY) 220 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 221 sizeof(pmd_t) * PTRS_PER_PMD); 222 223 pud_populate(mm, pud, pmd); 224 } 225 } 226 227 pgd_t *pgd_alloc(struct mm_struct *mm) 228 { 229 pgd_t *pgd; 230 pmd_t *pmds[PREALLOCATED_PMDS]; 231 unsigned long flags; 232 233 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP); 234 235 if (pgd == NULL) 236 goto out; 237 238 mm->pgd = pgd; 239 240 if (preallocate_pmds(pmds) != 0) 241 goto out_free_pgd; 242 243 if (paravirt_pgd_alloc(mm) != 0) 244 goto out_free_pmds; 245 246 /* 247 * Make sure that pre-populating the pmds is atomic with 248 * respect to anything walking the pgd_list, so that they 249 * never see a partially populated pgd. 250 */ 251 spin_lock_irqsave(&pgd_lock, flags); 252 253 pgd_ctor(pgd); 254 pgd_prepopulate_pmd(mm, pgd, pmds); 255 256 spin_unlock_irqrestore(&pgd_lock, flags); 257 258 return pgd; 259 260 out_free_pmds: 261 free_pmds(pmds); 262 out_free_pgd: 263 free_page((unsigned long)pgd); 264 out: 265 return NULL; 266 } 267 268 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 269 { 270 pgd_mop_up_pmds(mm, pgd); 271 pgd_dtor(pgd); 272 paravirt_pgd_free(mm, pgd); 273 free_page((unsigned long)pgd); 274 } 275 276 int ptep_set_access_flags(struct vm_area_struct *vma, 277 unsigned long address, pte_t *ptep, 278 pte_t entry, int dirty) 279 { 280 int changed = !pte_same(*ptep, entry); 281 282 if (changed && dirty) { 283 *ptep = entry; 284 pte_update_defer(vma->vm_mm, address, ptep); 285 flush_tlb_page(vma, address); 286 } 287 288 return changed; 289 } 290 291 int ptep_test_and_clear_young(struct vm_area_struct *vma, 292 unsigned long addr, pte_t *ptep) 293 { 294 int ret = 0; 295 296 if (pte_young(*ptep)) 297 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 298 (unsigned long *) &ptep->pte); 299 300 if (ret) 301 pte_update(vma->vm_mm, addr, ptep); 302 303 return ret; 304 } 305 306 int ptep_clear_flush_young(struct vm_area_struct *vma, 307 unsigned long address, pte_t *ptep) 308 { 309 int young; 310 311 young = ptep_test_and_clear_young(vma, address, ptep); 312 if (young) 313 flush_tlb_page(vma, address); 314 315 return young; 316 } 317 318 /** 319 * reserve_top_address - reserves a hole in the top of kernel address space 320 * @reserve - size of hole to reserve 321 * 322 * Can be used to relocate the fixmap area and poke a hole in the top 323 * of kernel address space to make room for a hypervisor. 324 */ 325 void __init reserve_top_address(unsigned long reserve) 326 { 327 #ifdef CONFIG_X86_32 328 BUG_ON(fixmaps_set > 0); 329 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", 330 (int)-reserve); 331 __FIXADDR_TOP = -reserve - PAGE_SIZE; 332 #endif 333 } 334 335 int fixmaps_set; 336 337 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 338 { 339 unsigned long address = __fix_to_virt(idx); 340 341 if (idx >= __end_of_fixed_addresses) { 342 BUG(); 343 return; 344 } 345 set_pte_vaddr(address, pte); 346 fixmaps_set++; 347 } 348 349 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 350 pgprot_t flags) 351 { 352 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 353 } 354