1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/gfp.h> 4 #include <asm/pgalloc.h> 5 #include <asm/pgtable.h> 6 #include <asm/tlb.h> 7 #include <asm/fixmap.h> 8 #include <asm/mtrr.h> 9 10 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) 11 12 #ifdef CONFIG_HIGHPTE 13 #define PGALLOC_USER_GFP __GFP_HIGHMEM 14 #else 15 #define PGALLOC_USER_GFP 0 16 #endif 17 18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; 19 20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 21 { 22 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); 23 } 24 25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 26 { 27 struct page *pte; 28 29 pte = alloc_pages(__userpte_alloc_gfp, 0); 30 if (!pte) 31 return NULL; 32 if (!pgtable_page_ctor(pte)) { 33 __free_page(pte); 34 return NULL; 35 } 36 return pte; 37 } 38 39 static int __init setup_userpte(char *arg) 40 { 41 if (!arg) 42 return -EINVAL; 43 44 /* 45 * "userpte=nohigh" disables allocation of user pagetables in 46 * high memory. 47 */ 48 if (strcmp(arg, "nohigh") == 0) 49 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 50 else 51 return -EINVAL; 52 return 0; 53 } 54 early_param("userpte", setup_userpte); 55 56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) 57 { 58 pgtable_page_dtor(pte); 59 paravirt_release_pte(page_to_pfn(pte)); 60 tlb_remove_table(tlb, pte); 61 } 62 63 #if CONFIG_PGTABLE_LEVELS > 2 64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) 65 { 66 struct page *page = virt_to_page(pmd); 67 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); 68 /* 69 * NOTE! For PAE, any changes to the top page-directory-pointer-table 70 * entries need a full cr3 reload to flush. 71 */ 72 #ifdef CONFIG_X86_PAE 73 tlb->need_flush_all = 1; 74 #endif 75 pgtable_pmd_page_dtor(page); 76 tlb_remove_table(tlb, page); 77 } 78 79 #if CONFIG_PGTABLE_LEVELS > 3 80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) 81 { 82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); 83 tlb_remove_table(tlb, virt_to_page(pud)); 84 } 85 86 #if CONFIG_PGTABLE_LEVELS > 4 87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) 88 { 89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); 90 tlb_remove_table(tlb, virt_to_page(p4d)); 91 } 92 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 93 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 94 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 95 96 static inline void pgd_list_add(pgd_t *pgd) 97 { 98 struct page *page = virt_to_page(pgd); 99 100 list_add(&page->lru, &pgd_list); 101 } 102 103 static inline void pgd_list_del(pgd_t *pgd) 104 { 105 struct page *page = virt_to_page(pgd); 106 107 list_del(&page->lru); 108 } 109 110 #define UNSHARED_PTRS_PER_PGD \ 111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) 112 113 114 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) 115 { 116 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); 117 virt_to_page(pgd)->index = (pgoff_t)mm; 118 } 119 120 struct mm_struct *pgd_page_get_mm(struct page *page) 121 { 122 return (struct mm_struct *)page->index; 123 } 124 125 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) 126 { 127 /* If the pgd points to a shared pagetable level (either the 128 ptes in non-PAE, or shared PMD in PAE), then just copy the 129 references from swapper_pg_dir. */ 130 if (CONFIG_PGTABLE_LEVELS == 2 || 131 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || 132 CONFIG_PGTABLE_LEVELS >= 4) { 133 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, 134 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 135 KERNEL_PGD_PTRS); 136 } 137 138 /* list required to sync kernel mapping updates */ 139 if (!SHARED_KERNEL_PMD) { 140 pgd_set_mm(pgd, mm); 141 pgd_list_add(pgd); 142 } 143 } 144 145 static void pgd_dtor(pgd_t *pgd) 146 { 147 if (SHARED_KERNEL_PMD) 148 return; 149 150 spin_lock(&pgd_lock); 151 pgd_list_del(pgd); 152 spin_unlock(&pgd_lock); 153 } 154 155 /* 156 * List of all pgd's needed for non-PAE so it can invalidate entries 157 * in both cached and uncached pgd's; not needed for PAE since the 158 * kernel pmd is shared. If PAE were not to share the pmd a similar 159 * tactic would be needed. This is essentially codepath-based locking 160 * against pageattr.c; it is the unique case in which a valid change 161 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 162 * vmalloc faults work because attached pagetables are never freed. 