xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision df711553)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15 
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
17 
18 #ifdef CONFIG_HIGHPTE
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
20 #else
21 #define PGALLOC_USER_GFP 0
22 #endif
23 
24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
25 
26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
27 {
28 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
29 }
30 
31 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
32 {
33 	struct page *pte;
34 
35 	pte = alloc_pages(__userpte_alloc_gfp, 0);
36 	if (!pte)
37 		return NULL;
38 	if (!pgtable_page_ctor(pte)) {
39 		__free_page(pte);
40 		return NULL;
41 	}
42 	return pte;
43 }
44 
45 static int __init setup_userpte(char *arg)
46 {
47 	if (!arg)
48 		return -EINVAL;
49 
50 	/*
51 	 * "userpte=nohigh" disables allocation of user pagetables in
52 	 * high memory.
53 	 */
54 	if (strcmp(arg, "nohigh") == 0)
55 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
56 	else
57 		return -EINVAL;
58 	return 0;
59 }
60 early_param("userpte", setup_userpte);
61 
62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
63 {
64 	pgtable_page_dtor(pte);
65 	paravirt_release_pte(page_to_pfn(pte));
66 	paravirt_tlb_remove_table(tlb, pte);
67 }
68 
69 #if CONFIG_PGTABLE_LEVELS > 2
70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
71 {
72 	struct page *page = virt_to_page(pmd);
73 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
74 	/*
75 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 	 * entries need a full cr3 reload to flush.
77 	 */
78 #ifdef CONFIG_X86_PAE
79 	tlb->need_flush_all = 1;
80 #endif
81 	pgtable_pmd_page_dtor(page);
82 	paravirt_tlb_remove_table(tlb, page);
83 }
84 
85 #if CONFIG_PGTABLE_LEVELS > 3
86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
87 {
88 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
90 }
91 
92 #if CONFIG_PGTABLE_LEVELS > 4
93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
94 {
95 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
97 }
98 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
101 
102 static inline void pgd_list_add(pgd_t *pgd)
103 {
104 	struct page *page = virt_to_page(pgd);
105 
106 	list_add(&page->lru, &pgd_list);
107 }
108 
109 static inline void pgd_list_del(pgd_t *pgd)
110 {
111 	struct page *page = virt_to_page(pgd);
112 
113 	list_del(&page->lru);
114 }
115 
116 #define UNSHARED_PTRS_PER_PGD				\
117 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118 
119 
120 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
121 {
122 	virt_to_page(pgd)->pt_mm = mm;
123 }
124 
125 struct mm_struct *pgd_page_get_mm(struct page *page)
126 {
127 	return page->pt_mm;
128 }
129 
130 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
131 {
132 	/* If the pgd points to a shared pagetable level (either the
133 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
134 	   references from swapper_pg_dir. */
135 	if (CONFIG_PGTABLE_LEVELS == 2 ||
136 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
137 	    CONFIG_PGTABLE_LEVELS >= 4) {
138 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
139 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
140 				KERNEL_PGD_PTRS);
141 	}
142 
143 	/* list required to sync kernel mapping updates */
144 	if (!SHARED_KERNEL_PMD) {
145 		pgd_set_mm(pgd, mm);
146 		pgd_list_add(pgd);
147 	}
148 }
149 
150 static void pgd_dtor(pgd_t *pgd)
151 {
152 	if (SHARED_KERNEL_PMD)
153 		return;
154 
155 	spin_lock(&pgd_lock);
156 	pgd_list_del(pgd);
157 	spin_unlock(&pgd_lock);
158 }
159 
160 /*
161  * List of all pgd's needed for non-PAE so it can invalidate entries
162  * in both cached and uncached pgd's; not needed for PAE since the
163  * kernel pmd is shared. If PAE were not to share the pmd a similar
164  * tactic would be needed. This is essentially codepath-based locking
165  * against pageattr.c; it is the unique case in which a valid change
166  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
167  * vmalloc faults work because attached pagetables are never freed.
