xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision de2bdb3d)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 #include <asm/mtrr.h>
8 
9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
10 
11 #ifdef CONFIG_HIGHPTE
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #else
14 #define PGALLOC_USER_GFP 0
15 #endif
16 
17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
18 
19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
20 {
21 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
22 }
23 
24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
25 {
26 	struct page *pte;
27 
28 	pte = alloc_pages(__userpte_alloc_gfp, 0);
29 	if (!pte)
30 		return NULL;
31 	if (!pgtable_page_ctor(pte)) {
32 		__free_page(pte);
33 		return NULL;
34 	}
35 	return pte;
36 }
37 
38 static int __init setup_userpte(char *arg)
39 {
40 	if (!arg)
41 		return -EINVAL;
42 
43 	/*
44 	 * "userpte=nohigh" disables allocation of user pagetables in
45 	 * high memory.
46 	 */
47 	if (strcmp(arg, "nohigh") == 0)
48 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
49 	else
50 		return -EINVAL;
51 	return 0;
52 }
53 early_param("userpte", setup_userpte);
54 
55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
56 {
57 	pgtable_page_dtor(pte);
58 	paravirt_release_pte(page_to_pfn(pte));
59 	tlb_remove_page(tlb, pte);
60 }
61 
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
64 {
65 	struct page *page = virt_to_page(pmd);
66 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
67 	/*
68 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 	 * entries need a full cr3 reload to flush.
70 	 */
71 #ifdef CONFIG_X86_PAE
72 	tlb->need_flush_all = 1;
73 #endif
74 	pgtable_pmd_page_dtor(page);
75 	tlb_remove_page(tlb, page);
76 }
77 
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
80 {
81 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82 	tlb_remove_page(tlb, virt_to_page(pud));
83 }
84 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
85 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
86 
87 static inline void pgd_list_add(pgd_t *pgd)
88 {
89 	struct page *page = virt_to_page(pgd);
90 
91 	list_add(&page->lru, &pgd_list);
92 }
93 
94 static inline void pgd_list_del(pgd_t *pgd)
95 {
96 	struct page *page = virt_to_page(pgd);
97 
98 	list_del(&page->lru);
99 }
100 
101 #define UNSHARED_PTRS_PER_PGD				\
102 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
103 
104 
105 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106 {
107 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108 	virt_to_page(pgd)->index = (pgoff_t)mm;
109 }
110 
111 struct mm_struct *pgd_page_get_mm(struct page *page)
112 {
113 	return (struct mm_struct *)page->index;
114 }
115 
116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117 {
118 	/* If the pgd points to a shared pagetable level (either the
119 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120 	   references from swapper_pg_dir. */
121 	if (CONFIG_PGTABLE_LEVELS == 2 ||
122 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123 	    CONFIG_PGTABLE_LEVELS == 4) {
124 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126 				KERNEL_PGD_PTRS);
127 	}
128 
129 	/* list required to sync kernel mapping updates */
130 	if (!SHARED_KERNEL_PMD) {
131 		pgd_set_mm(pgd, mm);
132 		pgd_list_add(pgd);
133 	}
134 }
135 
136 static void pgd_dtor(pgd_t *pgd)
137 {
138 	if (SHARED_KERNEL_PMD)
139 		return;
140 
141 	spin_lock(&pgd_lock);
142 	pgd_list_del(pgd);
143 	spin_unlock(&pgd_lock);
144 }
145 
146 /*
147  * List of all pgd's needed for non-PAE so it can invalidate entries
148  * in both cached and uncached pgd's; not needed for PAE since the
149  * kernel pmd is shared. If PAE were not to share the pmd a similar
150  * tactic would be needed. This is essentially codepath-based locking
151  * against pageattr.c; it is the unique case in which a valid change
152  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153  * vmalloc faults work because attached pagetables are never freed.
154  * -- nyc
155  */
156 
157 #ifdef CONFIG_X86_PAE
158 /*
159  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160  * updating the top-level pagetable entries to guarantee the
161  * processor notices the update.  Since this is expensive, and
162  * all 4 top-level entries are used almost immediately in a
163  * new process's life, we just pre-populate them here.
164  *
165  * Also, if we're in a paravirt environment where the kernel pmd is
166  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167  * and initialize the kernel pmds here.
