xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision d894fc60)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (!pte)
29 		return NULL;
30 	if (!pgtable_page_ctor(pte)) {
31 		__free_page(pte);
32 		return NULL;
33 	}
34 	return pte;
35 }
36 
37 static int __init setup_userpte(char *arg)
38 {
39 	if (!arg)
40 		return -EINVAL;
41 
42 	/*
43 	 * "userpte=nohigh" disables allocation of user pagetables in
44 	 * high memory.
45 	 */
46 	if (strcmp(arg, "nohigh") == 0)
47 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 	else
49 		return -EINVAL;
50 	return 0;
51 }
52 early_param("userpte", setup_userpte);
53 
54 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 {
56 	pgtable_page_dtor(pte);
57 	paravirt_release_pte(page_to_pfn(pte));
58 	tlb_remove_page(tlb, pte);
59 }
60 
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 {
64 	struct page *page = virt_to_page(pmd);
65 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 	/*
67 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 	 * entries need a full cr3 reload to flush.
69 	 */
70 #ifdef CONFIG_X86_PAE
71 	tlb->need_flush_all = 1;
72 #endif
73 	pgtable_pmd_page_dtor(page);
74 	tlb_remove_page(tlb, page);
75 }
76 
77 #if PAGETABLE_LEVELS > 3
78 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79 {
80 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 	tlb_remove_page(tlb, virt_to_page(pud));
82 }
83 #endif	/* PAGETABLE_LEVELS > 3 */
84 #endif	/* PAGETABLE_LEVELS > 2 */
85 
86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 	struct page *page = virt_to_page(pgd);
89 
90 	list_add(&page->lru, &pgd_list);
91 }
92 
93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 	struct page *page = virt_to_page(pgd);
96 
97 	list_del(&page->lru);
98 }
99 
100 #define UNSHARED_PTRS_PER_PGD				\
101 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102 
103 
104 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105 {
106 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107 	virt_to_page(pgd)->index = (pgoff_t)mm;
108 }
109 
110 struct mm_struct *pgd_page_get_mm(struct page *page)
111 {
112 	return (struct mm_struct *)page->index;
113 }
114 
115 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116 {
117 	/* If the pgd points to a shared pagetable level (either the
118 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
119 	   references from swapper_pg_dir. */
120 	if (PAGETABLE_LEVELS == 2 ||
121 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122 	    PAGETABLE_LEVELS == 4) {
123 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 				KERNEL_PGD_PTRS);
126 	}
127 
128 	/* list required to sync kernel mapping updates */
129 	if (!SHARED_KERNEL_PMD) {
130 		pgd_set_mm(pgd, mm);
131 		pgd_list_add(pgd);
132 	}
133 }
134 
135 static void pgd_dtor(pgd_t *pgd)
136 {
137 	if (SHARED_KERNEL_PMD)
138 		return;
139 
140 	spin_lock(&pgd_lock);
141 	pgd_list_del(pgd);
142 	spin_unlock(&pgd_lock);
143 }
144 
145 /*
146  * List of all pgd's needed for non-PAE so it can invalidate entries
147  * in both cached and uncached pgd's; not needed for PAE since the
148  * kernel pmd is shared. If PAE were not to share the pmd a similar
149  * tactic would be needed. This is essentially codepath-based locking
150  * against pageattr.c; it is the unique case in which a valid change
151  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152  * vmalloc faults work because attached pagetables are never freed.
153  * -- nyc
154  */
155 
156 #ifdef CONFIG_X86_PAE
157 /*
158  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159  * updating the top-level pagetable entries to guarantee the
160  * processor notices the update.  Since this is expensive, and
161  * all 4 top-level entries are used almost immediately in a
162  * new process's life, we just pre-populate them here.
163  *
164  * Also, if we're in a paravirt environment where the kernel pmd is
165  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166  * and initialize the kernel pmds here.
167  */
168 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
169 
170 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171 {
172 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173 
174 	/* Note: almost everything apart from _PAGE_PRESENT is
175 	   reserved at the pmd (PDPT) level. */
176 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177 
178 	/*
179 	 * According to Intel App note "TLBs, Paging-Structure Caches,
180 	 * and Their Invalidation", April 2007, document 317080-001,
181 	 * section 8.1: in PAE mode we explicitly have to flush the
182 	 * TLB via cr3 if the top-level pgd is changed...
