1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <linux/hugetlb.h> 5 #include <asm/pgalloc.h> 6 #include <asm/pgtable.h> 7 #include <asm/tlb.h> 8 #include <asm/fixmap.h> 9 #include <asm/mtrr.h> 10 11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; 13 EXPORT_SYMBOL(physical_mask); 14 #endif 15 16 #ifdef CONFIG_HIGHPTE 17 #define PGTABLE_HIGHMEM __GFP_HIGHMEM 18 #else 19 #define PGTABLE_HIGHMEM 0 20 #endif 21 22 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM; 23 24 pgtable_t pte_alloc_one(struct mm_struct *mm) 25 { 26 return __pte_alloc_one(mm, __userpte_alloc_gfp); 27 } 28 29 static int __init setup_userpte(char *arg) 30 { 31 if (!arg) 32 return -EINVAL; 33 34 /* 35 * "userpte=nohigh" disables allocation of user pagetables in 36 * high memory. 37 */ 38 if (strcmp(arg, "nohigh") == 0) 39 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 40 else 41 return -EINVAL; 42 return 0; 43 } 44 early_param("userpte", setup_userpte); 45 46 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 47 { 48 pgtable_pte_page_dtor(pte); 49 paravirt_release_pte(page_to_pfn(pte)); 50 paravirt_tlb_remove_table(tlb, pte); 51 } 52 53 #if CONFIG_PGTABLE_LEVELS > 2 54 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 55 { 56 struct page *page = virt_to_page(pmd); 57 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 58 /* 59 * NOTE! For PAE, any changes to the top page-directory-pointer-table 60 * entries need a full cr3 reload to flush. 61 */ 62 #ifdef CONFIG_X86_PAE 63 tlb->need_flush_all = 1; 64 #endif 65 pgtable_pmd_page_dtor(page); 66 paravirt_tlb_remove_table(tlb, page); 67 } 68 69 #if CONFIG_PGTABLE_LEVELS > 3 70 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 71 { 72 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 73 paravirt_tlb_remove_table(tlb, virt_to_page(pud)); 74 } 75 76 #if CONFIG_PGTABLE_LEVELS > 4 77 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 78 { 79 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 80 paravirt_tlb_remove_table(tlb, virt_to_page(p4d)); 81 } 82 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 83 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 84 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 85 86 static inline void pgd_list_add(pgd_t *pgd) 87 { 88 struct page *page = virt_to_page(pgd); 89 90 list_add(&page->lru, &pgd_list); 91 } 92 93 static inline void pgd_list_del(pgd_t *pgd) 94 { 95 struct page *page = virt_to_page(pgd); 96 97 list_del(&page->lru); 98 } 99 100 #define UNSHARED_PTRS_PER_PGD \ 101 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 102 #define MAX_UNSHARED_PTRS_PER_PGD \ 103 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD) 104 105 106 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 107 { 108 virt_to_page(pgd)->pt_mm = mm; 109 } 110 111 struct mm_struct *pgd_page_get_mm(struct page *page) 112 { 113 return page->pt_mm; 114 } 115 116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 117 { 118 /* If the pgd points to a shared pagetable level (either the 119 ptes in non-PAE, or shared PMD in PAE), then just copy the 120 references from swapper_pg_dir. */ 121 if (CONFIG_PGTABLE_LEVELS == 2 || 122 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 123 CONFIG_PGTABLE_LEVELS >= 4) { 124 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 125 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 126 KERNEL_PGD_PTRS); 127 } 128 129 /* list required to sync kernel mapping updates */ 130 if (!SHARED_KERNEL_PMD) { 131 pgd_set_mm(pgd, mm); 132 pgd_list_add(pgd); 133 } 134 } 135 136 static void pgd_dtor(pgd_t *pgd) 137 { 138 if (SHARED_KERNEL_PMD) 139 return; 140 141 spin_lock(&pgd_lock); 142 pgd_list_del(pgd); 143 spin_unlock(&pgd_lock); 144 } 145 146 /* 147 * List of all pgd's needed for non-PAE so it can invalidate entries 148 * in both cached and uncached pgd's; not needed for PAE since the 149 * kernel pmd is shared. If PAE were not to share the pmd a similar 150 * tactic would be needed. This is essentially codepath-based locking 151 * against pageattr.c; it is the unique case in which a valid change 152 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 153 * vmalloc faults work because attached pagetables are never freed. 