xref: /openbmc/linux/arch/x86/mm/pgtable.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15 
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22 
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 	struct page *pte;
26 
27 	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 	if (pte)
29 		pgtable_page_ctor(pte);
30 	return pte;
31 }
32 
33 static int __init setup_userpte(char *arg)
34 {
35 	if (!arg)
36 		return -EINVAL;
37 
38 	/*
39 	 * "userpte=nohigh" disables allocation of user pagetables in
40 	 * high memory.
41 	 */
42 	if (strcmp(arg, "nohigh") == 0)
43 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 	else
45 		return -EINVAL;
46 	return 0;
47 }
48 early_param("userpte", setup_userpte);
49 
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52 	pgtable_page_dtor(pte);
53 	paravirt_release_pte(page_to_pfn(pte));
54 	tlb_remove_page(tlb, pte);
55 }
56 
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61 	tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63 
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68 	tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif	/* PAGETABLE_LEVELS > 3 */
71 #endif	/* PAGETABLE_LEVELS > 2 */
72 
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75 	struct page *page = virt_to_page(pgd);
76 
77 	list_add(&page->lru, &pgd_list);
78 }
79 
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82 	struct page *page = virt_to_page(pgd);
83 
84 	list_del(&page->lru);
85 }
86 
87 #define UNSHARED_PTRS_PER_PGD				\
88 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89 
90 
91 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
92 {
93 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
94 	virt_to_page(pgd)->index = (pgoff_t)mm;
95 }
96 
97 struct mm_struct *pgd_page_get_mm(struct page *page)
98 {
99 	return (struct mm_struct *)page->index;
100 }
101 
102 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103 {
104 	/* If the pgd points to a shared pagetable level (either the
105 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106 	   references from swapper_pg_dir. */
107 	if (PAGETABLE_LEVELS == 2 ||
108 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109 	    PAGETABLE_LEVELS == 4) {
110 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112 				KERNEL_PGD_PTRS);
113 	}
114 
115 	/* list required to sync kernel mapping updates */
116 	if (!SHARED_KERNEL_PMD) {
117 		pgd_set_mm(pgd, mm);
118 		pgd_list_add(pgd);
119 	}
120 }
121 
122 static void pgd_dtor(pgd_t *pgd)
123 {
124 	unsigned long flags; /* can be called from interrupt context */
125 
126 	if (SHARED_KERNEL_PMD)
127 		return;
128 
129 	spin_lock_irqsave(&pgd_lock, flags);
130 	pgd_list_del(pgd);
131 	spin_unlock_irqrestore(&pgd_lock, flags);
132 }
133 
134 /*
135  * List of all pgd's needed for non-PAE so it can invalidate entries
136  * in both cached and uncached pgd's; not needed for PAE since the
137  * kernel pmd is shared. If PAE were not to share the pmd a similar
138  * tactic would be needed. This is essentially codepath-based locking
139  * against pageattr.c; it is the unique case in which a valid change
140  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
141  * vmalloc faults work because attached pagetables are never freed.
142  * -- wli
143  */
144 
145 #ifdef CONFIG_X86_PAE
146 /*
147  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
148  * updating the top-level pagetable entries to guarantee the
149  * processor notices the update.  Since this is expensive, and
150  * all 4 top-level entries are used almost immediately in a
151  * new process's life, we just pre-populate them here.
152  *
153  * Also, if we're in a paravirt environment where the kernel pmd is
154  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
155  * and initialize the kernel pmds here.
156  */
157 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
158 
159 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
160 {
161 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
162 
163 	/* Note: almost everything apart from _PAGE_PRESENT is
164 	   reserved at the pmd (PDPT) level. */
165 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
166 
167 	/*
168 	 * According to Intel App note "TLBs, Paging-Structure Caches,
169 	 * and Their Invalidation", April 2007, document 317080-001,
170 	 * section 8.1: in PAE mode we explicitly have to flush the
171 	 * TLB via cr3 if the top-level pgd is changed...
172 	 */
173 	if (mm == current->active_mm)
174 		write_cr3(read_cr3());
175 }
176 #else  /* !CONFIG_X86_PAE */
177 
178 /* No need to prepopulate any pagetable entries in non-PAE modes. */
179 #define PREALLOCATED_PMDS	0
180 
181 #endif	/* CONFIG_X86_PAE */
182 
183 static void free_pmds(pmd_t *pmds[])
184 {
185 	int i;
186 
187 	for(i = 0; i < PREALLOCATED_PMDS; i++)
188 		if (pmds[i])
189 			free_page((unsigned long)pmds[i]);
190 }
191 
192 static int preallocate_pmds(pmd_t *pmds[])
193 {
194 	int i;
195 	bool failed = false;
196 
197 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
198 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
199 		if (pmd == NULL)
200 			failed = true;
201 		pmds[i] = pmd;
202 	}
203 
204 	if (failed) {
205 		free_pmds(pmds);
206 		return -ENOMEM;
207 	}
208 
209 	return 0;
210 }
211 
212 /*
213  * Mop up any pmd pages which may still be attached to the pgd.