183 	 */
184 	flush_tlb_mm(mm);
185 }
186 #else  /* !CONFIG_X86_PAE */
187 
188 /* No need to prepopulate any pagetable entries in non-PAE modes. */
189 #define PREALLOCATED_PMDS	0
190 
191 #endif	/* CONFIG_X86_PAE */
192 
193 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
194 {
195 	int i;
196 
197 	for(i = 0; i < PREALLOCATED_PMDS; i++)
198 		if (pmds[i]) {
199 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200 			free_page((unsigned long)pmds[i]);
201 			mm_dec_nr_pmds(mm);
202 		}
203 }
204 
205 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
206 {
207 	int i;
208 	bool failed = false;
209 
210 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
211 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
212 		if (!pmd)
213 			failed = true;
214 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
215 			free_page((unsigned long)pmd);
216 			pmd = NULL;
217 			failed = true;
218 		}
219 		if (pmd)
220 			mm_inc_nr_pmds(mm);
221 		pmds[i] = pmd;
222 	}
223 
224 	if (failed) {
225 		free_pmds(mm, pmds);
226 		return -ENOMEM;
227 	}
228 
229 	return 0;
230 }
231 
232 /*
233  * Mop up any pmd pages which may still be attached to the pgd.
234  * Normally they will be freed by munmap/exit_mmap, but any pmd we
235  * preallocate which never got a corresponding vma will need to be
236  * freed manually.
237  */
238 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
239 {
240 	int i;
241 
242 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
243 		pgd_t pgd = pgdp[i];
244 
245 		if (pgd_val(pgd) != 0) {
246 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
247 
248 			pgdp[i] = native_make_pgd(0);
249 
250 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
251 			pmd_free(mm, pmd);
252 			mm_dec_nr_pmds(mm);
253 		}
254 	}
255 }
256 
257 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
258 {
259 	pud_t *pud;
260 	int i;
261 
262 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
263 		return;
264 
265 	pud = pud_offset(pgd, 0);
266 
267 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
268 		pmd_t *pmd = pmds[i];
269 
270 		if (i >= KERNEL_PGD_BOUNDARY)
271 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
272 			       sizeof(pmd_t) * PTRS_PER_PMD);
273 
274 		pud_populate(mm, pud, pmd);
275 	}
276 }
277 
278 pgd_t *pgd_alloc(struct mm_struct *mm)
279 {
280 	pgd_t *pgd;
281 	pmd_t *pmds[PREALLOCATED_PMDS];
282 
283 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
284 
285 	if (pgd == NULL)
286 		goto out;
287 
288 	mm->pgd = pgd;
289 
290 	if (preallocate_pmds(mm, pmds) != 0)
291 		goto out_free_pgd;
292 
293 	if (paravirt_pgd_alloc(mm) != 0)
294 		goto out_free_pmds;
295 
296 	/*
297 	 * Make sure that pre-populating the pmds is atomic with
298 	 * respect to anything walking the pgd_list, so that they
299 	 * never see a partially populated pgd.
300 	 */
301 	spin_lock(&pgd_lock);
302 
303 	pgd_ctor(mm, pgd);
304 	pgd_prepopulate_pmd(mm, pgd, pmds);
305 
306 	spin_unlock(&pgd_lock);
307 
308 	return pgd;
309 
310 out_free_pmds:
311 	free_pmds(mm, pmds);
312 out_free_pgd:
313 	free_page((unsigned long)pgd);
314 out:
315 	return NULL;
316 }
317 
318 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
319 {
320 	pgd_mop_up_pmds(mm, pgd);
321 	pgd_dtor(pgd);
322 	paravirt_pgd_free(mm, pgd);
323 	free_page((unsigned long)pgd);
324 }
325 
326 /*
327  * Used to set accessed or dirty bits in the page table entries
328  * on other architectures. On x86, the accessed and dirty bits
329  * are tracked by hardware. However, do_wp_page calls this function
330  * to also make the pte writeable at the same time the dirty bit is
331  * set. In that case we do actually need to write the PTE.