154 * -- nyc 155 */ 156 157 #ifdef CONFIG_X86_PAE 158 /* 159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 160 * updating the top-level pagetable entries to guarantee the 161 * processor notices the update. Since this is expensive, and 162 * all 4 top-level entries are used almost immediately in a 163 * new process's life, we just pre-populate them here. 164 * 165 * Also, if we're in a paravirt environment where the kernel pmd is 166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 167 * and initialize the kernel pmds here. 168 */ 169 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 170 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD 171 172 /* 173 * We allocate separate PMDs for the kernel part of the user page-table 174 * when PTI is enabled. We need them to map the per-process LDT into the 175 * user-space page-table. 176 */ 177 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \ 178 KERNEL_PGD_PTRS : 0) 179 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS 180 181 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 182 { 183 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 184 185 /* Note: almost everything apart from _PAGE_PRESENT is 186 reserved at the pmd (PDPT) level. */ 187 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 188 189 /* 190 * According to Intel App note "TLBs, Paging-Structure Caches, 191 * and Their Invalidation", April 2007, document 317080-001, 192 * section 8.1: in PAE mode we explicitly have to flush the 193 * TLB via cr3 if the top-level pgd is changed... 194 */ 195 flush_tlb_mm(mm); 196 } 197 #else /* !CONFIG_X86_PAE */ 198 199 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 200 #define PREALLOCATED_PMDS 0 201 #define MAX_PREALLOCATED_PMDS 0 202 #define PREALLOCATED_USER_PMDS 0 203 #define MAX_PREALLOCATED_USER_PMDS 0 204 #endif /* CONFIG_X86_PAE */ 205 206 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 207 { 208 int i; 209 210 for (i = 0; i < count; i++) 211 if (pmds[i]) { 212 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 213 free_page((unsigned long)pmds[i]); 214 mm_dec_nr_pmds(mm); 215 } 216 } 217 218 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) 219 { 220 int i; 221 bool failed = false; 222 gfp_t gfp = GFP_PGTABLE_USER; 223 224 if (mm == &init_mm) 225 gfp &= ~__GFP_ACCOUNT; 226 227 for (i = 0; i < count; i++) { 228 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 229 if (!pmd) 230 failed = true; 231 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 232 free_page((unsigned long)pmd); 233 pmd = NULL; 234 failed = true; 235 } 236 if (pmd) 237 mm_inc_nr_pmds(mm); 238 pmds[i] = pmd; 239 } 240 241 if (failed) { 242 free_pmds(mm, pmds, count); 243 return -ENOMEM; 244 } 245 246 return 0; 247 } 248 249 /* 250 * Mop up any pmd pages which may still be attached to the pgd. 251 * Normally they will be freed by munmap/exit_mmap, but any pmd we 252 * preallocate which never got a corresponding vma will need to be 253 * freed manually. 