163 * -- nyc 164 */ 165 166 #ifdef CONFIG_X86_PAE 167 /* 168 * In PAE mode, we need to do a cr3 reload (=tlb flush) when 169 * updating the top-level pagetable entries to guarantee the 170 * processor notices the update. Since this is expensive, and 171 * all 4 top-level entries are used almost immediately in a 172 * new process's life, we just pre-populate them here. 173 * 174 * Also, if we're in a paravirt environment where the kernel pmd is 175 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate 176 * and initialize the kernel pmds here. 177 */ 178 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD 179 180 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) 181 { 182 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); 183 184 /* Note: almost everything apart from _PAGE_PRESENT is 185 reserved at the pmd (PDPT) level. */ 186 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); 187 188 /* 189 * According to Intel App note "TLBs, Paging-Structure Caches, 190 * and Their Invalidation", April 2007, document 317080-001, 191 * section 8.1: in PAE mode we explicitly have to flush the 192 * TLB via cr3 if the top-level pgd is changed... 193 */ 194 flush_tlb_mm(mm); 195 } 196 #else /* !CONFIG_X86_PAE */ 197 198 /* No need to prepopulate any pagetable entries in non-PAE modes. */ 199 #define PREALLOCATED_PMDS 0 200 201 #endif /* CONFIG_X86_PAE */ 202 203 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[]) 204 { 205 int i; 206 207 for(i = 0; i < PREALLOCATED_PMDS; i++) 208 if (pmds[i]) { 209 pgtable_pmd_page_dtor(virt_to_page(pmds[i])); 210 free_page((unsigned long)pmds[i]); 211 mm_dec_nr_pmds(mm); 212 } 213 } 214 215 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[]) 216 { 217 int i; 218 bool failed = false; 219 gfp_t gfp = PGALLOC_GFP; 220 221 if (mm == &init_mm) 222 gfp &= ~__GFP_ACCOUNT; 223 224 for(i = 0; i < PREALLOCATED_PMDS; i++) { 225 pmd_t *pmd = (pmd_t *)__get_free_page(gfp); 226 if (!pmd) 227 failed = true; 228 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { 229 free_page((unsigned long)pmd); 230 pmd = NULL; 231 failed = true; 232 } 233 if (pmd) 234 mm_inc_nr_pmds(mm); 235 pmds[i] = pmd; 236 } 237 238 if (failed) { 239 free_pmds(mm, pmds); 240 return -ENOMEM; 241 } 242 243 return 0; 244 } 245 246 /* 247 * Mop up any pmd pages which may still be attached to the pgd. 248 * Normally they will be freed by munmap/exit_mmap, but any pmd we 249 * preallocate which never got a corresponding vma will need to be 250 * freed manually. 251 */ 252 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) 253 { 254 int i; 255 256 for(i = 0; i < PREALLOCATED_PMDS; i++) { 257 pgd_t pgd = pgdp[i]; 258 259 if (pgd_val(pgd) != 0) { 260 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); 261 262 pgdp[i] = native_make_pgd(0); 263 264 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); 265 pmd_free(mm, pmd); 266 mm_dec_nr_pmds(mm); 267 } 268 } 269 } 270 271 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) 272 { 273 p4d_t *p4d; 274 pud_t *pud; 275 int i; 276 277 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ 278 return; 279 280 p4d = p4d_offset(pgd, 0); 281 pud = pud_offset(p4d, 0); 282 283 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { 284 pmd_t *pmd = pmds[i]; 285 286 if (i >= KERNEL_PGD_BOUNDARY) 287 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), 288 sizeof(pmd_t) * PTRS_PER_PMD); 289 290 pud_populate(mm, pud, pmd); 291 } 292 } 293 294 /* 295 