168  * -- nyc
169  */
170 
171 #ifdef CONFIG_X86_PAE
172 /*
173  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
174  * updating the top-level pagetable entries to guarantee the
175  * processor notices the update.  Since this is expensive, and
176  * all 4 top-level entries are used almost immediately in a
177  * new process's life, we just pre-populate them here.
178  *
179  * Also, if we're in a paravirt environment where the kernel pmd is
180  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
181  * and initialize the kernel pmds here.
182  */
183 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
184 
185 /*
186  * We allocate separate PMDs for the kernel part of the user page-table
187  * when PTI is enabled. We need them to map the per-process LDT into the
188  * user-space page-table.
189  */
190 #define PREALLOCATED_USER_PMDS	 (static_cpu_has(X86_FEATURE_PTI) ? \
191 					KERNEL_PGD_PTRS : 0)
192 
193 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
194 {
195 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
196 
197 	/* Note: almost everything apart from _PAGE_PRESENT is
198 	   reserved at the pmd (PDPT) level. */
199 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
200 
201 	/*
202 	 * According to Intel App note "TLBs, Paging-Structure Caches,
203 	 * and Their Invalidation", April 2007, document 317080-001,
204 	 * section 8.1: in PAE mode we explicitly have to flush the
205 	 * TLB via cr3 if the top-level pgd is changed...
206 	 */
207 	flush_tlb_mm(mm);
208 }
209 #else  /* !CONFIG_X86_PAE */
210 
211 /* No need to prepopulate any pagetable entries in non-PAE modes. */
212 #define PREALLOCATED_PMDS	0
213 #define PREALLOCATED_USER_PMDS	 0
214 #endif	/* CONFIG_X86_PAE */
215 
216 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
217 {
218 	int i;
219 
220 	for (i = 0; i < count; i++)
221 		if (pmds[i]) {
222 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
223 			free_page((unsigned long)pmds[i]);
224 			mm_dec_nr_pmds(mm);
225 		}
226 }
227 
228 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
229 {
230 	int i;
231 	bool failed = false;
232 	gfp_t gfp = PGALLOC_GFP;
233 
234 	if (mm == &init_mm)
235 		gfp &= ~__GFP_ACCOUNT;
236 
237 	for (i = 0; i < count; i++) {
238 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
239 		if (!pmd)
240 			failed = true;
241 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
242 			free_page((unsigned long)pmd);
243 			pmd = NULL;
244 			failed = true;
245 		}
246 		if (pmd)
247 			mm_inc_nr_pmds(mm);
248 		pmds[i] = pmd;
249 	}
250 
251 	if (failed) {
252 		free_pmds(mm, pmds, count);
253 		return -ENOMEM;
254 	}
255 
256 	return 0;
257 }
258 
259 /*
260  * Mop up any pmd pages which may still be attached to the pgd.
261  * Normally they will be freed by munmap/exit_mmap, but any pmd we
262  * preallocate which never got a corresponding vma will need to be
263  * freed manually.