254 */ 255 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) 256 { 257 pgd_t pgd = *pgdp; 258 259 if (pgd_val(pgd) != 0) { 260 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 261 262 pgd_clear(pgdp); 263 264 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 265 pmd_free(mm, pmd); 266 mm_dec_nr_pmds(mm); 267 } 268 } 269 270 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 271 { 272 int i; 273 274 for (i = 0; i < PREALLOCATED_PMDS; i++) 275 mop_up_one_pmd(mm, &pgdp[i]); 276 277 #ifdef CONFIG_PAGE_TABLE_ISOLATION 278 279 if (!boot_cpu_has(X86_FEATURE_PTI)) 280 return; 281 282 pgdp = kernel_to_user_pgdp(pgdp); 283 284 for (i = 0; i < PREALLOCATED_USER_PMDS; i++) 285 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); 286 #endif 287 } 288 289 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 290 { 291 p4d_t *p4d; 292 pud_t *pud; 293 int i; 294 295 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 296 return; 297 298 p4d = p4d_offset(pgd, 0); 299 pud = pud_offset(p4d, 0); 300 301 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 302 pmd_t *pmd = pmds[i]; 303 304 if (i >= KERNEL_PGD_BOUNDARY) 305 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 306 sizeof(pmd_t) * PTRS_PER_PMD); 307 308 pud_populate(mm, pud, pmd); 309 } 310 } 311 312 #ifdef CONFIG_PAGE_TABLE_ISOLATION 313 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 314 pgd_t *k_pgd, pmd_t *pmds[]) 315 { 316 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); 317 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 318 p4d_t *u_p4d; 319 pud_t *u_pud; 320 int i; 321 322 u_p4d = p4d_offset(u_pgd, 0); 323 u_pud = pud_offset(u_p4d, 0); 324 325 s_pgd += KERNEL_PGD_BOUNDARY; 326 u_pud += KERNEL_PGD_BOUNDARY; 327 328 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { 329 pmd_t *pmd = pmds[i]; 330 331 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), 332 sizeof(pmd_t) * PTRS_PER_PMD); 333 334 pud_populate(mm, u_pud, pmd); 335 } 336 337 } 338 #else 339 static void pgd_prepopulate_user_pmd(struct mm_struct *mm, 340 pgd_t *k_pgd, pmd_t *pmds[]) 341 { 342 } 343 #endif 344 /* 345 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 346 * assumes that pgd should be in one page. 347 * 348 * But kernel with PAE paging that is not running as a Xen domain 349 * only needs to allocate 32 bytes for pgd instead of one page. 350 */ 351 #ifdef CONFIG_X86_PAE 352 353 #include <linux/slab.h> 354 355 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 356 #define PGD_ALIGN 32 357 358 static struct kmem_cache *pgd_cache; 359 360 void __init pgtable_cache_init(void) 361 { 362 /* 363 * When PAE kernel is running as a Xen domain, it does not use 364 * shared kernel pmd. And this requires a whole page for pgd. 365 */ 366 if (!SHARED_KERNEL_PMD) 367 return; 368 369 /* 370 * when PAE kernel is not running as a Xen domain, it uses 371 * shared kernel pmd. Shared kernel pmd does not require a whole 372 * page for pgd. We are able to just allocate a 32-byte for pgd. 373 * During boot time, we create a 32-byte slab for pgd table allocation. 374 */ 375 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 376 SLAB_PANIC, NULL); 377 } 378 379 static inline pgd_t *_pgd_alloc(void) 380 { 381 /* 382 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 383 * We allocate one page for pgd. 384 */ 385 if (!SHARED_KERNEL_PMD) 386 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER, 387 PGD_ALLOCATION_ORDER); 388 389 /* 390 * Now PAE kernel is not running as a Xen domain. We can allocate 391 * a 32-byte slab for pgd to save memory space. 392 */ 393 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER); 394 } 395 396 static inline void _pgd_free(pgd_t *pgd) 397 { 398 if (!SHARED_KERNEL_PMD) 399 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 400 else 401 kmem_cache_free(pgd_cache, pgd); 402 } 403 #else 404 405 static inline pgd_t *_pgd_alloc(void) 406 { 407 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER, 408 PGD_ALLOCATION_ORDER); 409 } 410 411 static inline void _pgd_free(pgd_t *pgd) 412 { 413 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 414 } 415 #endif /* CONFIG_X86_PAE */ 416 417 pgd_t *pgd_alloc(struct mm_struct *mm) 418 { 419 pgd_t *pgd; 420 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS]; 421 pmd_t *pmds[MAX_PREALLOCATED_PMDS]; 422 423 pgd = _pgd_alloc(); 424 425 if (pgd == NULL) 426 goto out; 427 428 mm->pgd = pgd; 429 430 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) 