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also 296 * assumes that pgd should be in one page. 297 * 298 * But kernel with PAE paging that is not running as a Xen domain 299 * only needs to allocate 32 bytes for pgd instead of one page. 300 */ 301 #ifdef CONFIG_X86_PAE 302 303 #include <linux/slab.h> 304 305 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 306 #define PGD_ALIGN 32 307 308 static struct kmem_cache *pgd_cache; 309 310 static int __init pgd_cache_init(void) 311 { 312 /* 313 * When PAE kernel is running as a Xen domain, it does not use 314 * shared kernel pmd. And this requires a whole page for pgd. 315 */ 316 if (!SHARED_KERNEL_PMD) 317 return 0; 318 319 /* 320 * when PAE kernel is not running as a Xen domain, it uses 321 * shared kernel pmd. Shared kernel pmd does not require a whole 322 * page for pgd. We are able to just allocate a 32-byte for pgd. 323 * During boot time, we create a 32-byte slab for pgd table allocation. 324 */ 325 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, 326 SLAB_PANIC, NULL); 327 if (!pgd_cache) 328 return -ENOMEM; 329 330 return 0; 331 } 332 core_initcall(pgd_cache_init); 333 334 static inline pgd_t *_pgd_alloc(void) 335 { 336 /* 337 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. 338 * We allocate one page for pgd. 339 */ 340 if (!SHARED_KERNEL_PMD) 341 return (pgd_t *)__get_free_page(PGALLOC_GFP); 342 343 /* 344 * Now PAE kernel is not running as a Xen domain. We can allocate 345 * a 32-byte slab for pgd to save memory space. 346 */ 347 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); 348 } 349 350 static inline void _pgd_free(pgd_t *pgd) 351 { 352 if (!SHARED_KERNEL_PMD) 353 free_page((unsigned long)pgd); 354 else 355 kmem_cache_free(pgd_cache, pgd); 356 } 357 #else 358 359 static inline pgd_t *_pgd_alloc(void) 360 { 361 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); 362 } 363 364 static inline void _pgd_free(pgd_t *pgd) 365 { 366 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); 367 } 368 #endif /* CONFIG_X86_PAE */ 369 370 pgd_t *pgd_alloc(struct mm_struct *mm) 371 { 372 pgd_t *pgd; 373 pmd_t *pmds[PREALLOCATED_PMDS]; 374 375 pgd = _pgd_alloc(); 376 377 if (pgd == NULL) 378 goto out; 379 380 mm->pgd = pgd; 381 382 if (preallocate_pmds(mm, pmds) != 0) 383 goto out_free_pgd; 384 385 if (paravirt_pgd_alloc(mm) != 0) 386 goto out_free_pmds; 387 388 /* 389 * Make sure that pre-populating the pmds is atomic with 390 * respect to anything walking the pgd_list, so that they 391 * never see a partially populated pgd. 392 */ 393 spin_lock(&pgd_lock); 394 395 pgd_ctor(mm, pgd); 396 pgd_prepopulate_pmd(mm, pgd, pmds); 397 398 spin_unlock(&pgd_lock); 399 400 return pgd; 401 402 out_free_pmds: 403 free_pmds(mm, pmds); 404 out_free_pgd: 405 _pgd_free(pgd); 406 out: 407 return NULL; 408 } 409 410 void pgd_free(struct mm_struct *mm, pgd_t *pgd) 411 { 412 pgd_mop_up_pmds(mm, pgd); 413 pgd_dtor(pgd); 414 paravirt_pgd_free(mm, pgd); 415 _pgd_free(pgd); 416 } 417 418 /* 419 * Used to set accessed or dirty bits in the page table entries 420 * on other architectures. On x86, the accessed and dirty bits 421 * are tracked by hardware. However, do_wp_page calls this function 422 * to also make the pte writeable at the same time the dirty bit is 423 * set. In that case we do actually need to write the PTE. 424 */ 425 int ptep_set_access_flags(struct vm_area_struct *vma, 426 unsigned long address, pte_t *ptep, 427 pte_t entry, int dirty) 428 { 429 int changed = !pte_same(*ptep, entry); 430 431 if (changed && dirty) 432 *ptep = entry; 433 434 return changed; 435 } 436 437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 438 int pmdp_set_access_flags(struct vm_area_struct *vma, 439 unsigned long address, pmd_t *pmdp, 440 pmd_t entry, int dirty) 441 { 442 int changed = !pmd_same(*pmdp, entry); 443 444 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 445 446 if (changed && dirty) { 447 *pmdp = entry; 448 /* 449 * We had a write-protection fault here and changed the pmd 450 * to to more permissive. No need to flush the TLB for that, 451 * #PF is architecturally guaranteed to do that and in the 452 * worst-case we'll generate a spurious fault. 