168  */
169 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170 
171 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172 {
173 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174 
175 	/* Note: almost everything apart from _PAGE_PRESENT is
176 	   reserved at the pmd (PDPT) level. */
177 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178 
179 	/*
180 	 * According to Intel App note "TLBs, Paging-Structure Caches,
181 	 * and Their Invalidation", April 2007, document 317080-001,
182 	 * section 8.1: in PAE mode we explicitly have to flush the
183 	 * TLB via cr3 if the top-level pgd is changed...
184 	 */
185 	flush_tlb_mm(mm);
186 }
187 #else  /* !CONFIG_X86_PAE */
188 
189 /* No need to prepopulate any pagetable entries in non-PAE modes. */
190 #define PREALLOCATED_PMDS	0
191 
192 #endif	/* CONFIG_X86_PAE */
193 
194 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195 {
196 	int i;
197 
198 	for(i = 0; i < PREALLOCATED_PMDS; i++)
199 		if (pmds[i]) {
200 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201 			free_page((unsigned long)pmds[i]);
202 			mm_dec_nr_pmds(mm);
203 		}
204 }
205 
206 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207 {
208 	int i;
209 	bool failed = false;
210 	gfp_t gfp = PGALLOC_GFP;
211 
212 	if (mm == &init_mm)
213 		gfp &= ~__GFP_ACCOUNT;
214 
215 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
216 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
217 		if (!pmd)
218 			failed = true;
219 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
220 			free_page((unsigned long)pmd);
221 			pmd = NULL;
222 			failed = true;
223 		}
224 		if (pmd)
225 			mm_inc_nr_pmds(mm);
226 		pmds[i] = pmd;
227 	}
228 
229 	if (failed) {
230 		free_pmds(mm, pmds);
231 		return -ENOMEM;
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Mop up any pmd pages which may still be attached to the pgd.
239  * Normally they will be freed by munmap/exit_mmap, but any pmd we
240  * preallocate which never got a corresponding vma will need to be
241  * freed manually.
242  */
243 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
244 {
245 	int i;
246 
247 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
248 		pgd_t pgd = pgdp[i];
249 
250 		if (pgd_val(pgd) != 0) {
251 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
252 
253 			pgdp[i] = native_make_pgd(0);
254 
255 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
256 			pmd_free(mm, pmd);
257 			mm_dec_nr_pmds(mm);
258 		}
259 	}
260 }
261 
262 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
263 {
264 	pud_t *pud;
265 	int i;
266 
267 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
268 		return;
269 
270 	pud = pud_offset(pgd, 0);
271 
272 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
273 		pmd_t *pmd = pmds[i];
274 
275 		if (i >= KERNEL_PGD_BOUNDARY)
276 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
277 			       sizeof(pmd_t) * PTRS_PER_PMD);
278 
279 		pud_populate(mm, pud, pmd);
280 	}
281 }
282 
283 /*
284  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
285  * assumes that pgd should be in one page.
286  *
287  * But kernel with PAE paging that is not running as a Xen domain
288  * only needs to allocate 32 bytes for pgd instead of one page.
289  */
290 #ifdef CONFIG_X86_PAE
291 
292 #include <linux/slab.h>
293 
294 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
295 #define PGD_ALIGN	32
296 
297 static struct kmem_cache *pgd_cache;
298 
299 static int __init pgd_cache_init(void)
300 {
301 	/*
302 	 * When PAE kernel is running as a Xen domain, it does not use
303 	 * shared kernel pmd. And this requires a whole page for pgd.
304 	 */
305 	if (!SHARED_KERNEL_PMD)
306 		return 0;
307 
308 	/*
309 	 * when PAE kernel is not running as a Xen domain, it uses
310 	 * shared kernel pmd. Shared kernel pmd does not require a whole
311 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
312 	 * During boot time, we create a 32-byte slab for pgd table allocation.
313 	 */
314 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
315 				      SLAB_PANIC, NULL);
316 	if (!pgd_cache)
317 		return -ENOMEM;
318 
319 	return 0;
320 }
321 core_initcall(pgd_cache_init);
322 
323 static inline pgd_t *_pgd_alloc(void)
324 {
325 	/*
326 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
327 	 * We allocate one page for pgd.
328 	 */
329 	if (!SHARED_KERNEL_PMD)
330 		return (pgd_t *)__get_free_page(PGALLOC_GFP);
331 
332 	/*
333 	 * Now PAE kernel is not running as a Xen domain. We can allocate
334 	 * a 32-byte slab for pgd to save memory space.