431 goto out_free_pgd; 432 433 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) 434 goto out_free_pmds; 435 436 if (paravirt_pgd_alloc(mm) != 0) 437 goto out_free_user_pmds; 438 439 /* 440 * Make sure that pre-populating the pmds is atomic with 441 * respect to anything walking the pgd_list, so that they 442 * never see a partially populated pgd. 443 */ 444 spin_lock(&pgd_lock); 445 446 pgd_ctor(mm, pgd); 447 pgd_prepopulate_pmd(mm, pgd, pmds); 448 pgd_prepopulate_user_pmd(mm, pgd, u_pmds); 449 450 spin_unlock(&pgd_lock); 451 452 return pgd; 453 454 out_free_user_pmds: 455 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); 456 out_free_pmds: 457 free_pmds(mm, pmds, PREALLOCATED_PMDS); 458 out_free_pgd: 459 _pgd_free(pgd); 460 out: 461 return NULL; 462 } 463 464 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 465 { 466 pgd_mop_up_pmds(mm, pgd); 467 pgd_dtor(pgd); 468 paravirt_pgd_free(mm, pgd); 469 _pgd_free(pgd); 470 } 471 472 /* 473 * Used to set accessed or dirty bits in the page table entries 474 * on other architectures. On x86, the accessed and dirty bits 475 * are tracked by hardware. However, do_wp_page calls this function 476 * to also make the pte writeable at the same time the dirty bit is 477 * set. In that case we do actually need to write the PTE. 478 */ 479 int ptep_set_access_flags(struct vm_area_struct *vma, 480 unsigned long address, pte_t *ptep, 481 pte_t entry, int dirty) 482 { 483 int changed = !pte_same(*ptep, entry); 484 485 if (changed && dirty) 486 set_pte(ptep, entry); 487 488 return changed; 489 } 490 491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 492 int pmdp_set_access_flags(struct vm_area_struct *vma, 493 unsigned long address, pmd_t *pmdp, 494 pmd_t entry, int dirty) 495 { 496 int changed = !pmd_same(*pmdp, entry); 497 498 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 499 500 if (changed && dirty) { 501 set_pmd(pmdp, entry); 502 /* 503 * We had a write-protection fault here and changed the pmd 504 * to to more permissive. No need to flush the TLB for that, 505 * #PF is architecturally guaranteed to do that and in the 506 * worst-case we'll generate a spurious fault. 507 */ 508 } 509 510 return changed; 511 } 512 513 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 514 pud_t *pudp, pud_t entry, int dirty) 515 { 516 int changed = !pud_same(*pudp, entry); 517 518 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 519 520 if (changed && dirty) { 521 set_pud(pudp, entry); 522 /* 523 * We had a write-protection fault here and changed the pud 524 * to to more permissive. No need to flush the TLB for that, 525 * #PF is architecturally guaranteed to do that and in the 526 * worst-case we'll generate a spurious fault. 527 */ 528 } 529 530 return changed; 531 } 532 #endif 533 534 int ptep_test_and_clear_young(struct vm_area_struct *vma, 535 unsigned long addr, pte_t *ptep) 536 { 537 int ret = 0; 538 539 if (pte_young(*ptep)) 540 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 541 (unsigned long *) &ptep->pte); 542 543 return ret; 544 } 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 548 unsigned long addr, pmd_t *pmdp) 549 { 550 int ret = 0; 551 552 if (pmd_young(*pmdp)) 553 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 554 (unsigned long *)pmdp); 555 556 return ret; 557 } 558 int pudp_test_and_clear_young(struct vm_area_struct *vma, 559 unsigned long addr, pud_t *pudp) 560 { 561 int ret = 0; 562 563 if (pud_young(*pudp)) 564 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 565 (unsigned long *)pudp); 566 567 return ret; 568 } 569 #endif 570 571 int ptep_clear_flush_young(struct vm_area_struct *vma, 572 unsigned long address, pte_t *ptep) 573 { 574 /* 575 * On x86 CPUs, clearing the accessed bit without a TLB flush 576 * doesn't cause data corruption. [ It could cause incorrect 577 * page aging and the (mistaken) reclaim of