453 */ 454 } 455 456 return changed; 457 } 458 459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 460 pud_t *pudp, pud_t entry, int dirty) 461 { 462 int changed = !pud_same(*pudp, entry); 463 464 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 465 466 if (changed && dirty) { 467 *pudp = entry; 468 /* 469 * We had a write-protection fault here and changed the pud 470 * to to more permissive. No need to flush the TLB for that, 471 * #PF is architecturally guaranteed to do that and in the 472 * worst-case we'll generate a spurious fault. 473 */ 474 } 475 476 return changed; 477 } 478 #endif 479 480 int ptep_test_and_clear_young(struct vm_area_struct *vma, 481 unsigned long addr, pte_t *ptep) 482 { 483 int ret = 0; 484 485 if (pte_young(*ptep)) 486 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 487 (unsigned long *) &ptep->pte); 488 489 return ret; 490 } 491 492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 493 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 494 unsigned long addr, pmd_t *pmdp) 495 { 496 int ret = 0; 497 498 if (pmd_young(*pmdp)) 499 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 500 (unsigned long *)pmdp); 501 502 return ret; 503 } 504 int pudp_test_and_clear_young(struct vm_area_struct *vma, 505 unsigned long addr, pud_t *pudp) 506 { 507 int ret = 0; 508 509 if (pud_young(*pudp)) 510 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, 511 (unsigned long *)pudp); 512 513 return ret; 514 } 515 #endif 516 517 int ptep_clear_flush_young(struct vm_area_struct *vma, 518 unsigned long address, pte_t *ptep) 519 { 520 /* 521 * On x86 CPUs, clearing the accessed bit without a TLB flush 522 * doesn't cause data corruption. [ It could cause incorrect 523 * page aging and the (mistaken) reclaim of hot pages, but the 524 * chance of that should be relatively low. ] 525 * 526 * So as a performance optimization don't flush the TLB when 527 * clearing the accessed bit, it will eventually be flushed by 528 * a context switch or a VM operation anyway. [ In the rare 529 * event of it not getting flushed for a long time the delay 530 * shouldn't really matter because there's no real memory 531 * pressure for swapout to react to. ] 532 */ 533 return ptep_test_and_clear_young(vma, address, ptep); 534 } 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 int pmdp_clear_flush_young(struct vm_area_struct *vma, 538 unsigned long address, pmd_t *pmdp) 539 { 540 int young; 541 542 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 543 544 young = pmdp_test_and_clear_young(vma, address, pmdp); 545 if (young) 546 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 547 548 return young; 549 } 550 #endif 551 552 /** 553 * reserve_top_address - reserves a hole in the top of kernel address space 554 * @reserve - size of hole to reserve 555 * 556 * Can be used to relocate the fixmap area and poke a hole in the top 557 * of kernel address space to make room for a hypervisor. 558 */ 559 void __init reserve_top_address(unsigned long reserve) 560 { 561 #ifdef CONFIG_X86_32 562 BUG_ON(fixmaps_set > 0); 563 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; 564 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", 565 -reserve, __FIXADDR_TOP + PAGE_SIZE); 566 #endif 567 } 568 569 int fixmaps_set; 570 571 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) 572 { 573 unsigned long address = __fix_to_virt(idx); 574 575 if (idx >= __end_of_fixed_addresses) { 576 BUG(); 577 return; 578 } 579 set_pte_vaddr(address, pte); 580 fixmaps_set++; 581 } 582 583 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, 584 pgprot_t flags) 585 { 586 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); 587 } 588 