264  */
265 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
266 {
267 	pgd_t pgd = *pgdp;
268 
269 	if (pgd_val(pgd) != 0) {
270 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
271 
272 		*pgdp = native_make_pgd(0);
273 
274 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
275 		pmd_free(mm, pmd);
276 		mm_dec_nr_pmds(mm);
277 	}
278 }
279 
280 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
281 {
282 	int i;
283 
284 	for (i = 0; i < PREALLOCATED_PMDS; i++)
285 		mop_up_one_pmd(mm, &pgdp[i]);
286 
287 #ifdef CONFIG_PAGE_TABLE_ISOLATION
288 
289 	if (!static_cpu_has(X86_FEATURE_PTI))
290 		return;
291 
292 	pgdp = kernel_to_user_pgdp(pgdp);
293 
294 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
295 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
296 #endif
297 }
298 
299 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
300 {
301 	p4d_t *p4d;
302 	pud_t *pud;
303 	int i;
304 
305 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
306 		return;
307 
308 	p4d = p4d_offset(pgd, 0);
309 	pud = pud_offset(p4d, 0);
310 
311 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
312 		pmd_t *pmd = pmds[i];
313 
314 		if (i >= KERNEL_PGD_BOUNDARY)
315 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
316 			       sizeof(pmd_t) * PTRS_PER_PMD);
317 
318 		pud_populate(mm, pud, pmd);
319 	}
320 }
321 
322 #ifdef CONFIG_PAGE_TABLE_ISOLATION
323 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
324 				     pgd_t *k_pgd, pmd_t *pmds[])
325 {
326 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
327 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
328 	p4d_t *u_p4d;
329 	pud_t *u_pud;
330 	int i;
331 
332 	u_p4d = p4d_offset(u_pgd, 0);
333 	u_pud = pud_offset(u_p4d, 0);
334 
335 	s_pgd += KERNEL_PGD_BOUNDARY;
336 	u_pud += KERNEL_PGD_BOUNDARY;
337 
338 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
339 		pmd_t *pmd = pmds[i];
340 
341 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
342 		       sizeof(pmd_t) * PTRS_PER_PMD);
343 
344 		pud_populate(mm, u_pud, pmd);
345 	}
346 
347 }
348 #else
349 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
350 				     pgd_t *k_pgd, pmd_t *pmds[])
351 {
352 }
353 #endif
354 /*
355  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
356  * assumes that pgd should be in one page.
357  *
358  * But kernel with PAE paging that is not running as a Xen domain
359  * only needs to allocate 32 bytes for pgd instead of one page.
360  */
361 #ifdef CONFIG_X86_PAE
362 
363 #include <linux/slab.h>
364 
365 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
366 #define PGD_ALIGN	32
367 
368 static struct kmem_cache *pgd_cache;
369 
370 static int __init pgd_cache_init(void)
371 {
372 	/*
373 	 * When PAE kernel is running as a Xen domain, it does not use
374 	 * shared kernel pmd. And this requires a whole page for pgd.
375 	 */
376 	if (!SHARED_KERNEL_PMD)
377 		return 0;
378 
379 	/*
380 	 * when PAE kernel is not running as a Xen domain, it uses
381 	 * shared kernel pmd. Shared kernel pmd does not require a whole
382 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
383 	 * During boot time, we create a 32-byte slab for pgd table allocation.
384 	 */
385 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
386 				      SLAB_PANIC, NULL);
387 	return 0;
388 }
389 core_initcall(pgd_cache_init);
390 
391 static inline pgd_t *_pgd_alloc(void)
392 {
393 	/*
394 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
395 	 * We allocate one page for pgd.
396 	 */
397 	if (!SHARED_KERNEL_PMD)
398 		return (pgd_t *)__get_free_pages(PGALLOC_GFP,
399 						 PGD_ALLOCATION_ORDER);
400 
401 	/*
402 	 * Now PAE kernel is not running as a Xen domain. We can allocate
403 	 * a 32-byte slab for pgd to save memory space.
404 	 */
405 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
406 }
407 
408 static inline void _pgd_free(pgd_t *pgd)
409 {
410 	if (!SHARED_KERNEL_PMD)
411 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
412 	else
413 		kmem_cache_free(pgd_cache, pgd);
414 }
415 #else
416 
417 static inline pgd_t *_pgd_alloc(void)
418 {
419 	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
420 }
421 
422 static inline void _pgd_free(pgd_t *pgd)
423 {
424 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
425 }
426 #endif /* CONFIG_X86_PAE */
427 
428 pgd_t *pgd_alloc(struct mm_struct *mm)
429 {
430 	pgd_t *pgd;
431 	pmd_t *u_pmds[PREALLOCATED_USER_PMDS];
432 	pmd_t *pmds[PREALLOCATED_PMDS];
433 
434 	pgd = _pgd_alloc();
435 
436 	if (pgd == NULL)
437 		goto out;
438 
439 	mm->pgd = pgd;
440 
441 	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
442 		goto out_free_pgd;
443 
444 	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
445 		goto out_free_pmds;
446 
447 	if (paravirt_pgd_alloc(mm) != 0)
448 		goto out_free_user_pmds;
449 
450 	/*
451 	 * Make sure that pre-populating the pmds is atomic with
452 	 * respect to anything walking the pgd_list, so that they
453 	 * never see a partially populated pgd.