214  * Normally they will be freed by munmap/exit_mmap, but any pmd we
215  * preallocate which never got a corresponding vma will need to be
216  * freed manually.
217  */
218 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
219 {
220 	int i;
221 
222 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
223 		pgd_t pgd = pgdp[i];
224 
225 		if (pgd_val(pgd) != 0) {
226 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
227 
228 			pgdp[i] = native_make_pgd(0);
229 
230 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
231 			pmd_free(mm, pmd);
232 		}
233 	}
234 }
235 
236 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
237 {
238 	pud_t *pud;
239 	unsigned long addr;
240 	int i;
241 
242 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
243 		return;
244 
245 	pud = pud_offset(pgd, 0);
246 
247  	for (addr = i = 0; i < PREALLOCATED_PMDS;
248 	     i++, pud++, addr += PUD_SIZE) {
249 		pmd_t *pmd = pmds[i];
250 
251 		if (i >= KERNEL_PGD_BOUNDARY)
252 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
253 			       sizeof(pmd_t) * PTRS_PER_PMD);
254 
255 		pud_populate(mm, pud, pmd);
256 	}
257 }
258 
259 pgd_t *pgd_alloc(struct mm_struct *mm)
260 {
261 	pgd_t *pgd;
262 	pmd_t *pmds[PREALLOCATED_PMDS];
263 	unsigned long flags;
264 
265 	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
266 
267 	if (pgd == NULL)
268 		goto out;
269 
270 	mm->pgd = pgd;
271 
272 	if (preallocate_pmds(pmds) != 0)
273 		goto out_free_pgd;
274 
275 	if (paravirt_pgd_alloc(mm) != 0)
276 		goto out_free_pmds;
277 
278 	/*
279 	 * Make sure that pre-populating the pmds is atomic with
280 	 * respect to anything walking the pgd_list, so that they
281 	 * never see a partially populated pgd.
282 	 */
283 	spin_lock_irqsave(&pgd_lock, flags);
284 
285 	pgd_ctor(mm, pgd);
286 	pgd_prepopulate_pmd(mm, pgd, pmds);
287 
288 	spin_unlock_irqrestore(&pgd_lock, flags);
289 
290 	return pgd;
291 
292 out_free_pmds:
293 	free_pmds(pmds);
294 out_free_pgd:
295 	free_page((unsigned long)pgd);
296 out:
297 	return NULL;
298 }
299 
300 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
301 {
302 	pgd_mop_up_pmds(mm, pgd);
303 	pgd_dtor(pgd);
304 	paravirt_pgd_free(mm, pgd);
305 	free_page((unsigned long)pgd);
306 }
307 
308 int ptep_set_access_flags(struct vm_area_struct *vma,
309 			  unsigned long address, pte_t *ptep,
310 			  pte_t entry, int dirty)
311 {
312 	int changed = !pte_same(*ptep, entry);
313 
314 	if (changed && dirty) {
315 		*ptep = entry;
316 		pte_update_defer(vma->vm_mm, address, ptep);
317 		flush_tlb_page(vma, address);
318 	}
319 
320 	return changed;
321 }
322 
323 int ptep_test_and_clear_young(struct vm_area_struct *vma,
324 			      unsigned long addr, pte_t *ptep)
325 {
326 	int ret = 0;
327 
328 	if (pte_young(*ptep))
329 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
330 					 (unsigned long *) &ptep->pte);
331 
332 	if (ret)
333 		pte_update(vma->vm_mm, addr, ptep);
334 
335 	return ret;
336 }
337 
338 int ptep_clear_flush_young(struct vm_area_struct *vma,
339 			   unsigned long address, pte_t *ptep)
340 {
341 	int young;
342 
343 	young = ptep_test_and_clear_young(vma, address, ptep);
344 	if (young)
345 		flush_tlb_page(vma, address);
346 
347 	return young;
348 }
349 
350 /**
351  * reserve_top_address - reserves a hole in the top of kernel address space
352  * @reserve - size of hole to reserve
353  *
354  * Can be used to relocate the fixmap area and poke a hole in the top
355  * of kernel address space to make room for a hypervisor.
356  */
357 void __init reserve_top_address(unsigned long reserve)
358 {
359 #ifdef CONFIG_X86_32
360 	BUG_ON(fixmaps_set > 0);
361 	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
362 	       (int)-reserve);
363 	__FIXADDR_TOP = -reserve - PAGE_SIZE;
364 #endif
365 }
366 
367 int fixmaps_set;
368 
369 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
370 {
371 	unsigned long address = __fix_to_virt(idx);
372 
373 	if (idx >= __end_of_fixed_addresses) {
374 		BUG();
375 		return;
376 	}
377 	set_pte_vaddr(address, pte);
378 	fixmaps_set++;
379 }
380 
381 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
382 		       pgprot_t flags)
383 {
384 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
385 }
386