hot pages, but the 578 * chance of that should be relatively low. ] 579 * 580 * So as a performance optimization don't flush the TLB when 581 * clearing the accessed bit, it will eventually be flushed by 582 * a context switch or a VM operation anyway. [ In the rare 583 * event of it not getting flushed for a long time the delay 584 * shouldn't really matter because there's no real memory 585 * pressure for swapout to react to. ] 586 */ 587 return ptep_test_and_clear_young(vma, address, ptep); 588 } 589 590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 591 int pmdp_clear_flush_young(struct vm_area_struct *vma, 592 unsigned long address, pmd_t *pmdp) 593 { 594 int young; 595 596 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 597 598 young = pmdp_test_and_clear_young(vma, address, pmdp); 599 if (young) 600 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 601 602 return young; 603 } 604 #endif 605 606 /** 607 * reserve_top_address - reserves a hole in the top of kernel address space 608 * @reserve - size of hole to reserve 609 * 610 * Can be used to relocate the fixmap area and poke a hole in the top 611 * of kernel address space to make room for a hypervisor. 612 */ 613 void __init reserve_top_address(unsigned long reserve) 614 { 615 #ifdef CONFIG_X86_32 616 BUG_ON(fixmaps_set > 0); 617 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 618 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 619 -reserve, __FIXADDR_TOP + PAGE_SIZE); 620 #endif 621 } 622 623 int fixmaps_set; 624 625 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 626 { 627 unsigned long address = __fix_to_virt(idx); 628 629 #ifdef CONFIG_X86_64 630 /* 631 * Ensure that the static initial page tables are covering the 632 * fixmap completely. 633 */ 634 BUILD_BUG_ON(__end_of_permanent_fixed_addresses > 635 (FIXMAP_PMD_NUM * PTRS_PER_PTE)); 636 #endif 637 638 if (idx >= __end_of_fixed_addresses) { 639 BUG(); 640 return; 641 } 642 set_pte_vaddr(address, pte); 643 fixmaps_set++; 644 } 645 646 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 647 pgprot_t flags) 648 { 649 /* Sanitize 'prot' against any unsupported bits: */ 650 pgprot_val(flags) &= __default_kernel_pte_mask; 651 652 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 653 } 654 655 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 656 #ifdef CONFIG_X86_5LEVEL 657 /** 658 * p4d_set_huge - setup kernel P4D mapping 659 * 660 * No 512GB pages yet -- always return 0 661 */ 662 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 663 { 664 return 0; 665 } 666 667 /** 668 * p4d_clear_huge - clear kernel P4D mapping when it is set 669 * 670 * No 512GB pages yet -- always return 0 671 */ 672 int p4d_clear_huge(p4d_t *p4d) 673 { 674 return 0; 675 } 676 #endif 677 678 /** 679 * pud_set_huge - setup kernel PUD mapping 680 * 681 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 682 * function sets up a huge page only if any of the following conditions are met: 683 * 684 * - MTRRs are disabled, or 685 * 686 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 687 * 688 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 689 * has no effect on the requested PAT memory type. 690 * 691 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 692 * page mapping attempt fails. 693 * 694 * Returns 1 on success and 0 on failure. 695 */ 696 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 697 { 698 u8 mtrr, uniform; 699 700 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 701 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 702 (mtrr != MTRR_TYPE_WRBACK)) 703 return 0; 704 705 /* Bail out if we are we on a populated non-leaf entry: */ 706 if (pud_present(*pud) && !pud_huge(*pud)) 707 return 0; 708 709 prot = pgprot_4k_2_large(prot); 710 711 set_pte((pte_t *)pud, pfn_pte( 712 (u64)addr >> PAGE_SHIFT, 713 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 714 715 return 1; 716 } 717 718 /** 719 * pmd_set_huge - setup kernel PMD mapping 720 * 721 * See text over pud_set_huge() above. 