454 	 */
455 	spin_lock(&pgd_lock);
456 
457 	pgd_ctor(mm, pgd);
458 	pgd_prepopulate_pmd(mm, pgd, pmds);
459 	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
460 
461 	spin_unlock(&pgd_lock);
462 
463 	return pgd;
464 
465 out_free_user_pmds:
466 	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
467 out_free_pmds:
468 	free_pmds(mm, pmds, PREALLOCATED_PMDS);
469 out_free_pgd:
470 	_pgd_free(pgd);
471 out:
472 	return NULL;
473 }
474 
475 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
476 {
477 	pgd_mop_up_pmds(mm, pgd);
478 	pgd_dtor(pgd);
479 	paravirt_pgd_free(mm, pgd);
480 	_pgd_free(pgd);
481 }
482 
483 /*
484  * Used to set accessed or dirty bits in the page table entries
485  * on other architectures. On x86, the accessed and dirty bits
486  * are tracked by hardware. However, do_wp_page calls this function
487  * to also make the pte writeable at the same time the dirty bit is
488  * set. In that case we do actually need to write the PTE.
489  */
490 int ptep_set_access_flags(struct vm_area_struct *vma,
491 			  unsigned long address, pte_t *ptep,
492 			  pte_t entry, int dirty)
493 {
494 	int changed = !pte_same(*ptep, entry);
495 
496 	if (changed && dirty)
497 		*ptep = entry;
498 
499 	return changed;
500 }
501 
502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
503 int pmdp_set_access_flags(struct vm_area_struct *vma,
504 			  unsigned long address, pmd_t *pmdp,
505 			  pmd_t entry, int dirty)
506 {
507 	int changed = !pmd_same(*pmdp, entry);
508 
509 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
510 
511 	if (changed && dirty) {
512 		*pmdp = entry;
513 		/*
514 		 * We had a write-protection fault here and changed the pmd
515 		 * to to more permissive. No need to flush the TLB for that,
516 		 * #PF is architecturally guaranteed to do that and in the
517 		 * worst-case we'll generate a spurious fault.
518 		 */
519 	}
520 
521 	return changed;
522 }
523 
524 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
525 			  pud_t *pudp, pud_t entry, int dirty)
526 {
527 	int changed = !pud_same(*pudp, entry);
528 
529 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
530 
531 	if (changed && dirty) {
532 		*pudp = entry;
533 		/*
534 		 * We had a write-protection fault here and changed the pud
535 		 * to to more permissive. No need to flush the TLB for that,
536 		 * #PF is architecturally guaranteed to do that and in the
537 		 * worst-case we'll generate a spurious fault.