335 	 */
336 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
337 }
338 
339 static inline void _pgd_free(pgd_t *pgd)
340 {
341 	if (!SHARED_KERNEL_PMD)
342 		free_page((unsigned long)pgd);
343 	else
344 		kmem_cache_free(pgd_cache, pgd);
345 }
346 #else
347 static inline pgd_t *_pgd_alloc(void)
348 {
349 	return (pgd_t *)__get_free_page(PGALLOC_GFP);
350 }
351 
352 static inline void _pgd_free(pgd_t *pgd)
353 {
354 	free_page((unsigned long)pgd);
355 }
356 #endif /* CONFIG_X86_PAE */
357 
358 pgd_t *pgd_alloc(struct mm_struct *mm)
359 {
360 	pgd_t *pgd;
361 	pmd_t *pmds[PREALLOCATED_PMDS];
362 
363 	pgd = _pgd_alloc();
364 
365 	if (pgd == NULL)
366 		goto out;
367 
368 	mm->pgd = pgd;
369 
370 	if (preallocate_pmds(mm, pmds) != 0)
371 		goto out_free_pgd;
372 
373 	if (paravirt_pgd_alloc(mm) != 0)
374 		goto out_free_pmds;
375 
376 	/*
377 	 * Make sure that pre-populating the pmds is atomic with
378 	 * respect to anything walking the pgd_list, so that they
379 	 * never see a partially populated pgd.
380 	 */
381 	spin_lock(&pgd_lock);
382 
383 	pgd_ctor(mm, pgd);
384 	pgd_prepopulate_pmd(mm, pgd, pmds);
385 
386 	spin_unlock(&pgd_lock);
387 
388 	return pgd;
389 
390 out_free_pmds:
391 	free_pmds(mm, pmds);
392 out_free_pgd:
393 	_pgd_free(pgd);
394 out:
395 	return NULL;
396 }
397 
398 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
399 {
400 	pgd_mop_up_pmds(mm, pgd);
401 	pgd_dtor(pgd);
402 	paravirt_pgd_free(mm, pgd);
403 	_pgd_free(pgd);
404 }
405 
406 /*
407  * Used to set accessed or dirty bits in the page table entries
408  * on other architectures. On x86, the accessed and dirty bits
409  * are tracked by hardware. However, do_wp_page calls this function
410  * to also make the pte writeable at the same time the dirty bit is
411  * set. In that case we do actually need to write the PTE.
412  */
413 int ptep_set_access_flags(struct vm_area_struct *vma,
414 			  unsigned long address, pte_t *ptep,
415 			  pte_t entry, int dirty)
416 {
417 	int changed = !pte_same(*ptep, entry);
418 
419 	if (changed && dirty) {
420 		*ptep = entry;
421 		pte_update(vma->vm_mm, address, ptep);
422 	}
423 
424 	return changed;
425 }
426 
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 int pmdp_set_access_flags(struct vm_area_struct *vma,
429 			  unsigned long address, pmd_t *pmdp,
430 			  pmd_t entry, int dirty)
431 {
432 	int changed = !pmd_same(*pmdp, entry);
433 
434 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
435 
436 	if (changed && dirty) {
437 		*pmdp = entry;
438 		/*
439 		 * We had a write-protection fault here and changed the pmd
440 		 * to to more permissive. No need to flush the TLB for that,
441 		 * #PF is architecturally guaranteed to do that and in the
442 		 * worst-case we'll generate a spurious fault.