332  */
333 int ptep_set_access_flags(struct vm_area_struct *vma,
334 			  unsigned long address, pte_t *ptep,
335 			  pte_t entry, int dirty)
336 {
337 	int changed = !pte_same(*ptep, entry);
338 
339 	if (changed && dirty) {
340 		*ptep = entry;
341 		pte_update_defer(vma->vm_mm, address, ptep);
342 	}
343 
344 	return changed;
345 }
346 
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 int pmdp_set_access_flags(struct vm_area_struct *vma,
349 			  unsigned long address, pmd_t *pmdp,
350 			  pmd_t entry, int dirty)
351 {
352 	int changed = !pmd_same(*pmdp, entry);
353 
354 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
355 
356 	if (changed && dirty) {
357 		*pmdp = entry;
358 		pmd_update_defer(vma->vm_mm, address, pmdp);
359 		/*
360 		 * We had a write-protection fault here and changed the pmd
361 		 * to to more permissive. No need to flush the TLB for that,
362 		 * #PF is architecturally guaranteed to do that and in the
363 		 * worst-case we'll generate a spurious fault.
364 		 */
365 	}
366 
367 	return changed;
368 }
369 #endif
370 
371 int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 			      unsigned long addr, pte_t *ptep)
373 {
374 	int ret = 0;
375 
376 	if (pte_young(*ptep))
377 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
378 					 (unsigned long *) &ptep->pte);
379 
380 	if (ret)
381 		pte_update(vma->vm_mm, addr, ptep);
382 
383 	return ret;
384 }
385 
386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
387 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 			      unsigned long addr, pmd_t *pmdp)
389 {
390 	int ret = 0;
391 
392 	if (pmd_young(*pmdp))
393 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
394 					 (unsigned long *)pmdp);
395 
396 	if (ret)
397 		pmd_update(vma->vm_mm, addr, pmdp);
398 
399 	return ret;
400 }
401 #endif
402 
403 int ptep_clear_flush_young(struct vm_area_struct *vma,
404 			   unsigned long address, pte_t *ptep)
405 {
406 	/*
407 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
408 	 * doesn't cause data corruption. [ It could cause incorrect
409 	 * page aging and the (mistaken) reclaim of hot pages, but the
410 	 * chance of that should be relatively low. ]
411 	 *
412 	 * So as a performance optimization don't flush the TLB when
413 	 * clearing the accessed bit, it will eventually be flushed by
414 	 * a context switch or a VM operation anyway. [ In the rare
415 	 * event of it not getting flushed for a long time the delay
416 	 * shouldn't really matter because there's no real memory
417 	 * pressure for swapout to react to. ]
418 	 */
419 	return ptep_test_and_clear_young(vma, address, ptep);
420 }
421 
422 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
423 int pmdp_clear_flush_young(struct vm_area_struct *vma,
424 			   unsigned long address, pmd_t *pmdp)
425 {
426 	int young;
427 
428 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
429 
430 	young = pmdp_test_and_clear_young(vma, address, pmdp);
431 	if (young)
432 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
433 
434 	return young;
435 }
436 
437 void pmdp_splitting_flush(struct vm_area_struct *vma,
438 			  unsigned long address, pmd_t *pmdp)
439 {
440 	int set;
441 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
442 	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
443 				(unsigned long *)pmdp);
444 	if (set) {
445 		pmd_update(vma->vm_mm, address, pmdp);
446 		/* need tlb flush only to serialize against gup-fast */
447 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
448 	}
449 }
450 #endif
451 
452 /**
453  * reserve_top_address - reserves a hole in the top of kernel address space
454  * @reserve - size of hole to reserve
455  *
456  * Can be used to relocate the fixmap area and poke a hole in the top
457  * of kernel address space to make room for a hypervisor.
458  */
459 void __init reserve_top_address(unsigned long reserve)
460 {
461 #ifdef CONFIG_X86_32
462 	BUG_ON(fixmaps_set > 0);
463 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
464 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
465 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
466 #endif
467 }
468 
469 int fixmaps_set;
470 
471 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
472 {
473 	unsigned long address = __fix_to_virt(idx);
474 
475 	if (idx >= __end_of_fixed_addresses) {
476 		BUG();
477 		return;
478 	}
479 	set_pte_vaddr(address, pte);
480 	fixmaps_set++;
481 }
482 
483 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
484 		       pgprot_t flags)
485 {
486 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
487 }
488