538 		 */
539 	}
540 
541 	return changed;
542 }
543 #endif
544 
545 int ptep_test_and_clear_young(struct vm_area_struct *vma,
546 			      unsigned long addr, pte_t *ptep)
547 {
548 	int ret = 0;
549 
550 	if (pte_young(*ptep))
551 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
552 					 (unsigned long *) &ptep->pte);
553 
554 	return ret;
555 }
556 
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
559 			      unsigned long addr, pmd_t *pmdp)
560 {
561 	int ret = 0;
562 
563 	if (pmd_young(*pmdp))
564 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
565 					 (unsigned long *)pmdp);
566 
567 	return ret;
568 }
569 int pudp_test_and_clear_young(struct vm_area_struct *vma,
570 			      unsigned long addr, pud_t *pudp)
571 {
572 	int ret = 0;
573 
574 	if (pud_young(*pudp))
575 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
576 					 (unsigned long *)pudp);
577 
578 	return ret;
579 }
580 #endif
581 
582 int ptep_clear_flush_young(struct vm_area_struct *vma,
583 			   unsigned long address, pte_t *ptep)
584 {
585 	/*
586 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
587 	 * doesn't cause data corruption. [ It could cause incorrect
588 	 * page aging and the (mistaken) reclaim of hot pages, but the
589 	 * chance of that should be relatively low. ]
590 	 *
591 	 * So as a performance optimization don't flush the TLB when
592 	 * clearing the accessed bit, it will eventually be flushed by
593 	 * a context switch or a VM operation anyway. [ In the rare
594 	 * event of it not getting flushed for a long time the delay
595 	 * shouldn't really matter because there's no real memory
596 	 * pressure for swapout to react to. ]
597 	 */
598 	return ptep_test_and_clear_young(vma, address, ptep);
599 }
600 
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 int pmdp_clear_flush_young(struct vm_area_struct *vma,
603 			   unsigned long address, pmd_t *pmdp)
604 {
605 	int young;
606 
607 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
608 
609 	young = pmdp_test_and_clear_young(vma, address, pmdp);
610 	if (young)
611 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
612 
613 	return young;
614 }
615 #endif
616 
617 /**
618  * reserve_top_address - reserves a hole in the top of kernel address space
619  * @reserve - size of hole to reserve
620  *
621  * Can be used to relocate the fixmap area and poke a hole in the top
622  * of kernel address space to make room for a hypervisor.
623  */
624 void __init reserve_top_address(unsigned long reserve)
625 {
626 #ifdef CONFIG_X86_32
627 	BUG_ON(fixmaps_set > 0);
628 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
629 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
630 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
631 #endif
632 }
633 
634 int fixmaps_set;
635 
636 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
637 {
638 	unsigned long address = __fix_to_virt(idx);
639 
640 	if (idx >= __end_of_fixed_addresses) {
641 		BUG();
642 		return;
643 	}
644 	set_pte_vaddr(address, pte);
645 	fixmaps_set++;
646 }
647 
648 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
649 		       pgprot_t flags)
650 {
651 	/* Sanitize 'prot' against any unsupported bits: */
652 	pgprot_val(flags) &= __default_kernel_pte_mask;
653 
654 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
655 }
656 
657 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
658 #ifdef CONFIG_X86_5LEVEL
659 /**
660  * p4d_set_huge - setup kernel P4D mapping
661  *
662  * No 512GB pages yet -- always return 0
663  */
664 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
665 {
666 	return 0;
667 }
668 
669 /**
670  * p4d_clear_huge - clear kernel P4D mapping when it is set
671  *
672  * No 512GB pages yet -- always return 0
673  */
674 int p4d_clear_huge(p4d_t *p4d)
675 {
676 	return 0;
677 }
678 #endif
679 
680 /**
681  * pud_set_huge - setup kernel PUD mapping
682  *
683  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
684  * function sets up a huge page only if any of the following conditions are met:
685  *
686  * - MTRRs are disabled, or
687  *
688  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
689  *
690  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
691  *   has no effect on the requested PAT memory type.
692  *
693  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
694  * page mapping attempt fails.
695  *
696  * Returns 1 on success and 0 on failure.
697  */
698 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
699 {
700 	u8 mtrr, uniform;
701 
702 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
703 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
704 	    (mtrr != MTRR_TYPE_WRBACK))
705 		return 0;
706 
707 	/* Bail out if we are we on a populated non-leaf entry: */
708 	if (pud_present(*pud) && !pud_huge(*pud))
709 		return 0;
710 
711 	prot = pgprot_4k_2_large(prot);
712 
713 	set_pte((pte_t *)pud, pfn_pte(
714 		(u64)addr >> PAGE_SHIFT,
715 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
716 
717 	return 1;
718 }
719 
720 /**
721  * pmd_set_huge - setup kernel PMD mapping
722  *
723  * See text over pud_set_huge() above.
724  *
725  * Returns 1 on success and 0 on failure.