589 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 590 #ifdef CONFIG_X86_5LEVEL 591 /** 592 * p4d_set_huge - setup kernel P4D mapping 593 * 594 * No 512GB pages yet -- always return 0 595 */ 596 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 597 { 598 return 0; 599 } 600 601 /** 602 * p4d_clear_huge - clear kernel P4D mapping when it is set 603 * 604 * No 512GB pages yet -- always return 0 605 */ 606 int p4d_clear_huge(p4d_t *p4d) 607 { 608 return 0; 609 } 610 #endif 611 612 /** 613 * pud_set_huge - setup kernel PUD mapping 614 * 615 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this 616 * function sets up a huge page only if any of the following conditions are met: 617 * 618 * - MTRRs are disabled, or 619 * 620 * - MTRRs are enabled and the range is completely covered by a single MTRR, or 621 * 622 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which 623 * has no effect on the requested PAT memory type. 624 * 625 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger 626 * page mapping attempt fails. 627 * 628 * Returns 1 on success and 0 on failure. 629 */ 630 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 631 { 632 u8 mtrr, uniform; 633 634 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); 635 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 636 (mtrr != MTRR_TYPE_WRBACK)) 637 return 0; 638 639 prot = pgprot_4k_2_large(prot); 640 641 set_pte((pte_t *)pud, pfn_pte( 642 (u64)addr >> PAGE_SHIFT, 643 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 644 645 return 1; 646 } 647 648 /** 649 * pmd_set_huge - setup kernel PMD mapping 650 * 651 * See text over pud_set_huge() above. 652 * 653 * Returns 1 on success and 0 on failure. 654 */ 655 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 656 { 657 u8 mtrr, uniform; 658 659 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); 660 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && 661 (mtrr != MTRR_TYPE_WRBACK)) { 662 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", 663 __func__, addr, addr + PMD_SIZE); 664 return 0; 665 } 666 667 prot = pgprot_4k_2_large(prot); 668 669 set_pte((pte_t *)pmd, pfn_pte( 670 (u64)addr >> PAGE_SHIFT, 671 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 672 673 return 1; 674 } 675 676 /** 677 * pud_clear_huge - clear kernel PUD mapping when it is set 678 * 679 * Returns 1 on success and 0 on failure (no PUD map is found). 680 */ 681 int pud_clear_huge(pud_t *pud) 682 { 683 if (pud_large(*pud)) { 684 pud_clear(pud); 685 return 1; 686 } 687 688 return 0; 689 } 690 691 /** 692 * pmd_clear_huge - clear kernel PMD mapping when it is set 693 * 694 * Returns 1 on success and 0 on failure (no PMD map is found). 695 */ 696 int pmd_clear_huge(pmd_t *pmd) 697 { 698 if (pmd_large(*pmd)) { 699 pmd_clear(pmd); 700 return 1; 701 } 702 703 return 0; 704 } 705 706 /** 707 * pud_free_pmd_page - Clear pud entry and free pmd page. 708 * @pud: Pointer to a PUD. 709 * 710 * Context: The pud range has been unmaped and TLB purged. 711 * Return: 1 if clearing the entry succeeded. 0 otherwise. 712 */ 713 int pud_free_pmd_page(pud_t *pud) 714 { 715 pmd_t *pmd; 716 int i; 717 718 if (pud_none(*pud)) 719 return 1; 720 721 pmd = (pmd_t *)pud_page_vaddr(*pud); 722 723 for (i = 0; i < PTRS_PER_PMD; i++) 724 if (!pmd_free_pte_page(&pmd[i])) 725 return 0; 726 727 pud_clear(pud); 728 free_page((unsigned long)pmd); 729 730 return 1; 731 } 732 733 /** 734 * pmd_free_pte_page - Clear pmd entry and free pte page. 735 * @pmd: Pointer to a PMD. 736 * 737 * Context: The pmd range has been unmaped and TLB purged. 738 * Return: 1 if clearing the entry succeeded. 0 otherwise. 739 */ 740 int pmd_free_pte_page(pmd_t *pmd) 741 { 742 pte_t *pte; 743 744 if (pmd_none(*pmd)) 745 return 1; 746 747 pte = (pte_t *)pmd_page_vaddr(*pmd); 748 pmd_clear(pmd); 749 free_page((unsigned long)pte); 750 751 return 1; 752 } 753 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 754