443 		 */
444 	}
445 
446 	return changed;
447 }
448 #endif
449 
450 int ptep_test_and_clear_young(struct vm_area_struct *vma,
451 			      unsigned long addr, pte_t *ptep)
452 {
453 	int ret = 0;
454 
455 	if (pte_young(*ptep))
456 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
457 					 (unsigned long *) &ptep->pte);
458 
459 	if (ret)
460 		pte_update(vma->vm_mm, addr, ptep);
461 
462 	return ret;
463 }
464 
465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
466 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
467 			      unsigned long addr, pmd_t *pmdp)
468 {
469 	int ret = 0;
470 
471 	if (pmd_young(*pmdp))
472 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
473 					 (unsigned long *)pmdp);
474 
475 	return ret;
476 }
477 #endif
478 
479 int ptep_clear_flush_young(struct vm_area_struct *vma,
480 			   unsigned long address, pte_t *ptep)
481 {
482 	/*
483 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
484 	 * doesn't cause data corruption. [ It could cause incorrect
485 	 * page aging and the (mistaken) reclaim of hot pages, but the
486 	 * chance of that should be relatively low. ]
487 	 *
488 	 * So as a performance optimization don't flush the TLB when
489 	 * clearing the accessed bit, it will eventually be flushed by
490 	 * a context switch or a VM operation anyway. [ In the rare
491 	 * event of it not getting flushed for a long time the delay
492 	 * shouldn't really matter because there's no real memory
493 	 * pressure for swapout to react to. ]
494 	 */
495 	return ptep_test_and_clear_young(vma, address, ptep);
496 }
497 
498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
499 int pmdp_clear_flush_young(struct vm_area_struct *vma,
500 			   unsigned long address, pmd_t *pmdp)
501 {
502 	int young;
503 
504 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
505 
506 	young = pmdp_test_and_clear_young(vma, address, pmdp);
507 	if (young)
508 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
509 
510 	return young;
511 }
512 #endif
513 
514 /**
515  * reserve_top_address - reserves a hole in the top of kernel address space
516  * @reserve - size of hole to reserve
517  *
518  * Can be used to relocate the fixmap area and poke a hole in the top
519  * of kernel address space to make room for a hypervisor.
520  */
521 void __init reserve_top_address(unsigned long reserve)
522 {
523 #ifdef CONFIG_X86_32
524 	BUG_ON(fixmaps_set > 0);
525 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
526 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
527 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
528 #endif
529 }
530 
531 int fixmaps_set;
532 
533 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
534 {
535 	unsigned long address = __fix_to_virt(idx);
536 
537 	if (idx >= __end_of_fixed_addresses) {
538 		BUG();
539 		return;
540 	}
541 	set_pte_vaddr(address, pte);
542 	fixmaps_set++;
543 }
544 
545 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
546 		       pgprot_t flags)
547 {
548 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
549 }
550 
551 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
552 /**
553  * pud_set_huge - setup kernel PUD mapping
554  *
555  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
556  * function sets up a huge page only if any of the following conditions are met:
557  *
558  * - MTRRs are disabled, or
559  *
560  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
561  *
562  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
563  *   has no effect on the requested PAT memory type.
564  *
565  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
566  * page mapping attempt fails.
567  *
568  * Returns 1 on success and 0 on failure.
569  */
570 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
571 {
572 	u8 mtrr, uniform;
573 
574 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
575 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
576 	    (mtrr != MTRR_TYPE_WRBACK))
577 		return 0;
578 
579 	prot = pgprot_4k_2_large(prot);
580 
581 	set_pte((pte_t *)pud, pfn_pte(
582 		(u64)addr >> PAGE_SHIFT,
583 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
584 
585 	return 1;
586 }
587 
588 /**
589  * pmd_set_huge - setup kernel PMD mapping
590  *
591  * See text over pud_set_huge() above.
592  *
593  * Returns 1 on success and 0 on failure.
594  */
595 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
596 {
597 	u8 mtrr, uniform;
598 
599 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
600 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
601 	    (mtrr != MTRR_TYPE_WRBACK)) {
602 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
603 			     __func__, addr, addr + PMD_SIZE);
604 		return 0;
605 	}
606 
607 	prot = pgprot_4k_2_large(prot);
608 
609 	set_pte((pte_t *)pmd, pfn_pte(
610 		(u64)addr >> PAGE_SHIFT,
611 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
612 
613 	return 1;
614 }
615 
616 /**
617  * pud_clear_huge - clear kernel PUD mapping when it is set
618  *
619  * Returns 1 on success and 0 on failure (no PUD map is found).
620  */
621 int pud_clear_huge(pud_t *pud)
622 {
623 	if (pud_large(*pud)) {
624 		pud_clear(pud);
625 		return 1;
626 	}
627 
628 	return 0;
629 }
630 
631 /**
632  * pmd_clear_huge - clear kernel PMD mapping when it is set
633  *
634  * Returns 1 on success and 0 on failure (no PMD map is found).
635  */
636 int pmd_clear_huge(pmd_t *pmd)
637 {
638 	if (pmd_large(*pmd)) {
639 		pmd_clear(pmd);
640 		return 1;
641 	}
642 
643 	return 0;
644 }
645 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
646