726  */
727 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
728 {
729 	u8 mtrr, uniform;
730 
731 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
732 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
733 	    (mtrr != MTRR_TYPE_WRBACK)) {
734 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
735 			     __func__, addr, addr + PMD_SIZE);
736 		return 0;
737 	}
738 
739 	/* Bail out if we are we on a populated non-leaf entry: */
740 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
741 		return 0;
742 
743 	prot = pgprot_4k_2_large(prot);
744 
745 	set_pte((pte_t *)pmd, pfn_pte(
746 		(u64)addr >> PAGE_SHIFT,
747 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
748 
749 	return 1;
750 }
751 
752 /**
753  * pud_clear_huge - clear kernel PUD mapping when it is set
754  *
755  * Returns 1 on success and 0 on failure (no PUD map is found).
756  */
757 int pud_clear_huge(pud_t *pud)
758 {
759 	if (pud_large(*pud)) {
760 		pud_clear(pud);
761 		return 1;
762 	}
763 
764 	return 0;
765 }
766 
767 /**
768  * pmd_clear_huge - clear kernel PMD mapping when it is set
769  *
770  * Returns 1 on success and 0 on failure (no PMD map is found).
771  */
772 int pmd_clear_huge(pmd_t *pmd)
773 {
774 	if (pmd_large(*pmd)) {
775 		pmd_clear(pmd);
776 		return 1;
777 	}
778 
779 	return 0;
780 }
781 
782 #ifdef CONFIG_X86_64
783 /**
784  * pud_free_pmd_page - Clear pud entry and free pmd page.
785  * @pud: Pointer to a PUD.
786  * @addr: Virtual address associated with pud.
787  *
788  * Context: The pud range has been unmapped and TLB purged.
789  * Return: 1 if clearing the entry succeeded. 0 otherwise.
790  *
791  * NOTE: Callers must allow a single page allocation.
792  */
793 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
794 {
795 	pmd_t *pmd, *pmd_sv;
796 	pte_t *pte;
797 	int i;
798 
799 	if (pud_none(*pud))
800 		return 1;
801 
802 	pmd = (pmd_t *)pud_page_vaddr(*pud);
803 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
804 	if (!pmd_sv)
805 		return 0;
806 
807 	for (i = 0; i < PTRS_PER_PMD; i++) {
808 		pmd_sv[i] = pmd[i];
809 		if (!pmd_none(pmd[i]))
810 			pmd_clear(&pmd[i]);
811 	}
812 
813 	pud_clear(pud);
814 
815 	/* INVLPG to clear all paging-structure caches */
816 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
817 
818 	for (i = 0; i < PTRS_PER_PMD; i++) {
819 		if (!pmd_none(pmd_sv[i])) {
820 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
821 			free_page((unsigned long)pte);
822 		}
823 	}
824 
825 	free_page((unsigned long)pmd_sv);
826 	free_page((unsigned long)pmd);
827 
828 	return 1;
829 }
830 
831 /**
832  * pmd_free_pte_page - Clear pmd entry and free pte page.
833  * @pmd: Pointer to a PMD.
834  * @addr: Virtual address associated with pmd.
835  *
836  * Context: The pmd range has been unmapped and TLB purged.
837  * Return: 1 if clearing the entry succeeded. 0 otherwise.
838  */
839 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
840 {
841 	pte_t *pte;
842 
843 	if (pmd_none(*pmd))
844 		return 1;
845 
846 	pte = (pte_t *)pmd_page_vaddr(*pmd);
847 	pmd_clear(pmd);
848 
849 	/* INVLPG to clear all paging-structure caches */
850 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
851 
852 	free_page((unsigned long)pte);
853 
854 	return 1;
855 }
856 
857 #else /* !CONFIG_X86_64 */
858 
859 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
860 {
861 	return pud_none(*pud);
862 }
863 
864 /*
865  * Disable free page handling on x86-PAE. This assures that ioremap()
866  * does not update sync'd pmd entries. See vmalloc_sync_one().
867  */
868 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
869 {
870 	return pmd_none(*pmd);
871 }
872 
873 #endif /* CONFIG_X86_64 */
874 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
875