722 * 723 * Returns 1 on success and 0 on failure. 724 */ 725 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 726 { 727 u8 mtrr, uniform; 728 729 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 730 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 731 (mtrr != MTRR_TYPE_WRBACK)) { 732 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 733 __func__, addr, addr + PMD_SIZE); 734 return 0; 735 } 736 737 /* Bail out if we are we on a populated non-leaf entry: */ 738 if (pmd_present(*pmd) && !pmd_huge(*pmd)) 739 return 0; 740 741 prot = pgprot_4k_2_large(prot); 742 743 set_pte((pte_t *)pmd, pfn_pte( 744 (u64)addr >> PAGE_SHIFT, 745 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 746 747 return 1; 748 } 749 750 /** 751 * pud_clear_huge - clear kernel PUD mapping when it is set 752 * 753 * Returns 1 on success and 0 on failure (no PUD map is found). 754 */ 755 int pud_clear_huge(pud_t *pud) 756 { 757 if (pud_large(*pud)) { 758 pud_clear(pud); 759 return 1; 760 } 761 762 return 0; 763 } 764 765 /** 766 * pmd_clear_huge - clear kernel PMD mapping when it is set 767 * 768 * Returns 1 on success and 0 on failure (no PMD map is found). 769 */ 770 int pmd_clear_huge(pmd_t *pmd) 771 { 772 if (pmd_large(*pmd)) { 773 pmd_clear(pmd); 774 return 1; 775 } 776 777 return 0; 778 } 779 780 /* 781 * Until we support 512GB pages, skip them in the vmap area. 782 */ 783 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 784 { 785 return 0; 786 } 787 788 #ifdef CONFIG_X86_64 789 /** 790 * pud_free_pmd_page - Clear pud entry and free pmd page. 791 * @pud: Pointer to a PUD. 792 * @addr: Virtual address associated with pud. 793 * 794 * Context: The pud range has been unmapped and TLB purged. 795 * Return: 1 if clearing the entry succeeded. 0 otherwise. 796 * 797 * NOTE: Callers must allow a single page allocation. 798 */ 799 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 800 { 801 pmd_t *pmd, *pmd_sv; 802 pte_t *pte; 803 int i; 804 805 pmd = (pmd_t *)pud_page_vaddr(*pud); 806 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); 807 if (!pmd_sv) 808 return 0; 809 810 for (i = 0; i < PTRS_PER_PMD; i++) { 811 pmd_sv[i] = pmd[i]; 812 if (!pmd_none(pmd[i])) 813 pmd_clear(&pmd[i]); 814 } 815 816 pud_clear(pud); 817 818 /* INVLPG to clear all paging-structure caches */ 819 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 820 821 for (i = 0; i < PTRS_PER_PMD; i++) { 822 if (!pmd_none(pmd_sv[i])) { 823 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); 824 free_page((unsigned long)pte); 825 } 826 } 827 828 free_page((unsigned long)pmd_sv); 829 free_page((unsigned long)pmd); 830 831 return 1; 832 } 833 834 /** 835 * pmd_free_pte_page - Clear pmd entry and free pte page. 836 * @pmd: Pointer to a PMD. 837 * @addr: Virtual address associated with pmd. 838 * 839 * Context: The pmd range has been unmapped and TLB purged. 840 * Return: 1 if clearing the entry succeeded. 0 otherwise. 841 */ 842 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 843 { 844 pte_t *pte; 845 846 pte = (pte_t *)pmd_page_vaddr(*pmd); 847 pmd_clear(pmd); 848 849 /* INVLPG to clear all paging-structure caches */ 850 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); 851 852 free_page((unsigned long)pte); 853 854 return 1; 855 } 856 857 #else /* !CONFIG_X86_64 */ 858 859 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 860 { 861 return pud_none(*pud); 862 } 863 864 /* 865 * Disable free page handling on x86-PAE. This assures that ioremap() 866 * does not update sync'd pmd entries. See vmalloc_sync_one(). 867 */ 868 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 869 { 870 return pmd_none(*pmd); 871 } 872 873 #endif /* CONFIG_X86_64 */ 874 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 875